An Introduction to Non-Harmonic Fourier Series, Revised Edition is an update of a widely known and highly respected classic textbook.Throughout the book, material has also been added on recent developments, including stability theory, the frame radius, and applications to signal analysis and the co
An Introduction to Non-Harmonic Fourier Series, Revised Edition is an update of a widely known and highly respected classic textbook.Throughout the book, material has also been added on recent developments, including stability theory, the frame radius, and applications to signal analysis and the co
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Robert Young was born in New York City in 1944. He received his B.A. from Colby College in 1965 and his Ph.D. from the University of Michigan in 1971. He currently teaches at Oberlin College where he holds the James F. Clark Chair in Mathematics. In addition to his work in nonharmonic Fourier series, he is the author of Excursions in Calculus: An Interplay of the Continuous and the Discrete.
Inhaltsangabe
Bases in Banach Spaces - Schauder Bases; Schauder's Basis for C[a,b]; Orthonormal Bases in Hilbert Space; The Reproducing Kernel; Complete Sequences; The Coefficient Functionals; Duality; Riesz Bases; The Stability of Bases in Banach Spaces; The Stability of Orthonormal Bases in Hilbert Space
Entire Functions of Exponential Type
The Classical Factorization Theorems - Weierstrass's Factorization Theorem; Jensen's Formula; Functions of Finite Order; Estimates for Canonical Products; Hadamard's Factorization Theorem
Restrictions Along a Line - The "Phragmen-Lindelof" Method; Carleman's Formula; Integrability on a line; The Paley-Wiener Theorem; The Paley-Wiener Space
The Completeness of Sets of Complex Exponentials - The Trigonometric System; Exponentials Close to the Trigonometric System; A Counterexample; Some Intrinsic Properties of Sets of Complex Exponentials Stability; Density and the Completeness Radius
Interpolation and Bases in Hilbert Space - Moment Sequences in Hilbert Space; Bessel Sequences and Riesz-Fischer Sequences; Applications to Systems of Complex Exponentials; The Moment Space and Its Relation to Equivalent Sequences; Interpolation in the Paley-Wiener Space: Functions of Sine Type; Interpolation in the Paley-Wiener Space: Stability; The Theory of Frames; The Stability of Nonharmonic Fourier Series; Pointwise Convergence; Notes and Comments; References; List of Special Symbols Index
Bases in Banach Spaces - Schauder Bases; Schauder's Basis for C[a,b]; Orthonormal Bases in Hilbert Space; The Reproducing Kernel; Complete Sequences; The Coefficient Functionals; Duality; Riesz Bases; The Stability of Bases in Banach Spaces; The Stability of Orthonormal Bases in Hilbert Space
Entire Functions of Exponential Type
The Classical Factorization Theorems - Weierstrass's Factorization Theorem; Jensen's Formula; Functions of Finite Order; Estimates for Canonical Products; Hadamard's Factorization Theorem
Restrictions Along a Line - The "Phragmen-Lindelof" Method; Carleman's Formula; Integrability on a line; The Paley-Wiener Theorem; The Paley-Wiener Space
The Completeness of Sets of Complex Exponentials - The Trigonometric System; Exponentials Close to the Trigonometric System; A Counterexample; Some Intrinsic Properties of Sets of Complex Exponentials Stability; Density and the Completeness Radius
Interpolation and Bases in Hilbert Space - Moment Sequences in Hilbert Space; Bessel Sequences and Riesz-Fischer Sequences; Applications to Systems of Complex Exponentials; The Moment Space and Its Relation to Equivalent Sequences; Interpolation in the Paley-Wiener Space: Functions of Sine Type; Interpolation in the Paley-Wiener Space: Stability; The Theory of Frames; The Stability of Nonharmonic Fourier Series; Pointwise Convergence; Notes and Comments; References; List of Special Symbols Index
Rezensionen
"The theory of nonharmonic Fourier series is concerned with the completeness and expansion properties of sets of complex exponential functions. This text for graduate students and mathematicians provides an introduction to some of the classical and modern theories within this broad field. Young (mathematics, Oberlin College) discusses such topics as the stability of bases in Banach spaces, estimates for canonical products, and moment sequences in Hilbert space." --From Book News, Inc.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826