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Preface

This book brings three fields of physics together, namely symmetry, spontaneous
long-range (‘ferroic’) order, and nonlinear (in its response to the light field) laser
optics. Nonlinear optics on ferroic materials is a subject that came to life in the early
1990s. Since then, it has been developing with remarkable success. Despite this inter-
est, there appears to be no comprehensive presentation of the topic in book format.
In fact, even review articles on the subject are scarce and generally focus on a single
type of ferroic order or other selected aspects. Writing a book on nonlinear optics on
ferroic materials therefore seems to be both timely and urgent.

As an introductory work, it aims at as wide a circle of readers as possible. This is a
necessity because with symmetry, ferroic order, and laser optics, the book combines
three vastly different areas, and the fewest readers will have a background in all of
them. A prerequisite of this book is therefore the creation of a common perspective
on the three subjects and, thus, of a common terminology to present them. This may
tempt specialists in the respective fields to grumble about the inappropriate choice
of language. The reward, however, is mutual understanding with the prospect of
building bridges and joining forces in solving a timely problem. Given the current
world situation, this seems to be more important than ever.

The introductions on symmetry, ferroic order, and nonlinear optics in Chapter 1
are written such that graduate students in the natural or engineering sciences should
be able to follow and encourage them to read on. The book should also be quite useful
for those who are looking for a topic for their doctoral thesis or the academic career
that builds on it. Its approach is interdisciplinary, it points out numerous blank spots
in the field, and research on these has a good chance of leading to novel, important
insights.

Most of all, I would like to have readers fun in reading this work. I seriously hope
that they feel some of the excitement I experienced while working in the field of
nonlinear optics on ferroic materials and also in writing this book. Time to begin!
So: Yeah – Is everything in place?

Zürich
September 2023

Manfred Fiebig
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1

A Preview of the Subject of the Book

MARIANNE: Forgive me, I’d hate to be in your place.

HÉLOÏISE: We are in the same place. Exactly the same place. Come here. Come. Step closer. Look.
If you look at me, who do I look at?

Portrait of a Lady on Fire, Céline Sciamma, France (2019)

1.1 Symmetry Considerations

Almost everyone can relate to the concept of symmetry. People usually associate sym-
metry with something that looks the same on the right- and left-hand side of some
centre. Often, symmetry is associated with beauty, whereas asymmetry is consid-
ered as unpleasant. On the other hand, asymmetry may be used to create tension
and make an object or image appear as interesting where symmetry might convey
an impression of dullness. Most people also have an intuitive understanding of the
consequences of symmetry. Imagine a picture of a symmetric object, say, of a human
body, in which the right half is the (approximate) mirror image of the left half. Even
someone who is not an orthopaedic will assume that the arrangement of bones and
muscles in foot on the left is a mirror image of the arrangement of bones and muscles
in the foot on the right. Here, a correct transfer from the symmetry of the larger object
on the symmetry of its hidden components is made. Symmetry obviously allows us
to make conclusions about the structure of objects even if we do not understand their
composition and functionality in detail.

This principle can be extended to impressive lengths. Imagine an intelligent alien
life form that is presented with pictures taken on Earth, as in Figure 1.1, showing
a tree and a cow from above. Those aliens may have no idea what these objects
represent. They will notice, however, that the tree thing looks roughly the same in
all directions. So, whatever that object represents, it is probably rooted to the ground
because if it were consciously mobile, it would most likely have a sort of front end in
the direction in which it moves in order to detect what lies ahead. Because of this par-
ticular purpose, this front end is expected to look different from the rest of its body.

Nonlinear Optics on Ferroic Materials, First Edition. Manfred Fiebig.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH GmbH.
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(a) (b)

Figure 1.1 The potential of symmetry analysis. (a) Deciduous tree from above. There is no
direction here that stands out above another, see the double arrows. In consequence,
rotation around the centre does not change the general appearance of the tree. With the
lack of a built-in direction it is expected that trees do not move but rather stay rooted to
the ground. (b) Cow from above. With respect to the long axis there is a clear difference
between the two ends of the cow. It can be interpreted as a direction built into the animal
(arrow), which eventually indicates its direction of motion. With respect to its sides, there is
no direction that would distinguish left from right, so no motion along this axis is expected,
as indicated by the double arrow.

