-6%
104,95 €
Statt 111,99 €**
104,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Statt 111,99 €**
104,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
Statt 111,99 €**
-6%
104,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Abo Download
9,90 € / Monat*
*Abopreis beinhaltet vier eBooks, die aus der tolino select Titelauswahl im Abo geladen werden können.

inkl. MwSt.
Sofort per Download lieferbar

Einmalig pro Kunde einen Monat kostenlos testen (danach 9,90 € pro Monat), jeden Monat 4 aus 40 Titeln wählen, monatlich kündbar.

Mehr zum tolino select eBook-Abo
Jetzt verschenken
Statt 111,99 €**
-6%
104,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
52 °P sammeln

  • Format: PDF


The worthy purpose of this text is to provide a complete, self-contained development of the trace formula and theta inversion formula for SL(2,Z[i])\SL(2,C). Unlike other treatments of the theory, the approach taken here is to begin with the heat kernel on SL(2,C) associated to the invariant Laplacian, which is derived using spherical inversion. The heat kernel on the quotient space SL(2,Z[i])\SL(2,C) is arrived at through periodization, and further expanded in an eigenfunction expansion. A theta inversion formula is obtained by studying the trace of the heat kernel. Following the author's…mehr

Produktbeschreibung
The worthy purpose of this text is to provide a complete, self-contained development of the trace formula and theta inversion formula for SL(2,Z[i])\SL(2,C). Unlike other treatments of the theory, the approach taken here is to begin with the heat kernel on SL(2,C) associated to the invariant Laplacian, which is derived using spherical inversion. The heat kernel on the quotient space SL(2,Z[i])\SL(2,C) is arrived at through periodization, and further expanded in an eigenfunction expansion. A theta inversion formula is obtained by studying the trace of the heat kernel. Following the author's previous work, the inversion formula then leads to zeta functions through the Gauss transform.<

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

  • Produktdetails
  • Verlag: Springer-Verlag GmbH
  • Erscheinungstermin: 20.02.2009
  • Englisch
  • ISBN-13: 9780387380322
  • Artikelnr.: 37287407
Inhaltsangabe
Introduction.- Spherical Inversion on SL2(C).- The Heat Gaussian and Kernel.- QED, LEG, Transpose, and Casimir.- Convergence and Divergence of the Selberg Trace.- The Cuspidal and Non-Cuspidal Traces.- The Heat Kernel.- The Fundamental Domain.- Gamma Periodization of the Heat Kernel.- Heat Kernel Convolution.- The Tube Domain.- The Fourier Expansion of Eisenstein Series.- Adjointness Formula and the Eigenfunction Expansion.- The Eisenstein Y-Asymptotics.- The Cuspidal Trace Y-Asymptotics.- Analytic Evaluations.- Index.- References.
Rezensionen
From the reviews:

"The book under review ... provides an introduction to the general theory of semisimple or reductive groups G, with symmetric space G/K (K maximal compact). ... It is ... meant for experienced insiders, even as the presentation of the material is excellent and accessible. A well-prepared graduate student would do well with this book. More experienced analytic number theorists will find it enjoyable and spellbinding. ... I heartily recommend to other analytic number theorists of a similar disposition." (Michael Berg, MAA Online, December, 2008)

"This book is part of a program of the authors to develop a systematic theory of theta and zeta functions on homogeneous spaces, using techniques of harmonic analysis and, in particular, heat kernels. ... the book includes many details that would likely have been left for the reader to work out by her/himself in a more streamlined monograph. ... all in all, an enjoyable book to read." (Fredrik Strömberg, Zentralblatt MATH, Vol. 1192, 2010)