D. J. H. Garling
Analysis on Polish Spaces and an Introduction to Optimal Transportation
D. J. H. Garling
Analysis on Polish Spaces and an Introduction to Optimal Transportation
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Detailed account of analysis on Polish spaces with a straightforward introduction to optimal transportation.
Andere Kunden interessierten sich auch für
- Martin SchechterAn Introduction to Nonlinear Analysis55,99 €
- Przemysaw WojtaszczykA Mathematical Introduction to Wavelets42,99 €
- R C GunningIntroduction to Holomorphic Functions of Several Variables, Volume II78,99 €
- J. R. GilesIntroduction to the Analysis of Normed Linear Spaces82,99 €
- L. C. G. Rogers / D. Talay (eds.)Numerical Methods in Finance75,99 €
- E. T. WhittakerA Course of Modern Analysis105,99 €
- Paul KoosisThe Logarithmic Integral88,99 €
-
-
-
Detailed account of analysis on Polish spaces with a straightforward introduction to optimal transportation.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 360
- Erscheinungstermin: 22. März 2019
- Englisch
- Abmessung: 229mm x 152mm x 19mm
- Gewicht: 522g
- ISBN-13: 9781108431767
- ISBN-10: 1108431763
- Artikelnr.: 48686608
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 360
- Erscheinungstermin: 22. März 2019
- Englisch
- Abmessung: 229mm x 152mm x 19mm
- Gewicht: 522g
- ISBN-13: 9781108431767
- ISBN-10: 1108431763
- Artikelnr.: 48686608
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
D. J. H. Garling is a Fellow of St John's College, Cambridge, and Emeritus Reader in Mathematical Analysis at the University of Cambridge. He has written several books on mathematics, including Inequalities: A Journey into Linear Algebra (Cambridge, 2007) and A Course in Mathematical Analysis (Cambridge, 2013).
Introduction
Part I. Topological Properties: 1. General topology
2. Metric spaces
3. Polish spaces and compactness
4. Semi-continuous functions
5. Uniform spaces and topological groups
6. Càdlàg functions
7. Banach spaces
8. Hilbert space
9. The Hahn-Banach theorem
10. Convex functions
11. Subdifferentials and the legendre transform
12. Compact convex Polish spaces
13. Some fixed point theorems
Part II. Measures on Polish Spaces: 14. Abstract measure theory
15. Further measure theory
16. Borel measures
17. Measures on Euclidean space
18. Convergence of measures
19. Introduction to Choquet theory
Part III. Introduction to Optimal Transportation: 20. Optimal transportation
21. Wasserstein metrics
22. Some examples
Further reading
Index.
Part I. Topological Properties: 1. General topology
2. Metric spaces
3. Polish spaces and compactness
4. Semi-continuous functions
5. Uniform spaces and topological groups
6. Càdlàg functions
7. Banach spaces
8. Hilbert space
9. The Hahn-Banach theorem
10. Convex functions
11. Subdifferentials and the legendre transform
12. Compact convex Polish spaces
13. Some fixed point theorems
Part II. Measures on Polish Spaces: 14. Abstract measure theory
15. Further measure theory
16. Borel measures
17. Measures on Euclidean space
18. Convergence of measures
19. Introduction to Choquet theory
Part III. Introduction to Optimal Transportation: 20. Optimal transportation
21. Wasserstein metrics
22. Some examples
Further reading
Index.
Introduction
Part I. Topological Properties: 1. General topology
2. Metric spaces
3. Polish spaces and compactness
4. Semi-continuous functions
5. Uniform spaces and topological groups
6. Càdlàg functions
7. Banach spaces
8. Hilbert space
9. The Hahn-Banach theorem
10. Convex functions
11. Subdifferentials and the legendre transform
12. Compact convex Polish spaces
13. Some fixed point theorems
Part II. Measures on Polish Spaces: 14. Abstract measure theory
15. Further measure theory
16. Borel measures
17. Measures on Euclidean space
18. Convergence of measures
19. Introduction to Choquet theory
Part III. Introduction to Optimal Transportation: 20. Optimal transportation
21. Wasserstein metrics
22. Some examples
Further reading
Index.
Part I. Topological Properties: 1. General topology
2. Metric spaces
3. Polish spaces and compactness
4. Semi-continuous functions
5. Uniform spaces and topological groups
6. Càdlàg functions
7. Banach spaces
8. Hilbert space
9. The Hahn-Banach theorem
10. Convex functions
11. Subdifferentials and the legendre transform
12. Compact convex Polish spaces
13. Some fixed point theorems
Part II. Measures on Polish Spaces: 14. Abstract measure theory
15. Further measure theory
16. Borel measures
17. Measures on Euclidean space
18. Convergence of measures
19. Introduction to Choquet theory
Part III. Introduction to Optimal Transportation: 20. Optimal transportation
21. Wasserstein metrics
22. Some examples
Further reading
Index.