Curvature of a Measure
Broschiertes Buch

Curvature of a Measure

Versandkostenfrei!
Versandfertig in 6-10 Tagen
23,99 €
inkl. MwSt.
PAYBACK Punkte
12 °P sammeln!
High Quality Content by WIKIPEDIA articles! In mathematics, the curvature of a measure defined on the Euclidean plane R2 is a quantification of how much the measure's "distribution of mass" is "curved". It is related to notions of curvature in geometry. In the form presented below, the concept was introduced in 1995 by the mathematician Mark S. Melnikov; accordingly, it may be referred to as the Melnikov curvature or Menger-Melnikov curvature. Melnikov and Verdera (1995) established a powerful connection between the curvature of measures and the Cauchy kernel.