Marriott
Applications of Differential Geometry to Econometrics
Herausgeber: Marriott, Paul; Salmon, Mark
Marriott
Applications of Differential Geometry to Econometrics
Herausgeber: Marriott, Paul; Salmon, Mark
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Originally published in 2000, this volume was an early example of the application of differential geometry to econometrics.
Andere Kunden interessierten sich auch für
- Marc NerloveEssays in Panel Data Econometrics67,99 €
- G. S. MaddalaLimited-Dependent and Qualitative Variables in Econometrics38,99 €
- Hugo A. KeuzenkampProbability, Econometrics and Truth33,99 €
- M. Kreps / F. Wallis (eds.)Advances in Economics and Econometrics29,99 €
- Adrian PaganNonparametric Econometrics56,99 €
- Ilya MolchanovRandom Sets in Econometrics35,99 €
- M. Kreps / F. Wallis (eds.)Advances in Economics and Econometrics54,99 €
-
-
-
Originally published in 2000, this volume was an early example of the application of differential geometry to econometrics.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 336
- Erscheinungstermin: 1. November 2010
- Englisch
- Abmessung: 229mm x 152mm x 20mm
- Gewicht: 547g
- ISBN-13: 9780521178297
- ISBN-10: 0521178290
- Artikelnr.: 32301585
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 336
- Erscheinungstermin: 1. November 2010
- Englisch
- Abmessung: 229mm x 152mm x 20mm
- Gewicht: 547g
- ISBN-13: 9780521178297
- ISBN-10: 0521178290
- Artikelnr.: 32301585
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Introduction P. Marriott and M. Salmon; 1. An introduction to differential
geometry P. Marriott and M. Salmon; 2. Orthogonal projection, nested models
and encompassing Maozu Lu and G. Mizon; 3. Exact properties of the maximum
likelihood estimator in exponential regression models G. Hillier and R.
O'Brien; 4. Empirical likelihood estimation and inference R. Smith; 5.
Measuring earnings differentials with frontier functions and Rao distances
U. Jensen; 6. First order predictive densities J. M. Corcuera and F.
Giummole; 7. An alternative comparison of classical tests: assessing the
effects of curvature K. J. van Garderen; 8. Testing for unit roots in AR
and MA Models T. Rothenberg; 9. Efficiency and robustness in a geometrical
perspective R. Davidson; 10. Paramaterisations and transformations; An
elementary introduction to Amari's differential geometry F. Critchley, P.
Marriott and M. Salmon.
geometry P. Marriott and M. Salmon; 2. Orthogonal projection, nested models
and encompassing Maozu Lu and G. Mizon; 3. Exact properties of the maximum
likelihood estimator in exponential regression models G. Hillier and R.
O'Brien; 4. Empirical likelihood estimation and inference R. Smith; 5.
Measuring earnings differentials with frontier functions and Rao distances
U. Jensen; 6. First order predictive densities J. M. Corcuera and F.
Giummole; 7. An alternative comparison of classical tests: assessing the
effects of curvature K. J. van Garderen; 8. Testing for unit roots in AR
and MA Models T. Rothenberg; 9. Efficiency and robustness in a geometrical
perspective R. Davidson; 10. Paramaterisations and transformations; An
elementary introduction to Amari's differential geometry F. Critchley, P.
Marriott and M. Salmon.
Introduction P. Marriott and M. Salmon; 1. An introduction to differential
geometry P. Marriott and M. Salmon; 2. Orthogonal projection, nested models
and encompassing Maozu Lu and G. Mizon; 3. Exact properties of the maximum
likelihood estimator in exponential regression models G. Hillier and R.
O'Brien; 4. Empirical likelihood estimation and inference R. Smith; 5.
Measuring earnings differentials with frontier functions and Rao distances
U. Jensen; 6. First order predictive densities J. M. Corcuera and F.
Giummole; 7. An alternative comparison of classical tests: assessing the
effects of curvature K. J. van Garderen; 8. Testing for unit roots in AR
and MA Models T. Rothenberg; 9. Efficiency and robustness in a geometrical
perspective R. Davidson; 10. Paramaterisations and transformations; An
elementary introduction to Amari's differential geometry F. Critchley, P.
Marriott and M. Salmon.
geometry P. Marriott and M. Salmon; 2. Orthogonal projection, nested models
and encompassing Maozu Lu and G. Mizon; 3. Exact properties of the maximum
likelihood estimator in exponential regression models G. Hillier and R.
O'Brien; 4. Empirical likelihood estimation and inference R. Smith; 5.
Measuring earnings differentials with frontier functions and Rao distances
U. Jensen; 6. First order predictive densities J. M. Corcuera and F.
Giummole; 7. An alternative comparison of classical tests: assessing the
effects of curvature K. J. van Garderen; 8. Testing for unit roots in AR
and MA Models T. Rothenberg; 9. Efficiency and robustness in a geometrical
perspective R. Davidson; 10. Paramaterisations and transformations; An
elementary introduction to Amari's differential geometry F. Critchley, P.
Marriott and M. Salmon.