- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This set includes: " Analysis in Vector Spaces" ISBN 978-0-470-14824-2 and "Analysis in Vector Spaces, Student Solutions Manual" ISBN 978-0-470-14825-9.
Andere Kunden interessierten sich auch für
- Mustafa A AkcogluAnalysis in Vector Spaces, Solutions Manual43,99 €
- Mustafa A. AkcogluAnalysis in Vector Spaces172,99 €
- A V KimI-Smooth Analysis200,99 €
- Vigirdas MackeviciusIntegral and Measure163,99 €
- William C BauldryIntroduction to Real Analysis125,99 €
- Andrei BourchteinCounterexamples on Uniform Convergence69,99 €
- Harold S ShapiroThe Schwarz Function and Its Generalization to Higher Dimensions273,99 €
-
-
-
This set includes: " Analysis in Vector Spaces" ISBN 978-0-470-14824-2 and "Analysis in Vector Spaces, Student Solutions Manual" ISBN 978-0-470-14825-9.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 630
- Erscheinungstermin: 1. April 2009
- Englisch
- Abmessung: 239mm x 160mm x 36mm
- Gewicht: 1066g
- ISBN-13: 9780470486771
- ISBN-10: 0470486775
- Artikelnr.: 29935793
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley
- Seitenzahl: 630
- Erscheinungstermin: 1. April 2009
- Englisch
- Abmessung: 239mm x 160mm x 36mm
- Gewicht: 1066g
- ISBN-13: 9780470486771
- ISBN-10: 0470486775
- Artikelnr.: 29935793
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
MUSTAFA A. AKCOGLU, PhD, is Professor Emeritus in the Department of Mathematics at the University of Toronto, Canada. He has authored or coauthored over sixty journal articles on the topics of ergodic theory, functional analysis, and harmonic analysis. PAUL F.A. BARTHA, PhD, is Associate Professor in the Department of Philosophy at The University of British Columbia, Canada. He has authored or coauthored journal articles on topics such as probability and symmetry, probabilistic paradoxes, and the general philosophy of science. DZUNG MINH HA, PhD, is Associate Professor in the Department of Mathematics at Ryerson University, Canada. Dr. Ha focuses his research in the areas of ergodic theory and operator theory.
Analysis in Vector Spaces
Analysis in Vector Spaces TOC:
Preface.
PART I BACKGROUND MATERIAL.
1 Sets and Functions.
1.1 Sets in General.
1.2 Sets of Numbers.
1.3 Functions.
2 Real Numbers.
2.1 Review of the Order Relations.
2.2 Completeness of Real Numbers.
2.3 Sequences of Real Numbers.
2.4 Subsequences.
2.5 Series of Real Numbers.
2.6 Intervals and Connected Sets.
3 Vector Functions.
3.1 Vector Spaces: The Basics.
3.2 Bilinear Functions.
3.3 Multilinear Functions.
3.4 Inner Products.
3.5 Orthogonal Projections.
3.6 Spectral Theorem.
PART II DIFFERENTIATION.
4 Normed Vector Spaces.
4.1 Preliminaries.
4.2 Convergence in Normed Spaces.
4.3 Norms of Linear and Multilinear Transformations.
4.4 Continuity in Normed Spaces.
4.5 Topology of Normed Spaces.
5 Derivatives.
5.1 Functions of a Real Variable.
5.2 Differentiable Functions.
5.3 Existence of Derivatives.
5.4 Partial Derivatives.
5.5 Rules of Differentiation.
5.6 Differentiation of Products.
6 Diffeomorphisms and Manifolds.
6.1 The Inverse Function Theorem.
6.2 Graphs.
6.3 Manifolds in Parametric Representations.
6.4 Manifolds in Implicit Representations.
6.5 Differentiation on Manifolds.
7 Higher-Order Derivatives.
7.1 Definitions.
7.2 Change of Order in Differentiation.
7.3 Sequences of Polynomials.
7.4 Local Extremal Values.
PART III INTEGRATION.
