Statt 83,99 €**
71,99 €
versandkostenfrei*

inkl. MwSt.
**Früherer Preis
Sofort lieferbar
36 °P sammeln
  • Gebundenes Buch

Here is a comprehensive treatment of the main results and methods of the theory of Noetherian semigroup algebras. These results are applied and illustrated in the context of important classes of algebras that arise in a variety of areas and have recently been intensively studied. The focus is on the interplay between combinatorics and algebraic structure. Mathematical physicists will find this work interesting for its attention to applications of the Yang-Baxter equation.…mehr

Produktbeschreibung
Here is a comprehensive treatment of the main results and methods of the theory of Noetherian semigroup algebras. These results are applied and illustrated in the context of important classes of algebras that arise in a variety of areas and have recently been intensively studied. The focus is on the interplay between combinatorics and algebraic structure. Mathematical physicists will find this work interesting for its attention to applications of the Yang-Baxter equation.

  • Produktdetails
  • Algebras and Applications 7
  • Verlag: Springer / Springer Netherlands
  • Artikelnr. des Verlages: 11968931, 978-1-4020-5809-7
  • Erscheinungstermin: 21. Februar 2007
  • Englisch
  • Abmessung: 247mm x 162mm x 24mm
  • Gewicht: 708g
  • ISBN-13: 9781402058097
  • ISBN-10: 1402058098
  • Artikelnr.: 22730185
Autorenporträt
Eric Jespers, Vrije Universiteit Brussel, Belgium / Jan Okninski, Warsaw University, Poland
Inhaltsangabe
1. Introduction. 2. Prerequisites on semigroup theory. 2.1 Semigroups. 2.2. Uniform semigroups. 2.3 Full linear semigroup. 2.4 Structure of linear semigroups. 2.5 Closure. 2.6 Semigroups over a field. 3. Prerequisites on ring theory. 3.1 Noetherian rings and rings satisfying a polynomial identity. 3.2 Prime ideals. 3.3 Group algebras of polycyclic-by-finite groups. 3.4 Graded rings. 3.5 Gelfand-Kirillov dimension. 3.6 Maximal orders. 3.7 Principal ideal rings. 4. Algebras of submonoids of polycylic-by-finite groups. 4.1 Ascending chain condition. 4.2 The unit group. 4.3 Almost nilpotent case. 4.4 Structure theorem. 4.5 Prime ideals of K[S]. 4.6 Comments and problems. 5. General Noetherian semigroup algebras. 5.1 Finite generation of the monoid. 5.2 Necessary conditions. 5.3 Monomial semigroups and sufficient conditions. 5.4 Gelfand-Kirillov dimension. 5.5 Comments and problems. 6. Principal ideal rings. 6.1 Group algebras. 6.2 Matrix embedding. 6.3 Finite dimensional case. 6.4 The general case. 6.5 Comments and problems. 7. Maximal orders and Noetherian semigroup algebras. 7.1 Maximal orders and monoids. 7.2 Algebras of submonoids of abelian-by-finite groups. 7.3 Comments and problems. 8. Monoids of I-type. 8.1 A characterization. 8.2 Structure of monoids of I-type. 8.3 Binomial monoids are of I-type. 8.4 Decomposable monoids of I-type. 8.5 Algebras of monoids of I-type. 8.6 Comments and problems. 9. Monoids of skew type. 9.1 Definition. 9.2 Monoids of skew type and the cyclic condition. 9.3 Non-degenerate monoids of skew type. 9.4 Algebras of non-degenerate monoids of skew type. 9.5 The cancellative congruence and the prime radical. 9.6 Comments and problems. 10. Examples. 10.1 Monoids of skew type and the Gelfand-Kirillov dimension. 10.2 Four generated monoids of skew type. 10.3 Examples of Gelfand-Kirillov dimension 2. 10.4 Non-degenerate monoids of skew type of Gelfand-Kirillov dimension one. 10.5 Examples of maximal orders. 10.6 Comments. Bibliography. Index. Notation.
Rezensionen
From the reviews:

"This book presents the main results and methods of the theory of Noetherian semigroup algebras over fields. ... This is a highly technical and specialized monograph that will primarily be of use to researchers in the theory of semigroup algebras ... . The many examples given in detail, and the general theory developed, may prove useful to those working in ring or semigroup theory." (Henry E. Heatherly, Mathematical Reviews, Issue 2007 k)

"This work presents a comprehensive treatment of the main results and methods of the theory of Noetherian semigroup algebras. ... The main subject in this book is to present when some semigroup algebras are Noetherian and how they are under the Noetherian condition. ... This book is a good reference for researchers who are interested in non-commutative algebra and non-commutative geometry through the method of semigroups." (Li Fang, Zentralblatt MATH, Vol. 1135 (13), 2008)

"The book under review is testament to the huge amount and the depth of research on Noetherian semigroup algebras. ... The authors have brought together work from a significant number of research papers and made a coherent whole. ... it is definitely the place to learn about Noetherian semigroup algebras. Essential reading for people interested in semigroup algebras, it will also be of interest to semigroup theorists, particularly because of the wealth of new examples of semigroups it provides." (John Fountain, Semigroup Forum, Vol. 79, 2009)

…mehr