141,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
71 °P sammeln
  • Gebundenes Buch

Algebraic Identification and Estimation Methods in FeedbackControl Systems presents a model-based algebraic approach toonline parameter and state estimation in uncertain dynamic feedbackcontrol systems. This approach evades the mathematical intricaciesof the traditional stochastic approach, proposing a directmodel-based scheme with several easy-to-implement computationaladvantages. The approach can be used with continuous and discrete,linear and nonlinear, mono-variable and multi-variable systems. Theestimators based on this approach are not of asymptotic nature, anddo not require any…mehr

Produktbeschreibung
Algebraic Identification and Estimation Methods in FeedbackControl Systems presents a model-based algebraic approach toonline parameter and state estimation in uncertain dynamic feedbackcontrol systems. This approach evades the mathematical intricaciesof the traditional stochastic approach, proposing a directmodel-based scheme with several easy-to-implement computationaladvantages. The approach can be used with continuous and discrete,linear and nonlinear, mono-variable and multi-variable systems. Theestimators based on this approach are not of asymptotic nature, anddo not require any statistical knowledge of the corrupting noisesto achieve good performance in a noisy environment. Theseestimators are fast, robust to structured perturbations, and easyto combine with classical or sophisticated control laws.

This book uses module theory, differential algebra, andoperational calculus in an easy-to-understand manner and alsodetails how to apply these in the context of feedback controlsystems. A wide variety of examples, including mechanical systems,power converters, electric motors, and chaotic systems, are alsoincluded to illustrate the algebraic methodology.

Key features:

Presents a radically new approach to online parameter and stateestimation.
Enables the reader to master the use and understand theconsequences of the highly theoretical differential algebraicviewpoint in control systems theory.
Includes examples in a variety of physical applications withexperimental results.
Covers the latest developments and applications.
Algebraic Identification and Estimation Methods in FeedbackControl Systems is a comprehensive reference for researchersand practitioners working in the area of automatic control, and isalso a useful source of information for graduate and undergraduatestudents.
Autorenporträt
H. Sira-Ramírez obtained an Electrical Engineer's degree from the Universidad de Los Andes in Mérida (Venezuela) in 1970; an MSc in Electrical Engineering and an Electrical Engineer's degree in 1974, and a PhD in Electrical Engineering in 1977, all from the Massachusetts Institute of Technology (Cambridge, MA). Dr. Sira-Ramírez worked for 28 years at the Universidad de Los Andes, becoming an Emeritus Professor. Currently, he is a Titular Researcher in the Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN) in Mexico City, Mexico. He is a co-author of five books on automatic control, and the author of over 460 technical articles in book chapters, credited journals, and international conferences. Dr. Sira-Ramírez is interested in the theoretical and practical aspects of feedback regulation of nonlinear systems, with special emphasis on variable structure feedback control, algebraic methods in automatic control, power electronics, and active disturbance rejection control. C. García-Rodríguez received a B.Eng. degree from the Technological Institute of Veracruz, Veracruz, Mexico in 2002, and Master's and Doctor of Science degrees from the Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-IPN, Mexico in 2005 and 2011, respectively, all in Electrical Engineering. He was with the Technological Institute for Higher Studies of Ecatepec, Edo. de México, in 2005. Since 2010, he has been a Professor at the Electronic and Mechatronic Institute, Technological University of Mixteca, Oaxaca, Mexico. He is currently also Coordinator of the Master's Program in Electronics with Option in Applied Intelligent Systems of this university. Dr. García-Rodríguez is a candidate member of the National System of Researchers and a member of the CONACYT Registry of Accredited Evaluators. His current research and teaching interests include control of electrical machines, power converters for variable-speed systems, power electronics, robust control, and algebraic identification. A. Luviano Juárez received a BS degree in Mechatronics Engineering from the National Polytechnic Institute (Mexico), an MSc in Automatic Control from the Department of Automatic Control at the Center of Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), and a PhD in Electrical Engineering from the Electrical Engineering Department at Cinvestav -IPN. Currently, he is a Professor at the National Polytechnic Institute - UPIITA in the Research and Postgraduate Section. His teaching and research interests include control of mechatronic systems, algebraic methods in estimation, identification and control, robotics, and related subjects. John Cortés-Romero, PhD is a Research Associate Professor in the Department of Electrical and Electronic Engineering at the National University of Colombia. During his tenure at the NationalUniversity, Professor Cortés-Romero served as the coordinator of the Industrial Automation Master's program. Professor Cortés-Romero received his BS in Electrical Engineering, MSc in Industrial Automation, and MSc in Mathematics from the National University of Colombia in 1995, 1999, and 2007, respectively. In 2007, he was selected for the prestigious OAS fellowship program and earned his PhD in Electrical Engineering from the Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico in 2011. He is the author of over 40 technical papers in journals and international conference proceedings. His main research areas include nonlinear control applications, active disturbance rejection control, algebraic identification and estimation methods in feedback control systems, and supervisory control of industrial processes.