Deep Learning for Crack-Like Object Detection
Versandfertig in über 4 Wochen
Weitere Ausgaben:
PAYBACK Punkte
13 °P sammeln!
Accurately detecting crack localization is not an easy task. This book addresses important issues in detecting crack-like objects and provides a practical smart pavement surface inspection system using deep learning.
Kaige Zhang has a B.S. degree (2011) in electronic engineering from the Harbin Institute of Technology, China, and a Ph.D. degree (2019) in computer science from Utah State University, USA. His research interests include computer vision, machine learning, and the applications on intelligent transportation systems, precision agriculture, and biomedical data analytics. Dr. Zhang has been the reviewer for many top journals in his research areas, such as IEEE Transactions on ITS, IEEE Trans. On T-IV, J. of Comput. in Civil Eng., Scientific Report, etc. Heng-Da Cheng has a Ph.D. in Electrical Engineering from Purdue University, West Lafayette, IN, USA in 1985 under the supervision Prof. K. S. Fu. He is a Full Professor with the Department of Computer Science, Utah State University, Logan, UT. He has authored over 350 technical papers and is the Associate Editor of Pattern Recognition, Information Sciences, and New Mathematics and Natural Computation.
Produktbeschreibung
- Verlag: Taylor & Francis Ltd (Sales)
- Seitenzahl: 100
- Erscheinungstermin: 9. Oktober 2024
- Englisch
- Abmessung: 216mm x 140mm x 6mm
- Gewicht: 136g
- ISBN-13: 9781032181196
- ISBN-10: 1032181192
- Artikelnr.: 71583035
Herstellerkennzeichnung
Libri GmbH
Europaallee 1
36244 Bad Hersfeld
gpsr@libri.de
Für dieses Produkt wurde noch keine Bewertung abgegeben. Wir würden uns sehr freuen, wenn du die erste Bewertung schreibst!
Eine Bewertung schreiben
Eine Bewertung schreiben
Andere Kunden interessierten sich für