- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Over two volumes, the authors develop factorization algebras, creating an essential reference for graduates and researchers.
Andere Kunden interessierten sich auch für
- Gwyn BellamyNoncommutative Algebraic Geometry49,99 €
- Maurice AuslanderRepresentation Theory of Artin Algebras68,99 €
- Stuart MartinSchur Algebras and Representation Theory63,99 €
- Roger W CarterLectures on Lie Groups and Lie Algebras66,99 €
- Max KaroubiAlgebraic Topology Via Differential Geometry43,99 €
- Ian R. PorteousClifford Algebras and the Classical Groups74,99 €
- Dieter HappelTriangulated Categories in the Representation of Finite Dimensional Algebras51,99 €
-
-
-
Over two volumes, the authors develop factorization algebras, creating an essential reference for graduates and researchers.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 818
- Erscheinungstermin: 29. Februar 2024
- Englisch
- Abmessung: 238mm x 156mm x 55mm
- Gewicht: 1448g
- ISBN-13: 9781009006163
- ISBN-10: 1009006169
- Artikelnr.: 70171977
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 818
- Erscheinungstermin: 29. Februar 2024
- Englisch
- Abmessung: 238mm x 156mm x 55mm
- Gewicht: 1448g
- ISBN-13: 9781009006163
- ISBN-10: 1009006169
- Artikelnr.: 70171977
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Kevin Costello is Krembil William Rowan Hamilton Chair in Theoretical Physics at the Perimeter Institute for Theoretical Physics, Waterloo, Canada. He is an honorary member of the Royal Irish Academy and a Fellow of the Royal Society. He has won several awards, including the Berwick Prize of the London Mathematical Society (2017) and the Eisenbud Prize of the American Mathematical Society (2020).
Volume 1: 1. Introduction
Part I. Prefactorization Algebras: 2. From Gaussian Measures to Factorization Algebras
3. Prefactorization Algebras and Basic Examples
Part II. First Examples of Field Theories: 4. Free Field Theories
5. Holomorphic Field Theories and Vertex Algebras
Part III. Factorization Algebras: 6. Factorization Algebras - Definitions and Constructions
7. Formal Aspects of Factorization Algebras
8. Factorization Algebras - Examples
Appendix A. Background
Appendix B. Functional Analysis
Appendix C. Homological Algebra in Differentiable Vector Spaces
Appendix D. The Atiyah-Bott Lemma
References
Index
Volume 2: 1. Introduction and Overview
Part I. Classical Field Theory: 2. Introduction to Classical Field Theory
3. Elliptic Moduli Problems
4. The Classical Batalin-Vilkovisky Formalism
5. The Observables of a Classical Field Theory
Part II. Quantum Field Theory: 6. Introduction to Quantum Field Theory
7. Effective Field Theories and Batalin-Vilkovisky Quantization
8. The Observables of a Quantum Field Theory
9. Further Aspects of Quantum Observables
10. Operator Product Expansions, with Examples
Part III. A Factorization Enhancement of Noether's Theorem: 11. Introduction to Noether's Theorems
12. Noether's Theorem in Classical Field Theory
13. Noether's Theorem in Quantum Field Theory
14. Examples of the Noether Theorems
Appendix A. Background
Appendix B. Functions on Spaces of Sections
Appendix C. A Formal Darboux Lemma
References
Index.
