J. Robert Dorfman, Robert Dorfman
An Introduction to Chaos in Nonequilibrium Statistical Mechanics
Herausgeber: Goddard, Peter
J. Robert Dorfman, Robert Dorfman
An Introduction to Chaos in Nonequilibrium Statistical Mechanics
Herausgeber: Goddard, Peter
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Introduction to applications and techniques in non-equilibrium statistical mechanics of chaotic dynamics.
Andere Kunden interessierten sich auch für
- Tom KibbleClassical Mechanics for Students: Classical Mechanics (5th Edition); A Brief Introduction to Classical Mechanics with Illustrative Problems; Classical Mechanics: Lecture Notes85,99 €
- Rene ChevrayTopics in Fluid Mechanics75,99 €
- Jerrold E. MarsdenLectures on Mechanics74,99 €
- Isaac TodhunterKey To Mechanics For Beginners (1878)15,99 €
- John Henry PrattThe Mathematical Principles of Mechanical Philosophy and Their Application to Elementary Mechanics and Architecture: But Chiefly to the Theory of Univ30,99 €
- R. H. FowlerStatistical mechanics, the theory of the properties of matter in equilibrium47,99 €
- A. A. TownsendThe Structure of Turbulent Shear Flow63,99 €
-
-
-
Introduction to applications and techniques in non-equilibrium statistical mechanics of chaotic dynamics.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 304
- Erscheinungstermin: 24. Juni 2003
- Englisch
- Abmessung: 229mm x 152mm x 18mm
- Gewicht: 496g
- ISBN-13: 9780521655897
- ISBN-10: 0521655897
- Artikelnr.: 22104777
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 304
- Erscheinungstermin: 24. Juni 2003
- Englisch
- Abmessung: 229mm x 152mm x 18mm
- Gewicht: 496g
- ISBN-13: 9780521655897
- ISBN-10: 0521655897
- Artikelnr.: 22104777
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Preface
1. Non-equilibrium statistical mechanics
2. The Boltzmann equation
3. Liouville's equation
4. Poincaré recurrence theorem
5. Boltzmann's ergodic hypothesis
6. Gibbs' picture-mixing systems
7. The Green-Kubo formulae
8. The Baker's transformation
9. Lyapunov exponents for a map
10. The Baker's transformation is ergodic
11. Kolmogorov-Sinai entropy
12. The Frobenius-Perron equation
13. Open systems and escape-rates
14. Transport coefficients and chaos
15. SRB and Gibbs measures
16. Fractal forms in Green-Kubo relations
17. Unstable periodic orbits
18. Lorentz lattice gases
19. Dynamical foundations of the Boltzmann equation
20. The Boltzmann equation returns
21. What's next
Appendices
Bibliography.
1. Non-equilibrium statistical mechanics
2. The Boltzmann equation
3. Liouville's equation
4. Poincaré recurrence theorem
5. Boltzmann's ergodic hypothesis
6. Gibbs' picture-mixing systems
7. The Green-Kubo formulae
8. The Baker's transformation
9. Lyapunov exponents for a map
10. The Baker's transformation is ergodic
11. Kolmogorov-Sinai entropy
12. The Frobenius-Perron equation
13. Open systems and escape-rates
14. Transport coefficients and chaos
15. SRB and Gibbs measures
16. Fractal forms in Green-Kubo relations
17. Unstable periodic orbits
18. Lorentz lattice gases
19. Dynamical foundations of the Boltzmann equation
20. The Boltzmann equation returns
21. What's next
Appendices
Bibliography.
Preface
1. Non-equilibrium statistical mechanics
2. The Boltzmann equation
3. Liouville's equation
4. Poincaré recurrence theorem
5. Boltzmann's ergodic hypothesis
6. Gibbs' picture-mixing systems
7. The Green-Kubo formulae
8. The Baker's transformation
9. Lyapunov exponents for a map
10. The Baker's transformation is ergodic
11. Kolmogorov-Sinai entropy
12. The Frobenius-Perron equation
13. Open systems and escape-rates
14. Transport coefficients and chaos
15. SRB and Gibbs measures
16. Fractal forms in Green-Kubo relations
17. Unstable periodic orbits
18. Lorentz lattice gases
19. Dynamical foundations of the Boltzmann equation
20. The Boltzmann equation returns
21. What's next
Appendices
Bibliography.
1. Non-equilibrium statistical mechanics
2. The Boltzmann equation
3. Liouville's equation
4. Poincaré recurrence theorem
5. Boltzmann's ergodic hypothesis
6. Gibbs' picture-mixing systems
7. The Green-Kubo formulae
8. The Baker's transformation
9. Lyapunov exponents for a map
10. The Baker's transformation is ergodic
11. Kolmogorov-Sinai entropy
12. The Frobenius-Perron equation
13. Open systems and escape-rates
14. Transport coefficients and chaos
15. SRB and Gibbs measures
16. Fractal forms in Green-Kubo relations
17. Unstable periodic orbits
18. Lorentz lattice gases
19. Dynamical foundations of the Boltzmann equation
20. The Boltzmann equation returns
21. What's next
Appendices
Bibliography.