
Using the GPS to Improve Trajectory Position and Velocity Determination During Real-Time Ejection Seat Test and Evaluation
PAYBACK Punkte
9 °P sammeln!
Test and evaluation of the United States Air Force's latest aircraft escape system technology requires accurate position and velocity profiles during each test to determine the relative positions between the aircraft, ejection seat, manikin and the ground. Current rocket sled testing relies on expensive ground based multiple camera systems to determine the position and velocity profiles. While these systems are satisfactory at determining seat and manikin trajectories for sled testing, their accuracy decreases when they are used for in-flight testing, especially at high altitudes. This researc...
Test and evaluation of the United States Air Force's latest aircraft escape system technology requires accurate position and velocity profiles during each test to determine the relative positions between the aircraft, ejection seat, manikin and the ground. Current rocket sled testing relies on expensive ground based multiple camera systems to determine the position and velocity profiles. While these systems are satisfactory at determining seat and manikin trajectories for sled testing, their accuracy decreases when they are used for in-flight testing, especially at high altitudes. This research presents the design and test results from a new GPS-based system capable of monitoring all major ejection test components (including multiple ejection seat systems) during an entire escape system test run. This portable system can easily be integrated into the test manikin, within the flight equipment, or in the ejection seat. Small, low-power, lightweight Global Positioning System (GPS) GPS receivers, capable of handling high-accelerations, are mounted on the desired escape system component to maintain track during the escape system test sequence from initiation until the final landing. The GPS-based system will be used to augment the telemetry and photography systems currently being used at the Air Force (AF) and other Department of Defense's (DoD) sled track test facilities to improve tracking accuracy and reduce testing costs. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.