Subcellular Biochemistry - Roodyn, Donald B.
  • Gebundenes Buch

Jetzt bewerten

The broad aim of this series is to work toward "an integrated view of the cell. " It is perhaps fitting that this tenth volume, corresponding to roughly a decade of endeavor in this direction, should cover a wide range of topics from appar ently disparate subject areas and yet reveal a strong underlying unity of approach in each topic. The unifying element is the remarkable extent to which diverse biological processes can now be described (even if not fully explained) in terms of fundamental molecular biology. Chapter 1, by R. Douce, M. A Block, A-J. Dome, and J. Joyard, surveys the great…mehr

The broad aim of this series is to work toward "an integrated view of the cell. " It is perhaps fitting that this tenth volume, corresponding to roughly a decade of endeavor in this direction, should cover a wide range of topics from appar ently disparate subject areas and yet reveal a strong underlying unity of approach in each topic. The unifying element is the remarkable extent to which diverse biological processes can now be described (even if not fully explained) in terms of fundamental molecular biology. Chapter 1, by R. Douce, M. A Block, A-J. Dome, and J. Joyard, surveys the great advances that have been made in our understanding of the properties, functions, and biogenesis of plastid envelope membranes. In Chapter 2, G. A Peschek deals in a most comprehensive way with respiratory membranes of cyanobacteria (blue-green algae); his article fills a gap in the literature in a subject that is now attracting increasing attention. R. Sentandreu, E. Herrero, J. P. Martinez-Garcia, and G. Larriba then describe in Chapter 3 the impor tant advances that have been made in our understanding of the structure and biogenesis of the yeast cell wall. B. B. Biswas, B. Ghosh, and A L. Majumder deal in Chapter 4 with a generally neglected area, namely, the role of myo inositol polyphosphates in metabolism. They propose an interesting metabolic cycle involving glucose-6-phosphate and myo-inositol phosphates; this cycle may well be of general importance in many cell types. In Chapter 5, P. S.
  • Produktdetails
  • Verlag: Springer, Berlin
  • 1984.
  • Seitenzahl: 568
  • 1984
  • Ausstattung/Bilder: 568 S. 568 p.
  • Englisch
  • Gewicht: 922g
  • ISBN-13: 9780306415289
  • ISBN-10: 0306415283
  • Best.Nr.: 27621633
1 The Plastid Envelope Membranes: Their Structure, Composition, and Role in Chloroplast Biogenesis.- 1. Introduction.- 2. Structure of the Plastid Envelope.- 3. Relationship between the Plastid and Other Envelope Cell Membranes.- 3.1. Inner Envelope Membrane and Internal Membranes of Plastids.- 3.2. Outer Envelope Membrane and Extrachloroplastal Membranes.- 4. Relationships between the Plastid Envelope and Nucleic Acids.- 4.1. Plastid Envelope and Plastid DNA.- 4.2. Plastid Envelope and Ribosomes.- 5. Isolation of the Chloroplast Envelope.- 6. Chemical Composition of the Plastid Envelope.- 6.1. Chloroplast Envelope Polypeptides.- 6.2 Polar Lipid Composition of Plastid Envelope Membranes.- 6.3. Pigment Composition of Plastid Envelope Membranes.- 6.4. Are Sterols Normal Components of Plastid Envelope Membranes?.- 7. The Plastid Envelope and the Synthesis of Plastid Constituents.- 7.1. Origin of Plastid Polar Lipids.- 7.2. Plastid Envelope and the Synthesis of Isoprenoid Compounds.- 8. Protein Transport through the Plastid Envelope Membranes.- 9. Future Perspectives.