77,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
39 °P sammeln
  • Gebundenes Buch

Intelligent/smart systems have become common practice in many engineering applications. On the other hand, current low cost standard CMOS technology (and future foreseeable developments) makes available enormous potentialities. The next breakthrough will be the design and development of "smart adaptive systems on silicon" i.e. very power and highly size efficient complete systems (i.e. sensing, computing and "actuating" actions) with intelligence on board on a single silicon die. Smart adaptive systems on silicon will be able to "adapt" autonomously to the changing environment and will be able…mehr

Produktbeschreibung
Intelligent/smart systems have become common practice in many engineering applications. On the other hand, current low cost standard CMOS technology (and future foreseeable developments) makes available enormous potentialities. The next breakthrough will be the design and development of "smart adaptive systems on silicon" i.e. very power and highly size efficient complete systems (i.e. sensing, computing and "actuating" actions) with intelligence on board on a single silicon die. Smart adaptive systems on silicon will be able to "adapt" autonomously to the changing environment and will be able to implement "intelligent" behaviour and both perceptual and cognitive tasks. At last, they will communicate through wireless channels, they will be battery supplied or remote powered (via inductive coupling) and they will be ubiquitous in our every day life.

Although many books deal with research and engineering topics (i.e. algorithms, technology, implementations, etc.) few of them try to bridge the gap between them and to address the issues related to feasibility, reliability and applications. Smart Adaptive Systems on Silicon, though not exhaustive, tries to fill this gap and to give answers mainly to the feasibility and reliability issues.

Smart Adaptive Systems on Silicon mainly focuses on the analog and mixed mode implementation on silicon because this approach is amenable of achieving impressive energy and size efficiency. Moreover, analog systems can be more easily interfaced with sensing and actuating devices.
Autorenporträt
Maurizio Valle, University of Genova, Genova, Italy