
Erkennung von Netzwerkangriffen im IoT mit künstlicher Intelligenz
"Schützen Sie Ihre vernetzte Welt: KI-gestützte Strategie zur Erkennung von Netzwerkangriffen in IoT-Geräten"
Versandkostenfrei!
Versandfertig in 6-10 Tagen
43,90 €
inkl. MwSt.
PAYBACK Punkte
0 °P sammeln!
Wir mögen einfache und automatisierte Lösungen , aber diese einfachen und automatisierten Lösungen in der Technologie können auch Risiken enthalten, wenn sie nicht richtig gehandhabt werden. IoT-Sicherheits- und Datenschutzbelange müssen imMittelpunkt stehen. Es kann mehrere Arten von Angriffen auf IoT-Netzwerke geben, die das Gerät beschädigen oder die sensiblen Informationen stehlen können . Daher haben Techniken der künstlichen Intelligenz (KI) dieFähigkeit, ein unbekanntes Netzwerkverhalten zu erkennen und zu klassifizieren , indem sie die Muster von Netzwerkangriffen aufder Grun...
Wir mögen einfache und automatisierte Lösungen , aber diese einfachen und automatisierten Lösungen in der Technologie können auch Risiken enthalten, wenn sie nicht richtig gehandhabt werden. IoT-Sicherheits- und Datenschutzbelange müssen imMittelpunkt stehen. Es kann mehrere Arten von Angriffen auf IoT-Netzwerke geben, die das Gerät beschädigen oder die sensiblen Informationen stehlen können . Daher haben Techniken der künstlichen Intelligenz (KI) dieFähigkeit, ein unbekanntes Netzwerkverhalten zu erkennen und zu klassifizieren , indem sie die Muster von Netzwerkangriffen aufder Grundlage großer Mengen historischer Daten erlernen . Wir haben den Aposemat IoT-23-Datensatz verwendet , den Hintergrund untersucht und die Algorithmen des maschinellen Lernens wie Entscheidungsbaum, Random Forest und Naive Bayes implementiert . Wir verglichen auch die Genauigkeit zwischen diesen maschinellen Lernalgorithmen auf dem IoT-23-Datensatz und zeigten den effizientesten maschinellen Lernalgorithmus gemäß den Ergebnissen, indem wir den Aposemat IoT-23-Datensatz verwendeten , sowieFeature-Engineering-Techniken zur Vorverarbeitung des erwähnten Datensatzes für die Erkennung und Klassifizierung von IoT-Netzwerkangriffen.