56,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
28 °P sammeln
  • Gebundenes Buch

This reference text offers a clear unified treatment for graduate students, academic researchers, and professionals interested in understanding and developing statistical procedures for high-dimensional data that are robust to idealized modeling assumptions, including robustness to model misspecification and to adversarial outliers in the dataset.

Produktbeschreibung
This reference text offers a clear unified treatment for graduate students, academic researchers, and professionals interested in understanding and developing statistical procedures for high-dimensional data that are robust to idealized modeling assumptions, including robustness to model misspecification and to adversarial outliers in the dataset.
Autorenporträt
Ilias Diakonikolas is an associate professor of computer science at the University of Wisconsin-Madison. His current research focuses on the algorithmic foundations of machine learning. Diakonikolas is a recipient of a number of research awards, including the best paper award at NeurIPS 2019.