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Preface

Why an Analyst’s Companion? Millions of analyses are carried out every day in
laboratories for all sectors of industry and science. Many people are willing to pay
for these analyses because they are considered effective in making a scientifically
sound decision. Though few publications address the economics of analytical sci-
ences, nonetheless, a report by the European Commission concluded in 2002 that
“for every euro devoted to measurement activity, nearly three euros are generated”
[1]. But is it easy and simple to use an analytical result, and does it always allow you
to make the right decision? Some questions illustrate the risks involved in relying on
a result:

– How do you know that the laboratory used the method that gave the exact result?
– Like any measurement, analysis is subject to error. How can you estimate them?
– How can a spurious measurement be used effectively?

This is the right time to explain why and how the concept of measurement uncer-
tainty (MU) can be used to better manage these risks. This also means that a new
challenge for analysts is to develop an appropriate method for estimating MU more
explicitly applicable to analytical sciences. In this perspective, a tool based on the sta-
tistical dispersion intervals called method accuracy profile (MAP) is proposed as the
backbone of the book. The theoretical aspects of the MAP procedure and MU esti-
mation are presented in several examples and template worksheets to help analysts
quickly grasp this tool.

At the turn of the 1970s, three analytical chemists, Bruce Kowalski, Luc Mas-
sart and Svante Wold, conceptualized a discipline they called Chemometrics [2].
Unfortunately, they all have passed away since, but their work is still vivid. Many
chemometrics books have been published, proving the added value of statistics to
analytical sciences. Some are globally addressing chemometrics [3–5] other are more
focused on statistics [6, 7], and others on method validation [8, 9].

This book contributes to the application of chemometrics, but the obvious aim is
not to repeat what is available in many valuable publications. Only a few books pre-
cisely address measurement uncertainty in analytical sciences [10–12]. They present
limited facets and do not propose a more comprehensive approach. The aim of this
book is to describe a global procedure for MU estimation, easily applicable in analyt-
ical laboratories. In a recent publication, we have exposed in a condensed manner
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our view of the link between validation and measurement uncertainty [13]. This
book develops more extensively and practically our viewpoint.

However, it is not satisfactory to simply propose a modus operandi (even if it is
claimed to be universal) for estimating MU when this parameter is still new in
analytical sciences and not always well identified by end-users. Therefore, several
chapters are dedicated to its practical use in decision-making, demonstrating
its advantages. These remarks indicate that this book is primarily intended for
professional analysts, although researchers and students may find it of interest.

In order to reach this goal, the book is organized around practical responses cov-
ering three major questions daily put to analysts when they develop a new method
or routinely apply it to unknown samples:

– How to quantify the analyte?
– How to validate the method?
– How to estimate the measurement uncertainty?

How does this book give answers these questions? We use as a roadmap a tool
based on the application of statistical dispersion intervals called MAP. The latter was
initially conceived for method validation, but it can easily be used for MU estima-
tion. While method validation is often reduced to computing a set of disconnected
parameters to be estimated, the MAP approach is more global. It consists in defin-
ing the interval where the method is able to produce a given proportion of acceptable
results. This perspective is in harmony with the uncertainty approach proposed by
metrologists some decades ago that consists in computing the so-called coverage
interval of the result.

The chapters of the book can be read independently. This may explain some redun-
dancies in the quoted publications. But they are structured according to a read-
ing thread illustrated in Figure 1. The thick grey arrow is the backbone. Six main
chapters are characterized as rounded angle boxes. Three of them are devoted to
measurement uncertainty, as it is a key issue of the book.

Chapter 3

Precision
Chapter 4

Trueness

Chapter 1

Quantification

Chapter 2

Calibration

Chapter 5

Validation

Chapter 11

Conclusions

Chapter 6

Principles
Chapter 9

Limits

Chapter 10

Applications

Chapter 12

Annexes

Measurement

uncertainty

Chapter 7
For

analytics

Chapter 8
Decision-
making

Figure 1 How to read this book.
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Additional chapters appear as ellipses. They bring two kinds of information. On
the one hand, theoretical background, such as precision and trueness parameter esti-
mation and how to compute them, may be useful to better understand statistical
developments involved in the method accuracy profile. On the other hand, specific
examples of MU applications. One is devoted to the limits of quantification and the
challenging question of controlling samples with low analyte concentration, another
to method comparison.