This is the very concept applying to the cow thing. It does not look the same in
all directions. Specifically, with respect to its long axis, one end is different from its
opposite. Presumably, this therefore indicates the direction of motion of the object.
A sentient mobile being needs to see what lies ahead but not what lies behind, so
that the two ends will look different. In contrast, the long sides of the cow thing look
about the same. There is no preferred direction here, and so, these sides will not be
related to the direction of the movement.

Hence, from the rotational symmetry of the tree and its absence in the case
of the cow, the alien life form concludes that not only the latter is consciously
mobile but also the former is rooted to the ground. The aliens can also suspect that
the cow represents the more intelligent form of life as it controls its direction of
motion. That is a lot of knowledge about two systems whose meaning and inner
structure are completely unknown to its observer, and all of it is derived from
symmetry. Furthermore, it is the absence rather than the presence of the symmetry
that tells something about the structure and function of the associated object, here
exemplified by the directional structure of the cow that gives away its conscious
mobility by breaking the rotational symmetry exhibited by the immobile tree.

In the context of this book, we deal with materials whose atomic structure and
electronic interactions we often do not know in detail. Therefore, symmetry is our
most powerful tool in extracting the structure and function of these materials, very
much in the same way as we have done with Figure 1.1. We consequently employ
experimental methods that are strongly rooted in symmetry for our investigations.
Two of the symmetry operations we consider have already been mentioned, namely
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rotations and mirror operations. Both describe the reorientation of an object in
the three-dimensional space we are living in, but they do not change the shape of
the object, for example by stretching it. Accordingly, we only consider symmetry
operations that preserve the length of an object in each direction. These are transla-
tions from one point in space to another, rotations around a certain axis, and mirror
operations on a designated point or plane. Reversing the direction of the passage
of time also does not change the length of an object and is therefore considered.
This might seem odd since the direction of time cannot be changed. Time reversal
makes sense, however, when we discuss an electric current flowing from location
A to location B. Reversing the direction of time converts it into a current flowing
from B to A, and considering if a material remains unchanged or not under such an
electric-current reversal is not unphysical. In fact, it will turn out that time-reversal
symmetry is crucial for describing magnetically ordered systems because magnetic
fields are classically generated by electric currents.

1.2 Ferroic Materials

Almost everyone can also relate to magnetism. It is exhibited by certain objects called
magnets that attract iron, which is useful because it makes postcards stick to the
fridge. For the attentive observer, magnetism can be found in almost all areas of
daily life. Electric motors, current generators, sensors, computer hard disks, and
compasses are among the objects usually associated with it. In fact, in a typical
household, hundreds of magnets can be found, with more than 100 built into a car
alone. The fact that magnetism has been with humankind for at least 2500 years
makes us forget that it is one of the most mysterious phenomena of nature. It acts
without carrier medium across space, a concept captured, yet not explained, by the
introduction of a magnetic field. Magnetic fields are generated by electric currents,
but no such current is found in a rod magnet. Instead, we had to introduce the
notion of a quantum-mechanical spin as its source, but again, this mostly represents
a description rather than a true explanation. Few people realise that with a magnet
for less than a euro, they have quantum mechanics in its purest form in their hands.

Readers may remember from school that matter is made up of atoms that are
themselves small magnets as depicted in Figure 1.2a. If all these point in the same
direction, the very small fields of a very large number of atomic magnets, called
magnetic moments, add up to yield the characteristic magnetic field surrounding
a magnet, as sketched in Figure 1.2b,d. This picture already leads to one of the
most important properties of a magnet. It represents a form of order in a material
that is not enforced by some external influence but arises spontaneously below a
certain temperature. There is field that can act on a magnet and orient it in a certain
direction, such as Earth’s magnetic field in the case of a compass needle.

