311,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
156 °P sammeln
  • Gebundenes Buch

Due to various issues in the world including rapid urbanization and industrial processes, waste generation has reached levels that are becoming detrimental to the environment and the global population. Waste management has remained a challenging issue for many professional sectors as it is directly linked to an organization's performance; however, the implementation of efficient and cost-effective waste minimization plans is the first step in improving the global environment. Innovative technologies in waste management are emerging and can help professionals looking to implement more efficient…mehr

Produktbeschreibung
Due to various issues in the world including rapid urbanization and industrial processes, waste generation has reached levels that are becoming detrimental to the environment and the global population. Waste management has remained a challenging issue for many professional sectors as it is directly linked to an organization's performance; however, the implementation of efficient and cost-effective waste minimization plans is the first step in improving the global environment. Innovative technologies in waste management are emerging and can help professionals looking to implement more efficient methods of pollution control. The Handbook of Research on Waste Diversion and Minimization Technologies for the Industrial Sector is a pivotal reference source that provides vital research on the application of modern pollution-control methodologies in industrialized environments. While highlighting topics such as life cycle assessment, bioremediation, and thermal waste treatment, this publication explores environmental risk reduction scenarios as well as sustainable waste-collecting solutions. This book is ideally designed for researchers, industrialists, environmentalists, practitioners, policymakers, scientists, students, and academicians seeking current research on innovative advancements in waste minimization techniques.