Several data sets provide the link between the different chapters. They are used
throughout for practical data handling and real software application. The aim of this
data-oriented presentation is to help the analyst apply the proposed techniques in the
laboratory, in keeping with the title “Companion.” This also practicality means that
numerical applications for all topics covered are presented and illustrated along-
side the theoretical considerations. These are based on detailed Microsoft Excel®
worksheets or free equivalent, such as OpenOffice® Calc, included with the book.
This software is user-friendly and does not require much explanation, and proba-
bly everyone in the laboratory knows how to use it. Although criticized by profes-
sional statisticians (for good reasons), this software is extremely helpful for quick
and simple statistical computation in a laboratory, and several pitfalls can easily
be avoided:

– Worksheet cell content is easily modified without any warning. Thus, once created
and validated, the best initiative is to protect the worksheet or whole workbook.

– The formula inside cell is not visible unless the option to show formulas is on. To
help the understanding of the template worksheets developed for this book, all
formulas are made visible in the cell next to the resulting. The built-in function
FORMULATEXT is used for this aim. It is only available in the most recent Excel
releases.

– Confusion may exist between a worksheet and a text editor. Fancy presentation
must be avoided, and it is better to embed a worksheet within a text editor rather
than trying to do everything with a single software.

The basic use of worksheet software does not allow complex statistical calcula-
tion though it contains many built-in functions, which are used in the following
examples. It is possible to use the development environment called Visual Basic for
Applications coming with Excel to build more complex programs, but it requires
some practice. For the most sophisticated applications, we preferred to provide
Python program examples. This software is increasingly popular, and the accuracy
of statistical functions is widely recognized. For instance, complex techniques, such
as non-linear or weighted regression techniques, are easily implemented. Python is
simpler than professional statistical software. It is developed under a free license,
and there is an exceptionally large community of users who can help. The drawback
is that it is a patchwork, and many additional modules must be imported to apply
some methods. The simplest way to install Python is to download a free package
called Anaconda [14] and select the Spyder development environment. Presented
examples were programmed in this environment.
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Quantification

1.1 Define the Measurand (Analyte)

The initial question for the analyst is to define what is expected to be measured.
According to the International Vocabulary of Metrology [1], the “quantity intended
to be measured”1 is called the measurand, or more specifically, the analyte,
when considering measurement methods applied to chemical and biochemical
substances. But this simple definition may be misleading while an analyte may
have variable forms during the analytical process. It is not always certain that
the substance finally measured is initially intended to be measured. For example,
during sample preparation, the initial organic form of the analyte may change to
inorganic, and what was intended to be measured is finally modified. For instance,
in living organisms, heavy metal is present combined with proteins, such as mercury
to metallothionein. Still, when analyzed after mineralization, it can be transformed
into sulfate, perchlorate, or nitrate.

A well-known catastrophic example is the Minamata disease; when looking for
mercury in food samples, the oldest methods were based on the complete sample
mineralization to obtain mercury nitrate. Soon after, it was realized that the toxic
forms of mercury were organic derivates. Hence, so-called total mercury had no
great toxicological interest compared to the different organic forms. Speciation tech-
niques in mineral analysis or chiral chromatographic methods are good examples
of innovative approaches devoted to better maintaining the analyte in its expected
form. Therefore, quantification in analytical sciences is often less straightforward
than claimed. From the metrological point of view, the difficult traceability of chem-
ical substances to international standards is one of these obstacles.

This is detailed in Section 6.3 as an introduction to the estimation of measure-
ment uncertainty (MU) among many other sources of uncertainty. The encapsu-
lated conception of modern and highly computerized instruments may also prevent
the analyst from assessing what is measured. Digits displayed on the instrument
screen represent what is “intended to be measured.” The paradoxical consequence
is that discussing the true nature of the analyte is often avoided, while more attention

1 Definitions or quotations extracted from standards or official documents are between double
quotes.

Quantification, Validation and Uncertainty in Analytical Sciences: An Analyst’s Companion,
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should be paid to this question. The goal of this chapter is to propose things to con-
sider on this topic. Many examples are based on mass spectrometry (MS) hyphenated
methods because several are now considered highly compliant from a metrological
point of view.

1.1.1 Quantification and Calibration

The metrology motto could be measuring is comparing. Therefore, when quan-
tifying an analyte, the comparison principle must be previously defined. This
preliminary step is usually called calibration. In modern analytical sciences, most
methods use measuring instruments ranging from simple, specific electrodes
to sophisticated devices; therefore, calibration procedure may enormously vary
according to the nature of the instrumentation. This chapter attempts to classify
the different quantification/calibration strategies applied in analytical laboratories.
Because this subject is not harmonized, the employed vocabulary may vary from
one domain of analysis to another and be confusing. For each term, we tried to give
a definition, but it may be incomplete due to the considerable number of analytical
techniques. Many suggested definitions are listed in the glossary at the end of
the book.