Eventually, it turned out that magnetism is only one of several forms of order that
are associated with a surrounding field and arise spontaneously in a material below
a certain temperature. The generic term ferroic was introduced to tag these. It refers
to the magnetic order of iron, but as a prefix it indicates ordered states as described
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(a)

(d) (e)

(b) (c)

S

N

Mag. field El. field

N S N S N S

N S N S N S

N S N S N S

Figure 1.2 Magnetic and electric order of materials. (a) Atoms in a crystal representing
minuscule magnets. In most materials these so-called magnetic moments point in random
directions so that the total magnetic fields cancel out. (b) Spontaneous order may occur,
where all the atomic magnets point in the same direction. The magnetic moments of such a
ferromagnet add up to reveal its characteristic magnetic field. (c) Spontaneous alternating
arrangement of the magnetic moments still represents an ordered state, yet without a
magnetic field because of the cancellation for the oppositely oriented magnetic moments.
A material of this type is denominated as antiferromagnet. (d) Magnetic field surrounding
the ordered magnetic moments of a ferromagnet. (e) Electric field surrounding the ordered
electric dipoles of a ferroelectric. The lines in (d) and (e) indicate the direction of the field.
Despite the very similar field distribution, the origins of the ferromagnetic and ferroelectric
orders are quite different.

above in any type of material, even if iron is not involved. Along with the intro-
duction of this prefix, the somewhat unspecific term ‘magnetic’ was replaced by
ferromagnetic in order to distinguish it from other forms of magnetic order. Note
that in line with what we have just said, nickel also counts as ferromagnet rather
than being denominated as ‘niccolomagnet’. Chemical elements that are ferromag-
netic at room temperature are iron, cobalt, and nickel, and certain rare metals are
coming close.

Almost exactly a century ago, it was recognised that matter can spontaneously
order itself electrically. A crude analogy to the atomic magnets mentioned above
would be that of minuscule batteries, formed, for example by a pair of atoms of
which one is positively and one is negatively charged. If all these pairs, called elec-
tric dipoles, spontaneously point in the same direction, we have a material that is
electrically ordered and surrounded by an electric field as shown in Figure 1.2e that
can attract charged particles. A material of this type would be called ferroelectric.
Although few people are aware of this property, ferroelectrics play a not inconsid-
erable role in our daily lives. Sonar and certain loudspeakers, buzzers, or sensors
are based on ferroelectrics, and even computer components based on ferroelectric
rather than ferromagnetic memory are in operation.

Finally, about half a century ago it was found that certain materials can deform
spontaneously, which can be associated with a mechanical strain field. This property
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is denominated as ferroelastic, and it concludes the set of currently fully established
forms of ferroic order that nature can display.

In addition to the three types of ferroics we have just mentioned, there are a
number of variants, which also play important roles in science and technology.
Foremost, there are materials where the atomic magnetic moments are ordered in
an alternating fashion. If for a specific atomic magnet the north pole is pointing
up, it is the south pole for the next atom, then again the north pole, and so forth,
see Figure 1.2c. This is a form of spontaneous order as stringent as in the case of
ferromagnetism, but because half of the magnetic moments point in one and the
other half in the opposite direction, there is no resulting magnetic field that would
surround such an object. A material exhibiting this kind of order is denominated
as antiferromagnetic. Metallic chromium and manganese are well-known materials
that are antiferromagnets at room temperature. In terms of technological applica-
tions, a fieldless magnet appears to be quite useless because it is not much different
from materials that are not ordered in the first place. This is not true, however.
A ferromagnet brought into contact with an antiferromagnet may sense the order of
the latter, and this influence can be used to improve the technological performance
of the ferromagnet. This principle is used in the read-write heads of computer hard
disks. Furthermore, antiferromagnetism is closely related to superconductivity,
the lossless, and thus energy-saving and waste-heat-avoiding flow of an electric
current.