- 10. References.- 2 Structure and Function of Respiratory Membranes in Cyanobacteria (Blue-Green Algae).- 1. Introduction.- 2. Membrane Organization in Whole Cells.- 2.1. Outer Membrane and Surface Layers.- 2.2. Cytoplasmic Membrane.- 2.3. Intracytoplasmic Membranes.- 2.4. Morphological Relationships between Cytoplasmic and Intracytoplasmic Membranes.- 3. Isolated Membranes.- 3.1. Comments on the Problem of Separating Cytoplasmic Membranes and Intracytoplasmic Membranes in Cell-Free Extracts of Cyanobacteria.- 3.2. Composition of Isolated Membranes.- 4. Identification of Respiratory Membranes.- 5. Cyanobacterial Respiration.- 5.1. Dehydrogenation of Respiratory Substrates.- 5.2. Respiratory Electron-Transport System.- 6. Oxidative Phosphorylation.- 6.1. Proton Electrochemical Gradients.- 6.2. Phosphorus/Oxygen Ratios in Whole Cells.- 6.3. Oxidative Phosphorylation in Cell-Free Systems.- 6.4. Coupling-Factor Adenosine Triphosphatases.- 7. Respiration and Obligate Photoautotrophy.- 8. Interaction of Respiration and Photosynthesis.- 8.1. Enzyme Regulation.- 8.2. Energy-Charge Regulation (with an Excursion into Substrate-Level Phosphorylation.- 8.3. Common Electron-Transport Sequences.- 9. Summary.- 10. References.- 3 Biogenesis of the Yeast Cell Wall.- 1. Introduction.- 2. Chemistry and Biosynthesis of the Wall Components.- 2.1. Glucan.- 2.2. Chitin.- 2.3. Mannoproteins.- 3. Cell Wall Organization.- 4. Cell Wall Synthesis and Morphogenesis.- 4.1. Origin of the Cell Machinery Involved in Formation of Cell Wall Polymers.- 4.2. Oriented Transport of Synthases and Matrix Materials.- 4.3. Assembly of Cell Wall Components.- 4.4. Metabolic Stability of the Cell Wall and Its Relationship with Biosynthesis.- 5. Concluding Remarks.- 6. References.- 4 myo-Inositol Polyphosphates and Their Role in Cellular Metabolism: A Proposed Cycle Involving Glucose-6- Phosphate and myo-Inositol Phosphates.- 1. Introduction.- 2. Metabolism of myo-Inositol Phosphates.- 2.1. Chemistry and Nomenclature of Inositol Phosphates.- 2.2. Biosynthesis of myo-Inositol Phosphates.- 2.3. Degradation and Utilization of myo-Inositol Phosphates.- 3. Regulatory Aspects of the Metabolism of myo-Inositol Phosphates.- 3.1. Biochemical Regulation of Enzymes of myo-Inositol Phosphate Metabolism.- 3.2. Genetic Studies on the Regulation of myo-Inositol-1-Phosphate Synthase.- 4. Operation of a New Metabolic Cycle Involving Glucose-6-Phosphate and myo-Inositol Phosphates during Formation and Germination of Seeds.- 4.1. Reactions and Enzymes of the Cycle.- 4.2. The Cycle as a Source of Energy and Reducing Power.- 4.3. Interrelationship between This Cycle and the Pentose Phosphate Shunt Pathway in the Early Phase of Germination and Seedling Vigor.- 5. Concluding Remarks.- 6. References.- 5 Nucleocytoplasmic RNA Transport.- 1. Introduction.- 1.1. Aims and Scope of This Review.- 1.2. Terminology.- 1.3. Biological Significance of RNA Transport.- 2. Methodology.- 2.1. In situ Studies.- 2.2. In vitro Methods Using Isolated Nuclei.- 2.3. Studies on Subnuclear Fraction.- 3. Aspects of the Mechanism of Transport.- 3.1. Release.- 3.2 Translocation.- 4. Aspects of the Control of Transport.- 4.1. Cytoplasmic Protein Factors.- 4.2. Polyribonucleotides.- 4.3. Hormonal Control.- 4.4. Pharmacological Effects on Efflux and Transport.- 4.5. Nutritional Factors in Transport and Efflux.- 5. Concluding Remarks.- 5.1. General Conclusions.- 5.2. General Problems.- 6. References.- 6 The Supramolecular Organization of the Cytoskeleton during Fertilization.