
Boundary Layer Control of a Circular Cylinder Using a Synthetic Jet
Versandkostenfrei!
Versandfertig in über 4 Wochen
59,99 €
inkl. MwSt.
PAYBACK Punkte
30 °P sammeln!
Active control of flow around a circular cylinder at a sub-critical Reynolds number was studied experimentally. The flow was controlled by using a synthetic jet which ran span wise along the cylinder and emanated radially from the cylinder. The experiments were conducted over a two dimensional cylinder in a water tunnel at a Reynolds number of approximately 5800. Seven different jet locations and seven different jet oscillation frequencies were examined. Particle image velocimetry (PIV) was used for flow visualization. The synthetic jet proved to delay flow separation at a wide range of locati...
Active control of flow around a circular cylinder at a sub-critical Reynolds number was studied experimentally. The flow was controlled by using a synthetic jet which ran span wise along the cylinder and emanated radially from the cylinder. The experiments were conducted over a two dimensional cylinder in a water tunnel at a Reynolds number of approximately 5800. Seven different jet locations and seven different jet oscillation frequencies were examined. Particle image velocimetry (PIV) was used for flow visualization. The synthetic jet proved to delay flow separation at a wide range of locations and oscillation frequencies. The greatest positive effect on the boundary layer was determined to be when the jet was placed at an angle of 70- to the on coming flow at an oscillatory momentum blowing coefficient at 1.03, and non-dimensional frequency of 0.9. Boundary layer separation was delayed from approximately 90- to approximately 140- and the momentum deficit was reduced by 77-88%. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.