130,99 €
versandkostenfrei*

inkl. MwSt.
Versandfertig in 6-10 Tagen
Bequeme Ratenzahlung möglich!
ab 6,39 € monatlich
65 °P sammeln

    Broschiertes Buch

Integrates computer vision, pattern recognition, and AI.
Presents original research that will benefit researchers and professionals in computer vision, pattern recognition, target recognition, machine learning, evolutionary learning, image processing, knowledge discovery and data mining, cybernetics, robotics, automation and psychology…mehr

Produktbeschreibung
Integrates computer vision, pattern recognition, and AI.

Presents original research that will benefit researchers and professionals in computer vision, pattern recognition, target recognition, machine learning, evolutionary learning, image processing, knowledge discovery and data mining, cybernetics, robotics, automation and psychology
  • Produktdetails
  • Monographs in Computer Science
  • Verlag: Springer, Berlin
  • Softcover reprint of hardcover 1st ed. 2005
  • Seitenzahl: 320
  • Erscheinungstermin: 29. November 2010
  • Englisch
  • Abmessung: 235mm x 155mm x 17mm
  • Gewicht: 487g
  • ISBN-13: 9781441919434
  • ISBN-10: 1441919430
  • Artikelnr.: 32215502
Autorenporträt
Evolutionary computation is becoming increasingly important for computer vision and pattern recognition. It provides a systematic way of synthesizing and analyzing object detection and pattern recognition systems. Incorporating "learning" into recognition systems will enable these systems to automatically generate new features on the fly (evolve) and cleverly select a good subset of features according to the type of objects and images to which they are applied. This book investigates evolutionary computational techniques---such as genetic programming, linear genetic programming, coevolutionary genetic programming and genetic algorithms---to automate the synthesis and analysis of object detection and recognition systems.
Inhaltsangabe
Feature Synthesis for Object Detection.- Mdl-Based Efficient Genetic Programming for Object Detection.- Feature Selection for Object Detection.- Evolutionary Feature Synthesis for Object Recognition.- Linear Genetic Programming for Object Recognition.- Applications of Linear Genetic Programming for Object Recognition.- Summary and Future Work.