- 1. Introduction.- 1.1. Overview.- 1.2. Requirement for Intracellular Movements.- 1.3. Scope of This Chapter.- 2. Motility during Fertilization.- 2.1. Fertilization as a Paradigm for Cellular Motility and Cytoskeletal Reorganization.- 2.2. Movements during Fertilization.- 3. The Sperm.- 3.1. Microtubules and Flagellar Movements.- 3.2. Actin and the Acrosome Reaction.- 4. The Egg.- 4.1. Detection of Cytoskeletal Elements.- 4.2. Microfilaments and Sperm Incorporation.- 4.3. Cortical Reaction.- 4.4. Microtubules and the Pronuclear Migrations.- 4.5. Cytoskeletal Changes Leading to Cell Division.- 5. Microfilaments.- 5.1. Periacrosomal Cap of the Sperm.- 5.2. Egg Cortex.- 5.3. Effect of Microfilament Inhibitors.- 6. Microtubules.- 6.1. Sperm Axoneme.- 6.2. Microtubules in Eggs during Fertilization: Sperm Aster, Interim Apparatus, and Mitotic Apparatus.- 6.3. Effects of Microtubule Inhibitors.- 7. Cytoskeletal Interactions.- 7.1. Microfilament Assembly and Contractility.- 7.2. Microfilament Bundling and Structural Roles.- 7.3. Microtubule Assembly and Microtubule-Organizing Centers.- 7.4. Dynein and Microtubule Sliding.- 7.5. Requirement for Microtubule Disassembly.- 7.6. Biophysical Evidence.- 7.7. Global View of Cytoskeletal Reorganizations.- 8. Regulation of Cytoskeletal Formation and Motility.- 8.1. Ionic Program of Activation.- 8.2. pH as One of the Primary Modulators.- 8.3. Calcium Ions as Another Regulator.- 8.4. Calmodulin.- 8.5. Cyclic Nucleotides.- 8.6. Compilation of Regulatory Mechanisms.- 9. Conclusions and Summary.- 9.1. Motility during Fertilization: A Model.- 9.2. Regulation of Fertilization.- 9.3. Mechanisms for Movement: Implications for Other Intracellular Translocations.- 94. Conclusions.- 9.5. Summary.- 10. References.- 7 Evolutionary Aspects of Human Chromosomes.- 1. Introduction.- 2. Karyotypic Similarities between Man and the Nonhuman Primates.- 2.1. Early Studies of the Chromosomes of Man and the Nonhuman Primates.- 2.2. Comparative Studies with Chromosome-Banding Techniques.- 2.3. Evolutionary Conservation of Chromosome-Banding and DNA-Replication Sites in Chromosomes.- 2.4. Chromosome Banding and the Inference of Chromosome Phylogeny.- 3. Evolution of Human Syntenic Groups and Comparative Gene Assignment in Man and Other Mammals.- 3.1. Localization of Genes in Chromosomes: Problems and Perspectives.- 3.2. Comparative Gene Assignment in Man and the Great Apes.- 3.3. Gene Assignment in Other Primates: A Comparison to Human and Great Ape Syntenic Assignments.- 3.4. Gene Mapping in Other Mammals: Evolutionary Conservation of Linkage Associations and Morphological Attributes of Chromosomes.- 3.5. Y Chromosome, Sex Determination, and Sex Differentiation.- 4. Repetitive DNA Sequence Evolution and Chromosome Phylogeny.- 4.1. Highly Repetitive DNA in Man.- 4.2. Y-Specific Repetitive DNA.- 4.3. Chromosome Distribution of Satellite DNAs in Man.- 4.4. Localization of Homologous Sequences to Human Satellite DNAs in Great Ape Chromosomes.- 4.5. Constitutive Heterochromatin and Highly Repetitive DNAs in Man and Other Primates.- 4.6. Ribosomal Genes in Man and Nonhuman Primates.- 4.7. Chromosome Distribution of the 18 S and 28 S Cistrons in Man.- 4.8. 18 S and 28 S Sequences in the Great Apes and Other Primates.- 4.9. Genetic Exchanges among Ribosomal Genes on Nonhomologous Human and Ape Chromosomes.- 4.10. 5 S Ribosomal rDNA Cistrons in Man and Other Primates.- 5. Epilogue.- 6. References.- Books Received.