8 Multiple Integrals.
8.1 Jordan Sets and Volume.
8.2 Integrals.
8.3 Images of Jordan Sets.
8.4 Change of Variables.
9 Integration on Manifolds.
9.1 Euclidean Volumes.
9.2 Integration on Manifolds.
9.3 Oriented Manifolds.
9.4 Integrals of Vector Fields.
9.5 Integrals of Tensor Fields.
9.6 Integration on Graphs.
10 Stokes' Theorem.
10.1 Basic Stokes' Theorem.
10.2 Flows.
10.3 Flux and Change of Volume in a Flow.
10.4 Exterior Derivatives.
10.5 Regular and Almost Regular Sets.
10.6 Stokes' Theorem on Manifolds.
PART IV APPENDICES.
Appendix A: Construction of the Real Numbers.
A.1 Field and Order Axioms in Q.
A.2 Equivalence Classes of Cauchy Sequences in Q.
A.3 Completeness of R.
Appendix B: Dimension of a Vector Space.
B.1 Bases and Linearly Independent Subsets.
Appendix C: Determinants.
C.1 Permutations.
C.2 Determinants of Square Matrices.
C.3 Determinant Functions.
C.4 Determinant of a Linear Transformation.
C.5 Determinants on Cartesian Products.
C.6 Determinants in Euclidean Spaces.
C.7 Trace of an Operator.
Appendix D: Partitions of Unity.
D.1 Partitions of Unity.
Index.
Solutions Manual to accompany Analysis in Vector Spaces TOC:
Preface ix
1 Sets and Functions 3
2 Real Numbers 13
3 Vector Functions 27
4 Normed Vector Spaces 45
5 Derivatives 63
6 Diffeomorphisms and Manifolds 83
7 High-Order Derivatives 95
8 Multiple Integrals 99
9 Integration of Manifolds 115
10 Stokes Theorem 131
Analysis in Vector Spaces TOC:
Preface.
PART I BACKGROUND MATERIAL.
1 Sets and Functions.
1.1 Sets in General.
1.2 Sets of Numbers.
1.3 Functions.
2 Real Numbers.
2.1 Review of the Order Relations.
2.2 Completeness of Real Numbers.
2.3 Sequences of Real Numbers.
2.4 Subsequences.
2.5 Series of Real Numbers.
2.6 Intervals and Connected Sets.
3 Vector Functions.
3.1 Vector Spaces: The Basics.
3.2 Bilinear Functions.
3.3 Multilinear Functions.
3.4 Inner Products.
3.5 Orthogonal Projections.
3.6 Spectral Theorem.
PART II DIFFERENTIATION.
4 Normed Vector Spaces.
4.1 Preliminaries.
4.2 Convergence in Normed Spaces.
4.3 Norms of Linear and Multilinear Transformations.
4.4 Continuity in Normed Spaces.
4.5 Topology of Normed Spaces.
5 Derivatives.
5.1 Functions of a Real Variable.
5.2 Differentiable Functions.
5.3 Existence of Derivatives.
5.4 Partial Derivatives.
5.5 Rules of Differentiation.
5.6 Differentiation of Products.
6 Diffeomorphisms and Manifolds.
6.1 The Inverse Function Theorem.
6.2 Graphs.
6.3 Manifolds in Parametric Representations.
6.4 Manifolds in Implicit Representations.
6.5 Differentiation on Manifolds.
7 Higher-Order Derivatives.
7.1 Definitions.
7.2 Change of Order in Differentiation.
7.3 Sequences of Polynomials.
7.4 Local Extremal Values.
PART III INTEGRATION.
8 Multiple Integrals.
8.1 Jordan Sets and Volume.
8.2 Integrals.
8.3 Images of Jordan Sets.
8.4 Change of Variables.
9 Integration on Manifolds.
9.1 Euclidean Volumes.
9.2 Integration on Manifolds.
9.3 Oriented Manifolds.
9.4 Integrals of Vector Fields.
9.5 Integrals of Tensor Fields.
9.6 Integration on Graphs.
10 Stokes' Theorem.
10.1 Basic Stokes' Theorem.
10.2 Flows.
10.3 Flux and Change of Volume in a Flow.
10.4 Exterior Derivatives.
10.5 Regular and Almost Regular Sets.
10.6 Stokes' Theorem on Manifolds.
PART IV APPENDICES.