Whatever the measuring domain, classic differences are made between direct and
indirect measurement techniques. Direct method can usually refer to a measure-
ment standard, for instance, when measuring the weight of an object on a two-pan
balance with standard weights. Indirect measurements are performed using a trans-
ducer, a “device, used in measurement, which provides an output quantity with a
specified relation to the input quantity.”

Reversely, with a one-pan balance, measurements are indirect. At the same time,
result is obtained by means of a mathematical model linking the calibrated piezo-
electrical effect on the beam to the weight. In analytical sciences, methods are usu-
ally indirect. Some exceptions are set apart, classified as direct primary operating
procedures by BIPM (Section 4.2.1). For most chemical or biological analytical tech-
niques, the measuring instrument must be calibrated with known reference items
before use. Finally, quantification involves three elements, as outlined in Figure 1.1:

Sample
Analyte + Matrix Quantification

Calibration
function

Calibrator

X

XC

Z = f –1(Y)

Y = f (XC)

Figure 1.1 Schematic representation of the quantification principle.
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– The analyte is in the working sample. Its concentration is denoted X . The searched
compound (chemical or biological) is embedded within the sample matrix. It is
only before any treatment that the analyte is present in the intended form. The role
of sample preparation is to eliminate a large part of the matrix and concentrate on
the analyte. But it may change the analyte chemical form; for instance, with the
speciation of organic forms of heavy metals, sample preparation is quite different
from classic mineralization.

– The calibration items are also called calibration standards or calibrators. They are
prepared by the analyst to contain a known amount of a calibrant as similar as
possible to the analyte. To underline this difference, it is denoted Xc. The selection
of the adequate calibrant is a key-issue of quantification extensively addressed in
the rest of this chapter.

– The calibration function that links the instrumental response Y to the known
quantity Xc, denoted Y = f (Xc).

Figure 1.1 is an attempt to recapitulate a generic quantification procedure. Most
of the time, calibrators are artificially prepared and used to build the calibration
function f which generally is inverted when analyzing an unknown sample. The
three elements may be subjected to variations. Mathematical notation underlines
the dissimilar roles they play for the statistical modeling of calibration and possible
relationships that link the instrumental signal to the calibrant concentration.
Denoting Z the predicted concentration of a sample emphasizes the role of invers-
ing calibration function as discussed in Section 2.1. Finally, considering a given
calibration dataset, distinct functions f can be fitted. A principal issue will be to
select the best one because it deeply affects the global method performance. The
goal of the present chapter is to describe some classical or new quantification
procedures.

1.1.2 Authentic versus Surrogate

To be explicit, it is convenient to define some terms. If the chemical substance sought
in the sample is called authentic, obviously, for many methods it is possible to prepare
the calibrators with the authentic analyte. But other quantification methods exist
based on a different calibration compound, which will be called surrogate standard
or calibrant. It would be paradoxical to call it surrogate analyte, whereas the analyte
can only be authentic. Therefore, when the analyte and the calibrant are different,
it is necessary for the analyst to cautiously verify if they have equivalent analytical
behavior and define an eventual adjustment method, such as a correction factor.

The measuring instrument is a transducer that converts the amount or the con-
centration of a chemical substance into a signal – usually electrical – according to a
physical or chemical principle. How quantitative analyses are achieved varies from
simple color tests for detecting anions and cations through complex and expensive
instrumentation for determination of trace amounts of a compound or substance in
a complex matrix. Increasingly, such instrumentation is a hybrid of techniques for
separation and detection that requires extensive data processing.
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The subject of analytical sciences has become so wide that complete coverage,
providing clear information to an interested scientist, can only be achieved in a
multi-volume encyclopedia. For instance, Elsevier published in 2022 the volume
n∘98 of the Comprehensive Analytical Chemistry handbook started in the 1980s.

The major obstacle in analytical sciences is the structural or chemical differences
that exist between the analyte present in the working sample and the substance
used as a calibrant. The instrument signal may depend on the authentic or surro-
gate structure of the analyzed substance: this dependence is marked with modern
instrumentation such as mass spectrometers. On the other hand, the analyte present
in a working sample is embedded with other chemicals, customarily called a matrix
by the analysts. It is not always possible or easy to use the sample matrix when
preparing the calibrators. These remarks lead to the definitions of four different
quantification elements that can be combined to prepare or selecting calibrators and
consequently obtain the calibration curve:

Authentic
analyte

The same molecule or substance present in the working sample
may be available for calibrator preparation, considering a high
degree of purity.

