Numerische Mathematik 2 - Deuflhard, Peter
34,95 €
versandkostenfrei*

inkl. MwSt.
Sofort lieferbar
0 °P sammeln

    Gebundenes Buch

This is Volume 2 of the 4th revised and expanded edition of this standard work on numerical approaches to ordinary differential equations. It describes processes for numerically solving basic and boundary value problems for ordinary differential equations. The text guides the reader through tried and true practical methods, and includes numerous examples of the use of ordinary differential equations.
Die vierte, durchgesehene und ergänzte Auflage dieses Standardlehrbuchs folgt weiterhin konsequent der Linie, den Leser auf solider theoretischer Basis direkt zu praktisch bewährten Methoden zu
…mehr

Produktbeschreibung
This is Volume 2 of the 4th revised and expanded edition of this standard work on numerical approaches to ordinary differential equations. It describes processes for numerically solving basic and boundary value problems for ordinary differential equations. The text guides the reader through tried and true practical methods, and includes numerous examples of the use of ordinary differential equations.
Die vierte, durchgesehene und ergänzte Auflage dieses Standardlehrbuchs folgt weiterhin konsequent der Linie, den Leser auf solider theoretischer Basis direkt zu praktisch bewährten Methoden zu führen - von der Herleitung über die Analyse bis hin zu Fragen der Implementierung. Dies macht das Buch sowohl für Mathematiker als auch für Naturwissenschaftler und Ingenieure attraktiv. Das Lehrbuch eignet sich als Vorlesungsbegleitung für Studierende ebenso wie zum Selbststudium für im Beruf stehende Naturwissenschaftler. Es setzt lediglich Grundkenntnisse der Analysis (entsprechend Vorlesung Höhere Mathematik bei Physikern und Ingenieuren) sowie der Numerischen Mathematik (Einführungsvorlesung) voraus.
  • Produktdetails
  • De Gruyter Studium
  • Verlag: De Gruyter
  • 4. Aufl.
  • Erscheinungstermin: 19. August 2013
  • Deutsch
  • Abmessung: 238mm x 169mm x 27mm
  • Gewicht: 840g
  • ISBN-13: 9783110316339
  • ISBN-10: 3110316331
  • Artikelnr.: 38013570
Autorenporträt
Peter Deuflhard, Konrad-Zuse-Zentrum für Informationstechnik Berlin; Folkmar Bornemann, Technische Universität München.
Inhaltsangabe
Aus dem Inhalt:
1. Mathematische Modelle zeitabhängiger Prozesse
1.1 Newtonsche Himmelsmechanik
1.2 Chemische Reaktionskinetik
1.3 Dynamische Systeme
2. Existenz und Eindeutigkeit
2.1 Globale Existenz- und Eindeutigkeitsaussagen
2.2 Beispiele maximaler Fortsetzbarkeit
2.3 Schwach singuläre Anfangswertprobleme
2.4 Differentiell-algebraische Anfangswertprobleme
2.5 Übungsaufgaben
3. Kondition und Stabilität
3.1 Sensitivität gegen Störungen
3.2 Stabilität von Differentialgleichungen
3.3 Stabilität rekursiver Abbildungen
3.4 Übungsausfgaben
4. Einschrittverfahren für nichtsteife Probleme
4.1 Konvergenztheorie
4.2 Explizite Runge-Kutta-Verfahren
4.3 Explizite Extrapolationsverfahren
4.4 Übungsaufgaben
5. Schrittweitensteuerung bei Einschrittverfahren
5.1 Lokale Genauigkeitskontrolle
5.2 Regelungstechnische Analyse
5.3 Prinzip der Fehlerschätzung
5.4 Eingebettete Runge-Kutta-Verfahren
5.5 Erzielte Genauigkeit
5.6 Übungsaufgaben
6. Einschrittverfahren für steife und differentiell-algebraische Probleme
6.1 Vererbung der Stabilität eines Phasenflusses
6.2 Implizite Runge-Kutta-Verfahren
6.3 Runge-Kutta-Verfahren vom Kollokationstyp
6.4 Linear-implizite Einschrittverfahren
6.5 Übgungsaufgaben
7. Mehrschrittverfahren
7.1 Lineare Mehrschrittverfahren über äquidistantem Gitter
7.2 Vererbung der Stabilität eines linearen Phasenflusses
7.3 Konstruktionsoprinzipien
7.4 Ordnungs- und Schrittweitensteuerung
7.5 Übungsaufgaben
8. Softwareverzeichnis / Literaturverzeichnis / Symbolverzeichnis / Namen- und Sachverzeichnis
Rezensionen
"This is an excellent and timely book." Martin Hermann,Mathematical Reviews "The book is remarkable for its outstanding didactic style and good readability. It has been printed accurately. Exercises, many examples, pictures, and a list of software help the student. The authors have been very careful to demonstrate efficient algorithms and their implementation. This book is strongly recommended as a textbook for lectures about numerics of differential equations! It is an excellent continuation of Numerical Mathematics I, P. Deuflhard and A. Hohmann" Werner H. Schmidt (Greifswald), MathSciNet