
Consistency Properties for Growth Model Parameters Under an Infill Asymptotics Domain
Versandkostenfrei!
Versandfertig in über 4 Wochen
16,99 €
inkl. MwSt.
Weitere Ausgaben:
PAYBACK Punkte
8 °P sammeln!
Growth curves are used to model various processes, and are often seen in biological and agricultural studies. Underlying assumptions of many studies are that the process may be sampled forever, and that samples are statistically independent. We instead consider the case where sampling occurs in a finite domain, so that increased sampling forces samples closer together, and also assume a distance-based covariance function. We first prove that, under certain conditions, the mean parameter of a fixed-mean model cannot be estimated within a finite domain. We then numerically consider more complex ...
Growth curves are used to model various processes, and are often seen in biological and agricultural studies. Underlying assumptions of many studies are that the process may be sampled forever, and that samples are statistically independent. We instead consider the case where sampling occurs in a finite domain, so that increased sampling forces samples closer together, and also assume a distance-based covariance function. We first prove that, under certain conditions, the mean parameter of a fixed-mean model cannot be estimated within a finite domain. We then numerically consider more complex growth curves, examining sample sizes, sample spacing, and quality of parameter estimates, and close with recommendations to practitioners. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.