-6%
104,95 €
Statt 111,99 €**
104,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Statt 111,99 €**
104,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
Statt 111,99 €**
-6%
104,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Abo Download
9,90 € / Monat*
*Abopreis beinhaltet vier eBooks, die aus der tolino select Titelauswahl im Abo geladen werden können.

inkl. MwSt.
Sofort per Download lieferbar

Einmalig pro Kunde einen Monat kostenlos testen (danach 9,90 € pro Monat), jeden Monat 4 aus 40 Titeln wählen, monatlich kündbar.

Mehr zum tolino select eBook-Abo
Jetzt verschenken
Statt 111,99 €**
-6%
104,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
52 °P sammeln

  • Format: PDF


This book contains groundbreaking contributions to the philosophical analysis of mathematical practice. Several philosophers of mathematics have recently called for an approach to philosophy of mathematics that pays more attention to mathematical practice. Questions concerning concept-formation, understanding, heuristics, changes in style of reasoning, the role of analogies and diagrams, etc. have become the subject of intense interest. The historians and philosophers in this book agree that there is more to understanding mathematics than a study of its logical structure. How are mathematical…mehr

Produktbeschreibung
This book contains groundbreaking contributions to the philosophical analysis of mathematical practice. Several philosophers of mathematics have recently called for an approach to philosophy of mathematics that pays more attention to mathematical practice. Questions concerning concept-formation, understanding, heuristics, changes in style of reasoning, the role of analogies and diagrams, etc. have become the subject of intense interest. The historians and philosophers in this book agree that there is more to understanding mathematics than a study of its logical structure. How are mathematical objects and concepts generated? How does the process tie up with justification? What role do visual images and diagrams play in mathematical activity? What are the different epistemic virtues (explanatoriness, understanding, visualizability, etc.) which are pursued and cherished by mathematicians in their work? The reader will find here systematic philosophical analyses as well as a wealth of philosophically informed case studies ranging from Babylonian, Greek, and Chinese mathematics to nineteenth century real and complex analysis. TOC:Contributing Authors.- P. Mancosu, K.P. Jørgensen and S.A. Pedersen: Introduction.- Part I. Mathematical Reasoning And Visualization.- P. Mancosu: Visualization in Logic and Mathematics.- M. Giaquinto: From Symmetry Perception to Basic Geometry. Introduction.- J.R. Brown: Naturalism, Pictures, and Platonic Intuitions.- M. Giaquinto: Mathematical Activity.- Part II. Mathematical Explanation and Proof Styles.- J. Høyrup: Tertium Non Datur: On Reasoning Styles in Early Mathematics.- K. Chemla: The Interplay Between Proof and Algorithm in 3rd Century China: The Operation as Prescription of Computation and the Operation as Argument.- J. Tappenden: Proof Style and Understanding in Mathematics I: Visualization, Unification and Axiom Choice.- J. Hafner and P. Mancosu: The Varieties of Mathematical Explanations.- R. Netz: The Aesthetics of Mathematics: A Study.- Index.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

  • Produktdetails
  • Verlag: Springer-Verlag GmbH
  • Erscheinungstermin: 30.03.2006
  • Englisch
  • ISBN-13: 9781402033353
  • Artikelnr.: 37348005
Autorenporträt
Paolo Mancosu, University of California, Berkeley, CA, USA / Klaus Frovin Jørgensen, Roskilde University, Denmark / Stig Andur Pedersen, Roskilde University, Denmark
Inhaltsangabe
Contributing Authors. P. Mancosu, K.P. Jørgensen and S.A. Pedersen: Introduction. Part I. Mathematical Reasoning And Visualization.
P. Mancosu: Visualization in Logic and Mathematics. 1. Diagrams and Images in the Late Nineteenth Century. 2. The Return of the Visual as a Change in Mathematical Style. 3. New Directions of Research and Foundations of Mathematics. Acknowledgements. Notes. References. M. Giaquinto: From Symmetry Perception to Basic Geometry. Introduction. 1. Perceiving a Figure as a Square. 2. A Geometrical Concept for Squares. 3. Getting the Belief. 4. Is It Knowledge? 5. Summary. Notes. References. J.R. Brown: Naturalism, Pictures, and Platonic Intuitions. 1. Naturalism. 2. Platonism. 3. Godel's Platonism. 4. The Concept of Observable. 5. Proofs and Intuitions. 6. Maddy's Naturalism. 7. Refuting the Continuum Hypothesis. Acknowledgements. Appendix: Freiling's 'Philosophical' Refutation of CH. References. M. Giaquinto: Mathematical Activity. 1. Discovery. 2. Explanation. 3. Justification. 4. Refining and Extending the List of Activities. 5. Conc1uding Remarks. Notes. References. Part II. Mathematical Explanation and Proof Styles.
J. Høyrup: Tertium Non Datur: On Reasoning Styles in Early Mathematics. 1. Two Convenient Scapegoats. 2. Old Babylonian Geometric Proto-algebra. 3. Euc1idean Geometry. 4. Stations on the Road. 5. Other Greeks. 6. Proportionality - Reasoning and its Elimination. Notes. References. K. Chemla: The Interplay Between Proof and AIgorithm in 3rd Century China: The Operation as Prescription of Computation and the Operation as Argument. 1. Elements of Context. 2. Sketch of the Proof. 3. First Remarks on the Proof. 4. The Operation as Relation of Transformation. 5. The Essential Link Between Proof and AIgorithm. 6. Conc1usion. Appendix. Notes. References. J. Tappenden: Proof Style and Understanding in Mathematics I:Visualization, Unification and Axiom Choice. 1. Introduction - a 'New Riddle' of Deduction. 2. Understanding andExplanation in Mathematical Methodology: The Target. 3. Understanding, Unification and Explanation - Friedman. 4. Kitcher: Pattems of Argument. 5. Artin and Axiom Choice: 'Visual Reasoning' Without Vision. 6. Summary - the 'new Riddle of Deduction'. Notes. References. J. Hafner and P. Mancosu: The Varieties of Mathematical Explanations. 1. Back to the Facts Themselves. 2. Mathematical Explanation or Explanation in Mathematics? 3. The Search for Explanation within Mathematics. 4. Some Methodological Comments on the General Project. 5. Mark Steiner on Mathematical Explanation. 6. Kummer's Convergence Test. 7. A Test Case for Steiner's Theory. Appendix. Notes. References. R. Netz: The Aesthetics of Mathematics: A Study. 1. The Problem Motivated. 2. Sources of Beauty in Mathematics. 3. Conclusion. Notes. References. Index.
Rezensionen
From the reviews: "As its title suggests, the book deals with themes that are of great interest to mathematics educators. ... this book is a collection of excellent papers by distinguished authors. It also shows a high standard of book production, in its layout, paper quality, draftsmanship and binding. ... this book deserves the attention of all those with an interest in mathematics education." (G. Hanna, Educational Studies in Mathematics, Vol. 64, 2007) "This fascinating collection of essays is a must-have for those who are interested in the history and philosophy of mathematics ... . this is a book that libraries will want to have, particularly if they strive to have good collections on the history and philosophy of mathematics." (Fernando Q. Gouvêa, MathDL, August, 2005)