Appendix A: Construction of the Real Numbers.
A.1 Field and Order Axioms in Q.
A.2 Equivalence Classes of Cauchy Sequences in Q.
A.3 Completeness of R.
Appendix B: Dimension of a Vector Space.
B.1 Bases and Linearly Independent Subsets.
Appendix C: Determinants.
C.1 Permutations.
C.2 Determinants of Square Matrices.
C.3 Determinant Functions.
C.4 Determinant of a Linear Transformation.
C.5 Determinants on Cartesian Products.
C.6 Determinants in Euclidean Spaces.
C.7 Trace of an Operator.
Appendix D: Partitions of Unity.
D.1 Partitions of Unity.
Index.
Solutions Manual to accompany Analysis in Vector Spaces TOC:
Preface ix
1 Sets and Functions 3
2 Real Numbers 13
3 Vector Functions 27
4 Normed Vector Spaces 45
5 Derivatives 63
6 Diffeomorphisms and Manifolds 83
7 High-Order Derivatives 95
8 Multiple Integrals 99
9 Integration of Manifolds 115
10 Stokes Theorem 131
Analysis in Vector Spaces
Analysis in Vector Spaces TOC:
Preface.
PART I BACKGROUND MATERIAL.
1 Sets and Functions.
1.1 Sets in General.
1.2 Sets of Numbers.
1.3 Functions.
2 Real Numbers.
2.1 Review of the Order Relations.
2.2 Completeness of Real Numbers.
2.3 Sequences of Real Numbers.
2.4 Subsequences.
2.5 Series of Real Numbers.
2.6 Intervals and Connected Sets.
3 Vector Functions.
3.1 Vector Spaces: The Basics.
3.2 Bilinear Functions.
3.3 Multilinear Functions.
3.4 Inner Products.
3.5 Orthogonal Projections.
3.6 Spectral Theorem.
PART II DIFFERENTIATION.
4 Normed Vector Spaces.
4.1 Preliminaries.
4.2 Convergence in Normed Spaces.
4.3 Norms of Linear and Multilinear Transformations.
4.4 Continuity in Normed Spaces.
4.5 Topology of Normed Spaces.
5 Derivatives.
5.1 Functions of a Real Variable.
5.2 Differentiable Functions.
5.3 Existence of Derivatives.
5.4 Partial Derivatives.
5.5 Rules of Differentiation.
5.6 Differentiation of Products.
6 Diffeomorphisms and Manifolds.
6.1 The Inverse Function Theorem.
6.2 Graphs.
6.3 Manifolds in Parametric Representations.
6.4 Manifolds in Implicit Representations.
6.5 Differentiation on Manifolds.
7 Higher-Order Derivatives.
7.1 Definitions.
7.2 Change of Order in Differentiation.
7.3 Sequences of Polynomials.
7.4 Local Extremal Values.
PART III INTEGRATION.
8 Multiple Integrals.
8.1 Jordan Sets and Volume.
8.2 Integrals.
8.3 Images of Jordan Sets.
8.4 Change of Variables.
9 Integration on Manifolds.
9.1 Euclidean Volumes.
9.2 Integration on Manifolds.
9.3 Oriented Manifolds.
9.4 Integrals of Vector Fields.
9.5 Integrals of Tensor Fields.
9.6 Integration on Graphs.
10 Stokes' Theorem.
10.1 Basic Stokes' Theorem.
10.2 Flows.
10.3 Flux and Change of Volume in a Flow.
10.4 Exterior Derivatives.
10.5 Regular and Almost Regular Sets.
10.6 Stokes' Theorem on Manifolds.
PART IV APPENDICES.
Appendix A: Construction of the Real Numbers.
A.1 Field and Order Axioms in Q.
A.2 Equivalence Classes of Cauchy Sequences in Q.
A.3 Completeness of R.
Appendix B: Dimension of a Vector Space.
B.1 Bases and Linearly Independent Subsets.
Appendix C: Determinants.
C.1 Permutations.
C.2 Determinants of Square Matrices.
C.3 Determinant Functions.
C.4 Determinant of a Linear Transformation.
C.5 Determinants on Cartesian Products.
