Pierre Bremaud
An Introduction to Probabilistic Modeling
Pierre Bremaud
An Introduction to Probabilistic Modeling
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Introduction to the basic concepts of probability theory: independence, expectation, convergence in law and almost-sure convergence. Short expositions of more advanced topics such as Markov Chains, Stochastic Processes, Bayesian Decision Theory and Information Theory.
Andere Kunden interessierten sich auch für
- Pierre BremaudAn Introduction to Probabilistic Modeling50,99 €
- Rinaldo B. SchinaziClassical and Spatial Stochastic Processes49,99 €
- Rinaldo B. SchinaziClassical and Spatial Stochastic Processes38,99 €
- Kenneth LangeApplied Probability104,99 €
- Hugh GordonDiscrete Probability38,99 €
- Hugh GordonDiscrete Probability56,99 €
- Marek CapinskiProbability Through Problems119,99 €
-
-
-
Introduction to the basic concepts of probability theory: independence, expectation, convergence in law and almost-sure convergence. Short expositions of more advanced topics such as Markov Chains, Stochastic Processes, Bayesian Decision Theory and Information Theory.
Produktdetails
- Produktdetails
- Undergraduate Texts in Mathematics
- Verlag: Springer / Springer New York / Springer, Berlin
- Artikelnr. des Verlages: 978-1-4612-6996-0
- Softcover reprint of the original 1st edition 1988
- Seitenzahl: 228
- Erscheinungstermin: 17. Oktober 2012
- Englisch
- Abmessung: 235mm x 155mm x 13mm
- Gewicht: 352g
- ISBN-13: 9781461269960
- ISBN-10: 1461269962
- Artikelnr.: 37478209
- Herstellerkennzeichnung
- Springer-Verlag GmbH
- Tiergartenstr. 17
- 69121 Heidelberg
- ProductSafety@springernature.com
- Undergraduate Texts in Mathematics
- Verlag: Springer / Springer New York / Springer, Berlin
- Artikelnr. des Verlages: 978-1-4612-6996-0
- Softcover reprint of the original 1st edition 1988
- Seitenzahl: 228
- Erscheinungstermin: 17. Oktober 2012
- Englisch
- Abmessung: 235mm x 155mm x 13mm
- Gewicht: 352g
- ISBN-13: 9781461269960
- ISBN-10: 1461269962
- Artikelnr.: 37478209
- Herstellerkennzeichnung
- Springer-Verlag GmbH
- Tiergartenstr. 17
- 69121 Heidelberg
- ProductSafety@springernature.com
1 Basic Concepts and Elementary Models.- 1. The Vocabulary of Probability Theory.- 2. Events and Probability.- 3. Random Variables and Their Distributions.- 4. Conditional Probability and Independence.- 5. Solving Elementary Problems.- 6. Counting and Probability.- 7. Concrete Probability Spaces.- Illustration 1. A Simple Model in Genetics: Mendel's Law and Hardy-Weinberg's Theorem.- Illustration 2. The Art of Counting: The Ballot Problem and the Reflection Principle.- Illustration 3. Bertrand's Paradox.- 2 Discrete Probability.- 1. Discrete Random Elements.- 2. Variance and Chebyshev's Inequality.- 3. Generating Functions.- Illustration 4. An Introduction to Population Theory: Galton-Watson's Branching Process.- Illustration 5. Shannon's Source Coding Theorem: An Introduction to Information Theory.- 3 Probability Densities.- I. Expectation of Random Variables with a Density.- 2. Expectation of Functionals of Random Vectors.- 3. Independence.- 4. Random Variables That Are Not Discrete and Do Not Have a pd.- Illustration 6. Buffon's Needle: A Problem in Random Geometry.- 4 Gauss and Poisson.- 1. Smooth Change of Variables.- 2. Gaussian Vectors.- 3. Poisson Processes.- 4. Gaussian Stochastic Processes.- Illustration 7. An Introduction to Bayesian Decision Theory: Tests of Gaussian Hypotheses.- 5 Convergences.- 1. Almost-Sure Convergence.- 2. Convergence in Law.- 3. The Hierarchy of Convergences.- Illustration 8. A Statistical Procedure: The Chi-Square Test.- Illustration 9. Introduction to Signal Theory: Filtering.- Additional Exercises.- Solutions to Additional Exercises.
1 Basic Concepts and Elementary Models.- 1. The Vocabulary of Probability Theory.- 2. Events and Probability.- 3. Random Variables and Their Distributions.- 4. Conditional Probability and Independence.- 5. Solving Elementary Problems.- 6. Counting and Probability.- 7. Concrete Probability Spaces.- Illustration 1. A Simple Model in Genetics: Mendel's Law and Hardy-Weinberg's Theorem.- Illustration 2. The Art of Counting: The Ballot Problem and the Reflection Principle.- Illustration 3. Bertrand's Paradox.- 2 Discrete Probability.- 1. Discrete Random Elements.- 2. Variance and Chebyshev's Inequality.- 3. Generating Functions.- Illustration 4. An Introduction to Population Theory: Galton-Watson's Branching Process.- Illustration 5. Shannon's Source Coding Theorem: An Introduction to Information Theory.- 3 Probability Densities.- I. Expectation of Random Variables with a Density.- 2. Expectation of Functionals of Random Vectors.- 3. Independence.- 4. Random Variables That Are Not Discrete and Do Not Have a pd.- Illustration 6. Buffon's Needle: A Problem in Random Geometry.- 4 Gauss and Poisson.- 1. Smooth Change of Variables.- 2. Gaussian Vectors.- 3. Poisson Processes.- 4. Gaussian Stochastic Processes.- Illustration 7. An Introduction to Bayesian Decision Theory: Tests of Gaussian Hypotheses.- 5 Convergences.- 1. Almost-Sure Convergence.- 2. Convergence in Law.- 3. The Hierarchy of Convergences.- Illustration 8. A Statistical Procedure: The Chi-Square Test.- Illustration 9. Introduction to Signal Theory: Filtering.- Additional Exercises.- Solutions to Additional Exercises.