Part I. Prefactorization Algebras: 2. From Gaussian Measures to Factorization Algebras
3. Prefactorization Algebras and Basic Examples
Part II. First Examples of Field Theories: 4. Free Field Theories
5. Holomorphic Field Theories and Vertex Algebras
Part III. Factorization Algebras: 6. Factorization Algebras - Definitions and Constructions
7. Formal Aspects of Factorization Algebras
8. Factorization Algebras - Examples
Appendix A. Background
Appendix B. Functional Analysis
Appendix C. Homological Algebra in Differentiable Vector Spaces
Appendix D. The Atiyah-Bott Lemma
References
Index
Volume 2: 1. Introduction and Overview
Part I. Classical Field Theory: 2. Introduction to Classical Field Theory
3. Elliptic Moduli Problems
4. The Classical Batalin-Vilkovisky Formalism
5. The Observables of a Classical Field Theory
Part II. Quantum Field Theory: 6. Introduction to Quantum Field Theory
7. Effective Field Theories and Batalin-Vilkovisky Quantization
8. The Observables of a Quantum Field Theory
9. Further Aspects of Quantum Observables
10. Operator Product Expansions, with Examples
Part III. A Factorization Enhancement of Noether's Theorem: 11. Introduction to Noether's Theorems
12. Noether's Theorem in Classical Field Theory
13. Noether's Theorem in Quantum Field Theory
14. Examples of the Noether Theorems
Appendix A. Background
Appendix B. Functions on Spaces of Sections
Appendix C. A Formal Darboux Lemma
References
Index.
Volume 1: 1. Introduction
Part I. Prefactorization Algebras: 2. From Gaussian Measures to Factorization Algebras
3. Prefactorization Algebras and Basic Examples
Part II. First Examples of Field Theories: 4. Free Field Theories
5. Holomorphic Field Theories and Vertex Algebras
Part III. Factorization Algebras: 6. Factorization Algebras - Definitions and Constructions
7. Formal Aspects of Factorization Algebras
8. Factorization Algebras - Examples
Appendix A. Background
Appendix B. Functional Analysis
Appendix C. Homological Algebra in Differentiable Vector Spaces
Appendix D. The Atiyah-Bott Lemma
References
Index
Volume 2: 1. Introduction and Overview
Part I. Classical Field Theory: 2. Introduction to Classical Field Theory
3. Elliptic Moduli Problems
4. The Classical Batalin-Vilkovisky Formalism
5. The Observables of a Classical Field Theory
Part II. Quantum Field Theory: 6. Introduction to Quantum Field Theory
7. Effective Field Theories and Batalin-Vilkovisky Quantization
8. The Observables of a Quantum Field Theory
9. Further Aspects of Quantum Observables
10. Operator Product Expansions, with Examples
Part III. A Factorization Enhancement of Noether's Theorem: 11. Introduction to Noether's Theorems
12. Noether's Theorem in Classical Field Theory
13. Noether's Theorem in Quantum Field Theory
14. Examples of the Noether Theorems
Appendix A. Background
Appendix B. Functions on Spaces of Sections
Appendix C. A Formal Darboux Lemma
References
Index.
Part I. Prefactorization Algebras: 2. From Gaussian Measures to Factorization Algebras
3. Prefactorization Algebras and Basic Examples
Part II. First Examples of Field Theories: 4. Free Field Theories
5. Holomorphic Field Theories and Vertex Algebras
Part III. Factorization Algebras: 6. Factorization Algebras - Definitions and Constructions
7. Formal Aspects of Factorization Algebras
8. Factorization Algebras - Examples
Appendix A. Background
Appendix B. Functional Analysis
Appendix C. Homological Algebra in Differentiable Vector Spaces
Appendix D. The Atiyah-Bott Lemma
References
Index
Volume 2: 1. Introduction and Overview
Part I. Classical Field Theory: 2. Introduction to Classical Field Theory
3. Elliptic Moduli Problems
4. The Classical Batalin-Vilkovisky Formalism
5. The Observables of a Classical Field Theory
Part II. Quantum Field Theory: 6. Introduction to Quantum Field Theory
7. Effective Field Theories and Batalin-Vilkovisky Quantization
8. The Observables of a Quantum Field Theory
9. Further Aspects of Quantum Observables
10. Operator Product Expansions, with Examples
Part III. A Factorization Enhancement of Noether's Theorem: 11. Introduction to Noether's Theorems
12. Noether's Theorem in Classical Field Theory
13. Noether's Theorem in Quantum Field Theory
14. Examples of the Noether Theorems
Appendix A. Background
Appendix B. Functions on Spaces of Sections
Appendix C. A Formal Darboux Lemma
References
Index.