1 Electron Microscopic in Cellular and Molecular Biology.- 1 Introduction.- 2 The Electron Microscope.- 2.1 Signal Formation in Electron Microscopes.- 2.2 Operation Modes and Types of Electron Microscope.- 2.3 Image Formation in Transmission Electron Microscopes.- 2.4 Special Imaging Techniques in Transmission Electron Microscopy.- 2.5 Surface Imaging.- 2.6 Imaging Recording.- 3 Preparation and Analysis-Structural Aspects.- 3.1 Chemical Methods.- 3.2 Phsysical Methods.- 4 Preparation and Analysis-Functional Aspects.- 4.1 Group- and Charge-Specific "Stains" and Enzymatic Digestion.- 4.2 The Electron Microscope.- 4.3 Signal Formation in Electron Microscopes.- 4.4. Immunocytochemistry.- 4.5 Lectin Labeling.- 4.6. Affinity Labeling.- 4.7. Autoradiography.- 4.8. Morphometry.- 4.9. X-Ray Microanalysis.- 4.10. Ion Precipitation.- 5. Molecular Electron Microscopy.- 5.1. General Aspects.- 5.2. Radiation Damage.- 5.3. Preparative Aspects.- 5.4. Instrumental Aspects.- 5.5. Data Analysis (Image Processing).- 6. Units and Conventions.- 7. Perspectives.- References.- 2 Chloroplast Protein Synthesis: Principles and Problems.- 1 Introduction.- 2. Possible Principles Governing Nuclear-Chloroplast Interactions.- 2.1. The First Principle.- 2.2. The Second Principle.- 2.3. The Third Principle.- 2.4. The Fourth Principle.- 2.5. The Fifth Principle.- 3. The Nucleocytoplasmic Origin of the Majority of Chloroplast.- 3.1. Genetic Experiments.- 3.2. In Vitro Protein Synthesis.- 3.3. Use of Selective Inhibitors.- 3.4. Evidence from Heat-Treated Plants.- 4. The Post-Translational Import of Polypeptides into.- 4.1. In Vitro Transport of Cytoplasmically-Synthesized Chloroplast Polypeptides.- 4.2. Features of Post-Translational Polypeptide Transport.- 5. The Essential Contribution of the Chloroplast Genome.- 6. The Confinement of Chloroplast DNA-Encoded Molecules.- 7. The Stimulatory Role of Light.- 7.1. Light Stimulation of Chloroplast Polypeptide Formation.- References.- 3 Thesaurisomes, A Novel Kind of Nucleoprotein Particle.- 1 Introduction.- 2. Discovery of the Thesaurisomes.- 3. Composition of Thesaurisomes.- 3.1. The 7S Particles.- 3.2. The 42S Particles.- 4. Comparison Between the 7S and 42S Particles.- 4.1. The RNA Components.- 4.2. The Protein Components.- 5. Relationship Between RNA and Protein in Thesaurisomes.- 6. Intracellular Location of Thesaurisomes.- 7. Comparison Between Thesaurisomes and Ribosomes.- 8. Relationship Between Thesaurisomes and Ribosomes in the Oocyte.- 9. State of Acylation of tRNA in Thesaurisomesz.- 10. Reconstruction of the Thesaurisomes.- 11. Occurrence and Role of Thesaurisomes.- 12. Thesaurisomes as Objects for Structural Studies.- 4 Platelet Phospholipid Asymmetry and its Significance in Hemostasis.- 1 Introduction.- 2. Aspects of Platelet Structure and Function.- 2.1. Nonactivated Platelets.- 2.2. Activated Platelets.- 3. Membrane Lipid Asymmetry.- 3.1. Methodological Principles.- 3.2. Erythrocytes.- 3.3. Plasma Membranes and Intracellular Membranes.- 3.4. Nonactivated Platelets.- 3.5. Activated Platelets.- 4. Mechanism and Significance of Changes in Membrane Phospholipid Orientation.- 4.1. Possible Mechanisms.- 4.2. Significance for Platelet Hemostatic Activities.- 5. Conclusion.- References.- 5 The Diversity of Function and Structure of Cellular Membranes.- 1. The Approach.- 1.1. The New Situation.- 1.2. The Improved Preparatory Techniques.- 1.3. The Analysis of the Observations.- 2. Mitochondria.- 2.1. First Step in Interpretation: Meaning of Pictures.- 2.2. Second Step in Interpretation: Deduction of Molecular Models.- 2.3. Third Step in Interpretation: Some Basic Properties of the Crista Membrane.- 2.4. Fourth Step in Interpretation: Effects of Membrane Environment on Molecular Interactions.- 2.5. Fifth Step in Interpretation: Membrane Structure and Specific Functions.- 2.6. The Two Surface Membranes of Mitochondria.- 3. Photoreceptor Cell Outer Segment Disks.- 3.1. Structure.- 3.2. Function.- 4. A Plasma M