
Advanced Intermetallic-Based Alloys for Extreme Environment and Energy Applications
Volume 1128
Herausgeber: Palm, Martin; He, Yue-Hui; Bewlay, Bernard P.
Versandkostenfrei!
Versandfertig in 1-2 Wochen
38,99 €
inkl. MwSt.
PAYBACK Punkte
19 °P sammeln!
The increasing demand for materials which enable a more efficient energy conversion - materials allowing higher operating temperatures and a lower weight of the components with preferably better corrosion resistance- has put intermetallic-based alloys back into focus. For example, the recent use of light weight, TiAl-based alloys for automotive and aerospace applications has spurred research on other intermetallic-based alloys. In addition to structural intermetallics for extreme environments encountered in advanced energy systems, this book also focuses on fundamental and interdisciplinary as...
The increasing demand for materials which enable a more efficient energy conversion - materials allowing higher operating temperatures and a lower weight of the components with preferably better corrosion resistance- has put intermetallic-based alloys back into focus. For example, the recent use of light weight, TiAl-based alloys for automotive and aerospace applications has spurred research on other intermetallic-based alloys. In addition to structural intermetallics for extreme environments encountered in advanced energy systems, this book also focuses on fundamental and interdisciplinary aspects of novel intermetallic-metal systems (e.g., Co-based superalloys) and functional intermetallics that can store energy, generate power and enhance reliability. Topics include: intermetallics for hydrogen storage and thermoelectric applications; iron aluminides - physical metallurgy; titanium aluminides - physical metallurgy; titanium aluminides - structure, properties and coatings; iron aluminides, titanium aluminides, nickel aluminides and silicides; nickel/cobalt superalloys and nickel aluminides; niobium and molybdenum silicide-based alloys; laves phases and fundamental aspects of intermetallics - phase stability, defects and theory.