
Data Analytics im Risikomanagement
Descriptive Analytics - Diagnostic Analytics - Predictive Analytics
Versandkostenfrei!
Erscheint vorauss. 10. September 2025
64,99 €
inkl. MwSt.
PAYBACK Punkte
0 °P sammeln!
Das Buch bietet einen umfassenden Überblick über Data Analytics im Risikomanagement in Unternehmen. Die fortschreitende Digitalisierung bringt eine wachsende Menge von Daten hervor. Data Analytics beschäftigt sich mit den Methoden zur Analyse dieser Daten und umfasst neben statistischen Modellen auch das Maschinelle Lernen. Unternehmen, die die methodischen Grundlagen von Data Analytics verstehen und anwenden, können nicht nur im Risikomanagement Daten wertschöpfend nutzen, sondern auf Basis einer verbesserten Analyse und Prognose fundierte unternehmerische Entscheidungen treffen. In eine...
Das Buch bietet einen umfassenden Überblick über Data Analytics im Risikomanagement in Unternehmen. Die fortschreitende Digitalisierung bringt eine wachsende Menge von Daten hervor. Data Analytics beschäftigt sich mit den Methoden zur Analyse dieser Daten und umfasst neben statistischen Modellen auch das Maschinelle Lernen. Unternehmen, die die methodischen Grundlagen von Data Analytics verstehen und anwenden, können nicht nur im Risikomanagement Daten wertschöpfend nutzen, sondern auf Basis einer verbesserten Analyse und Prognose fundierte unternehmerische Entscheidungen treffen. In einem durch den Einsatz von Artificial Intelligence (AI) geprägten Unternehmensumfeld stellt dies einen erheblichen Wettbewerbsvorteil dar.
Neben einer allgemeinen Einführung in Data Analytics erläutern die Autoren fundiert die Methoden der deskriptiven, diagnostischen sowie prädiktiven Datenanalyse. Basierend auf einem fiktiven Unternehmen werden Anwendungsbeispiele aus der Praxis des Risikomanagements beschrieben. Die Beispiele werden als Sourcecode in der Programmiersprache R für eine praktische Umsetzung zum Download bereitgestellt.
Neben einer allgemeinen Einführung in Data Analytics erläutern die Autoren fundiert die Methoden der deskriptiven, diagnostischen sowie prädiktiven Datenanalyse. Basierend auf einem fiktiven Unternehmen werden Anwendungsbeispiele aus der Praxis des Risikomanagements beschrieben. Die Beispiele werden als Sourcecode in der Programmiersprache R für eine praktische Umsetzung zum Download bereitgestellt.