-8%
102,99 €
Statt 111,99 €**
102,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Versandkostenfrei*
0 °P sammeln
-8%
102,99 €
Statt 111,99 €**
102,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Versandkostenfrei*

Alle Infos zum eBook verschenken
0 °P sammeln
Als Download kaufen
Statt 111,99 €**
-8%
102,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Statt 111,99 €**
-8%
102,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
0 °P sammeln
  • Format: PDF


Provides readers with the methods, algorithms, and means toperform text mining tasks This book is devoted to the fundamentals of text mining usingPerl, an open-source programming tool that is freely available viathe Internet (www.perl.org). It covers mining ideas from severalperspectives--statistics, data mining, linguistics, and informationretrieval--and provides readers with the means to successfullycomplete text mining tasks on their own. The book begins with an introduction to regular expressions, atext pattern methodology, and quantitative text summaries, all ofwhich are fundamental tools…mehr

Produktbeschreibung
Provides readers with the methods, algorithms, and means toperform text mining tasks This book is devoted to the fundamentals of text mining usingPerl, an open-source programming tool that is freely available viathe Internet (www.perl.org). It covers mining ideas from severalperspectives--statistics, data mining, linguistics, and informationretrieval--and provides readers with the means to successfullycomplete text mining tasks on their own. The book begins with an introduction to regular expressions, atext pattern methodology, and quantitative text summaries, all ofwhich are fundamental tools of analyzing text. Then, it builds uponthis foundation to explore: * Probability and texts, including the bag-of-words model * Information retrieval techniques such as the TF-IDF similaritymeasure * Concordance lines and corpus linguistics * Multivariate techniques such as correlation, principalcomponents analysis, and clustering * Perl modules, German, and permutation tests Each chapter is devoted to a single key topic, and the authorcarefully and thoughtfully introduces mathematical concepts as theyarise, allowing readers to learn as they go without having to referto additional books. The inclusion of numerous exercises andworked-out examples further complements the book's student-friendlyformat. Practical Text Mining with Perl is ideal as a textbookfor undergraduate and graduate courses in text mining and as areference for a variety of professionals who are interested inextracting information from text documents.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.

  • Produktdetails
  • Verlag: John Wiley & Sons
  • Seitenzahl: 300
  • Erscheinungstermin: 03.09.2008
  • Englisch
  • ISBN-13: 9780470382851
  • Artikelnr.: 37291797
Autorenporträt
Roger Bilisoly, PhD, is an Assistant Professor of Statistics at Central Connecticut State University, where he developed and teaches a new graduate-level course in text mining for the school's data mining program.
Inhaltsangabe
List of Figures.List of Tables.Preface.Acknowledgments.1. Introduction.2. Text Patterns.3. Quantitative Text Summaries.4. Probability and Text Sampling.5. Applying Information Retrieval to Text Mining.6. Concordance Lines and Corpus Linguistics.7. Multivariate Techniques with Text.8. Text Clustering.9. A Sample of Additional Topics.Appendix A. Overview of Perl for Text Mining.Appendix B. Summary of R used in this Book.References.Index.
Rezensionen
" Practical Text Mining with Perl is an excellent book for readers at a variety of different programming skill levels Bilisoly s book would serve as a good text for an introductory text mining course, and could be supplemented with lecture notes for Web mining or data mining courses." ( Journal of Statistical Software , January 2009)