166,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
83 °P sammeln
  • Gebundenes Buch

Most cameras are inherently designed to mimic what is seen by the human eye: they have three channels of RGB and can achieve up to around 30 frames per second (FPS). However, some cameras are designed to capture other modalities: some may have the ability to capture spectra from near UV to near IR rather than RGB, polarimetry, different times of light travel, etc. Such modalities are as yet unknown, but they can also collect robust data of the scene they are capturing. This book will focus on the emerging computer vision techniques known as computational imaging. These include capturing,…mehr

Produktbeschreibung
Most cameras are inherently designed to mimic what is seen by the human eye: they have three channels of RGB and can achieve up to around 30 frames per second (FPS). However, some cameras are designed to capture other modalities: some may have the ability to capture spectra from near UV to near IR rather than RGB, polarimetry, different times of light travel, etc. Such modalities are as yet unknown, but they can also collect robust data of the scene they are capturing. This book will focus on the emerging computer vision techniques known as computational imaging. These include capturing, processing and analyzing such modalities for various applications of scene understanding.
Autorenporträt
Takuya Funatomi is an associate professor in Division of Information Science at the Nara Institute of Science and Technology (NAIST) in Japan. He has received a bachelor's degree in Engineering and a master's degree and PhD in Informatics from Kyoto University in 2002, 2004 and 2007, respectively. Takahiro Okabe is a professor at Kyushu Institute of Technology in Japan. He received a bachelor's and a master's degree in Physics and a PhD in Information Science and Technology from the University of Tokyo in 1997, 1999 and 2011, respectively.