Surrogate
standard or
calibrant

This is a reference substance that is assessed and used as a
reasonable substitute for the authentic analyte. For instance, in
bioanalysis, it is frequent to have metabolites or derivates of the
analyte that must be quantified without the reference molecule.
Labeled molecules used in many methods involving isotopic
dilution have recently been considered appropriate
calibrants.

Authentic
matrix

The simplest situation for using an authentic matrix is to prepare
calibrants by spiking test portions of the working sample. For
some applications, such as drug control, it is also possible to
prepare synthetic calibrants with the same ingredients as the
products to be controlled.

Surrogate
matrix

This medium is considered and used as a substitute for the
sample matrix. For instance, bovine serum is used in place of
human serum. Then, it is assumed its behavior should be similar
to the authentic matrix throughout the analytical process,
including sample preparation and instrumental response.

When the surrogate matrix does not behave as the authentic or when calibration
is achieved without the sample matrix, matrix effects may produce bias of trueness,
as explained in Section 4.1.3. More precisely, calibration standards can be prepared
with several classes of matrices. Matrix classification is widely based on analyst
expertise and depending on the application domain, matrix grouping is extremely
variable. For instance, broad definitions applicable to biological analysis can be as
follows:
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Authentic matrix
(or real)

For biological analysts, serum, urine, saliva, or stool are
different classes of matrices. In food chemistry, when
determining the total protein, fatty and starchy foods are
classified as different, or drinking water and surface water is
different for water controllers.

Surrogate matrix Matrix used as a substitute for authentic matrix.
Neat solution Water, reagents used for extraction or

elution, etc.
Artificial matrix Pooled and homogenized samples,

material prepared by weighting when the
composition of the authentic matrix is
fully known, etc.

Stripped matrix Specially prepared materials are free of
impurities or endogenous chemicals.
They are mainly used for biomedical
analysis.

It can be assumed that the combined use of surrogate standard and/or surrogate
matrix may induce bias. It is necessary to cautiously verify if their analytical behavior
is comparable to authentic ones. At least four combinations of the above-defined
quantification elements are possible, each having pros and cons as explained later.
It is possible to categorize different quantification modes depending on the selected
combination:
Quantitative Calibrators are prepared with authentic analytes and an

authentic matrix. The amount or concentration of the
analyte may be determined and expressed as a numerical
value in appropriate units. The final expression of the result
can be absolute, as a single concentration value;
non-absolute, as a range or above or below a threshold.

Semi-quantitative Surrogate standards and matrix are used. Some authors
consider semi-quantitative analyses the ones performed
when reference standards or the blank matrix are not
readily available.

Relative Sample is analyzed before and after an alteration or
compared to a control situation. The relative analyte
concentration is expressed as a signal intensity fold change.
It is ratioed to another sample used as a reference and
expressed as a signal/concentration.

It must be clearly stated that it is impossible to strictly separate quantification
from calibration since they are interdependent. According to the nature of the
calibration standard used, which can be authentic or surrogate, and the matrix,
which can be authentic, surrogate, neat, etc., different quantification strategies were
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Figure 1.2 Schematic representation of absolute, semi, and relative quantification modes.

developed to obtain the effective calibration function. A schematic overview of the
differences between principal quantification modes is summarized in Figure 1.2
and more extensively explained in the rest of the chapter.

1.1.3 Signal Pretreatment and Normalization

Nowadays, it is quite uncommon to use the analogic electrical signal output from the
measuring instrument to build a calibration model. Digitalizing signals in modern
instruments opened the way to many pretreatments, such as filtering, background
correction, and smoothing. It is sometimes invisible to the analyst, although this can
modify the method’s performance. The outcome of many methods can be complex
signals such as absorption bands or peaks in spectrophotometry or elution peaks in
chromatography.

This raw information is not directly used as Y variable to build the calibration
model; it is preprocessed. When dealing with absorption peaks, it is classic to select
one or several wavelengths considered to be most informative. For instance, in bio-
chemistry, protein concentration can be quickly estimated by measuring the UV
absorbance at 280 nm; proteins show a strong peak here due to tryptophan and tyro-
sine residue absorbance. This can readily be converted into the protein concentration
using Beer’s law.
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When obtaining poorly resolved absorption bands, as in near infrared spec-
troscopy (NIRS), the selection of one specific wavelength is difficult, and the use of
a multivariate approach has been promoted. Many publications in chemometrics
literature are addressing this issue. The multivariate calibration based on partial
least-squares regression (PLS) has now become a routine procedure.