C.6 Determinants in Euclidean Spaces.
C.7 Trace of an Operator.
Appendix D: Partitions of Unity.
D.1 Partitions of Unity.
Index.
Solutions Manual to accompany Analysis in Vector Spaces TOC:
Preface ix
1 Sets and Functions 3
2 Real Numbers 13
3 Vector Functions 27
4 Normed Vector Spaces 45
5 Derivatives 63
6 Diffeomorphisms and Manifolds 83
7 High-Order Derivatives 95
8 Multiple Integrals 99
9 Integration of Manifolds 115
10 Stokes Theorem 131
Analysis in Vector Spaces TOC:
Preface.
PART I BACKGROUND MATERIAL.
1 Sets and Functions.
1.1 Sets in General.
1.2 Sets of Numbers.
1.3 Functions.
2 Real Numbers.
2.1 Review of the Order Relations.
2.2 Completeness of Real Numbers.
2.3 Sequences of Real Numbers.
2.4 Subsequences.
2.5 Series of Real Numbers.
2.6 Intervals and Connected Sets.
3 Vector Functions.
3.1 Vector Spaces: The Basics.
3.2 Bilinear Functions.
3.3 Multilinear Functions.
3.4 Inner Products.
3.5 Orthogonal Projections.
3.6 Spectral Theorem.
PART II DIFFERENTIATION.
4 Normed Vector Spaces.
4.1 Preliminaries.
4.2 Convergence in Normed Spaces.
4.3 Norms of Linear and Multilinear Transformations.
4.4 Continuity in Normed Spaces.
4.5 Topology of Normed Spaces.
5 Derivatives.
5.1 Functions of a Real Variable.
5.2 Differentiable Functions.
5.3 Existence of Derivatives.
5.4 Partial Derivatives.
5.5 Rules of Differentiation.
5.6 Differentiation of Products.
6 Diffeomorphisms and Manifolds.
6.1 The Inverse Function Theorem.
6.2 Graphs.
6.3 Manifolds in Parametric Representations.
6.4 Manifolds in Implicit Representations.
6.5 Differentiation on Manifolds.
7 Higher-Order Derivatives.
7.1 Definitions.
7.2 Change of Order in Differentiation.
7.3 Sequences of Polynomials.
7.4 Local Extremal Values.
PART III INTEGRATION.
8 Multiple Integrals.
8.1 Jordan Sets and Volume.
8.2 Integrals.
8.3 Images of Jordan Sets.
8.4 Change of Variables.
9 Integration on Manifolds.
9.1 Euclidean Volumes.
9.2 Integration on Manifolds.
9.3 Oriented Manifolds.
9.4 Integrals of Vector Fields.
9.5 Integrals of Tensor Fields.
9.6 Integration on Graphs.
10 Stokes' Theorem.
10.1 Basic Stokes' Theorem.
10.2 Flows.
10.3 Flux and Change of Volume in a Flow.
10.4 Exterior Derivatives.
10.5 Regular and Almost Regular Sets.
10.6 Stokes' Theorem on Manifolds.
PART IV APPENDICES.
Appendix A: Construction of the Real Numbers.
A.1 Field and Order Axioms in Q.
A.2 Equivalence Classes of Cauchy Sequences in Q.
A.3 Completeness of R.
Appendix B: Dimension of a Vector Space.
B.1 Bases and Linearly Independent Subsets.
Appendix C: Determinants.
C.1 Permutations.
C.2 Determinants of Square Matrices.
C.3 Determinant Functions.
C.4 Determinant of a Linear Transformation.
C.5 Determinants on Cartesian Products.
C.6 Determinants in Euclidean Spaces.
C.7 Trace of an Operator.
Appendix D: Partitions of Unity.
D.1 Partitions of Unity.
Index.
Solutions Manual to accompany Analysis in Vector Spaces TOC:
Preface ix
1 Sets and Functions 3
2 Real Numbers 13
3 Vector Functions 27
4 Normed Vector Spaces 45
5 Derivatives 63
6 Diffeomorphisms and Manifolds 83
7 High-Order Derivatives 95
8 Multiple Integrals 99
9 Integration of Manifolds 115
10 Stokes Theorem 131