If the output signal is time-resolved, such as liquid or gas chromatographic peaks,
they are always pretreated by an integrator. Initially, it was a separate device, but
now it is included in the monitoring software. It can determine several parameters
characterizing the elution peak, such as retention time at the highest point, skew-
ness, peak height, but mainly peak area. The peak area is in the favor with analysts.
But several publications demonstrated that for some methods, peak height is prefer-
able to peak area and that when standardizing a method, the integration conditions
must be carefully harmonized [2].

For some methods, such as MS-coupled methods, the measured response Y can
strongly vary according to the detector performance, such as mass analyzer type, ion-
ization modes, ion source parameters, system contamination, ionization enhance-
ment or suppression due to the sample matrix effect, along with other operational
variables related to the analytical workflow.

Thus, the analyte relative response is standardized to compare performance over
time. A common operation is adding an internal standard (IS) to the study and cali-
bration samples at fixed concentrations. For instance, two official inspection bodies
advise evaluating the matrix effects when a complex surrogate matrix is used [3, 4].
For the latter, the Food and Drug Administration (FDA) suggests investigating the
matrix effect by performing parallelism testing between linear calibration curves
computed with the authentic and surrogate matrices. This method is not always
effective, while parallelism statistical testing is conservative, i.e. depending on the
data configuration significant difference may be considered nonsignificant and only
applicable to linear models.

Conversely, the European Medicines Agency (EMA) provides full instructions
on how to do it and recommends comparing the extraction recovery between
the spiked authentic matrix and surrogate matrix used for the calibration, along
with the inclusion of IS as an easy and effective method to correct biases between
these two matrices. When the analyte and the IS are affected similarly during the
analytical process, instrument signals can be correctly standardized. A comprehen-
sive approach is proposed further using the method accuracy profile (MAP); it is
also an effective approach to detect and control matrix effects.
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Two main categories of IS, namely structural analogs and stable SIL, can be iden-
tified. The molecule of pregnenolone is used to exemplify this. The first category,
visible on the molecule on the left, is related to compounds that generally share
structural or physicochemical properties similar to the authentic analyte.

The second category, exemplified by the molecule on the right, includes stable iso-
topic forms of the analyte, usually by replacing hydrogen 1H, carbon 12C, or nitrogen
14N with deuterium 2H, 13C, or 15N, respectively. Obviously, using labeled IS requires
the coupling to a mass spectrometer. Deuterated IS are widely used due to their
lower cost. Still, their lipophilicity increases with the number of substituted 2H, lead-
ing to differences in their chromatographic retention times with the corresponding
authentic analyte. This phenomenon, known as deuterium effect, can also impact the
instrumental response or behavior (e.g. the electrospray ionization process in MS)
compared to unlabeled compounds.

Even if an increasing number of high-quality SIL are commercially available, they
are limited to the most commonly used chemical compounds. When many ana-
lytes must be simultaneously quantified, the possibility of using one IS for multiple
analytes should be carefully evaluated. For quantification purposes, using one IS
per target compound is generally recommended when available because they are
assumed to compensate for specific differences in matrix effect and extraction recov-
ery between the calibration methodology and working samples.

To complete this rapid overview, when compatible with the analytical method,
the use of standards linked to the International System of Units (SI) is a convenient
means of standardizing the instrumental response and correcting the overall varia-
tion in the measurement process resulting from diverse sources of uncertainty, such
as sample preparation or interfering compounds, also known as the matrix effects.
The absolute instrumental response is then normalized as a response ratio:

Normalized response ratio

Y =
YA

YIS
(1.1)

In this formula, Y A and Y IS are the responses obtained with the analyte and the
IS, respectively. This formula gives a relative instrumental response but does not
consider the respective concentrations. To be more in harmony with Figure 1.1, Y IS
is equivalent to Y c. This new notation is used because the IS is a particular example
of a compound used for calibration.

The influence of signal preprocessing, such as peak integration, was experimen-
tally demonstrated during an interlaboratory study on determining fructose, mal-
tose, glucose, lactose, and sucrose in several foods by liquid chromatography [5]. A
specific experimental design was developed to achieve this demonstration. Partici-
pants were requested to send their results calibrated as both peak heights and areas.
Considering the mean values obtained with the two approaches, differences ranged
from−18% up to+5%. This indicates that trueness may be affected by the quantifica-
tion mode. Precision, expressed as the reproducibility variance, was computed using
both sets of results.

More details about this common parameter of precision are given in Section 3.2.1.
In Figure 1.3, a subset of interlaboratory results is reported. Food types are indicated