Because of the absence of a magnetic field, there is no general agreement on which
forms of magnetic order should be counted as antiferromagnetism and which ones
should not. This ambiguity is quite astonishing considering how intensively and
how long the magnetic properties of matter have been studied. When it comes to
the antiferroic equivalents for electric and elastic order, the situation is even worse.
A spontaneous alternating arrangement of electric dipoles might be called antifer-
roelectric, but whereas the ferro- and antiferromagnetism are often associated with
opposite signs of the same quantum-mechanical interaction, such a connection can-
not be drawn in the case of antiferroelectricity. For this reason, the definition of an
antiferroelectric is not only even more ambiguous than that of an antiferromagnet,
but some scientists even doubt whether introducing the concept of antiferroelec-
tricity makes sense at all. The situation is not better in relation to antiferroelastic
materials.

We thus find ourselves in a rather unexpected situation. Ferromagnetism has been
known to humankind for millennia, is known to almost everyone, is of enormous
technical importance, and is well researched. The concept of ferroic order at large,
however, is not very well defined in certain important aspects. In fact, the first propo-
sition of an overarching concept for characterising it was only made in 1970 [1]. That
approach was largely based on the symmetry change that occurs when the ferroic
state is formed. A more comprehensive concept that included not only symmetry
but also a number of phenomenological properties from physics and materials sci-
ence was only introduced in the year 2000 [2]. What unites these two approaches is
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that they are based on the involvement of a very large number of atoms. Interactions
on the level of the individual atoms that drive the spontaneous order are not part of
the definition of a ferroic state. In the case of ferromagnetism, this is often forgot-
ten. It is usually associated with a specific quantum-mechanical correlation between
atoms, but there are manifestations of ferromagnetic order that are driven by other
interactions.

As we have seen, the research field of ferroic materials is still in the midst of
development, with a number of construction sites at key points. Questions of major
interest are:

● Are there forms of ferroic order other than ferromagnetism, ferroelectricity, and
ferroelasticity, the three established manifestations?

● What happens if more than one type of ferroic order is present in the same mate-
rial, a constellation we denominate as multiferroic?

● How can we remove the existing ambiguities surrounding the concept of ferroic
order?

In this book, we address these issues and propose new concepts, methods, and
materials that we hope will advance the field of ferroics in some of its central aspects.

1.3 Laser Optics

Finally, almost everyone knows lasers and can associate the term optics with some-
thing involving light. In the combination of the two terms, people would generally
imagine a source of intense light, where the latter is sent through transparent media
such as microscopes and camera lenses, possibly in order to obtain a particularly
bright image of an object illuminated with the laser radiation. In fact, this is exactly
what we are planning to do here. Humans are ocular animals; the majority of infor-
mation is received through the eye. Using a laser instead of a light bulb or the sun also
permits us to see hitherto inaccessible aspects of an object because lasers represent
not only a very bright but also a very clean source of light.

As in the case of (ferro-)magnets, there are some very surprising aspects about
lasers that are not known to the majority of people. Similar to magnets, lasers are
very quantum-mechanical objects. Coercing a material into emitting an intense,
directed light beam can only be understood by resorting to the odd world of atoms
where objects can appear as both a particle and a wave. A simple laser pointer can
be bought and used by everyone and costs less than 10 euros, which makes us forget
that it took until about 1960 to bring physics and technology together and demon-
strate laser emission for the first time with a device as sketched in Figure 1.3a [3].
Furthermore, even though lasers are considered as an extremely intense source of
light, capable of damaging the eye, they are in fact not very powerful. Some of the
most intense laboratory lasers emit light of no more than about 10 W. The weakest
vintage light bulbs used in households emit at least 25 W, and even LED light bulbs
of 10 W are not particularly bright.
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Figure 1.3 Nonlinear optical processes with lasers. (a) Design of the ruby laser used for
the first demonstration of laser emission in 1960 [3]. A ruby crystal is optically excited with
light from a flash lamp and driven to emit directed visible and very ‘clean’ deep red light
with the help of two parallel mirrors. (b) First demonstration of a nonlinear optical process
in the visible range. A quartz crystal is irradiated with the deep red light from a ruby laser
(wavelength λ of 694 nm) to produce ultraviolet light at half the wavelength. The numbers
indicate λ∕10. The light was detected with a chemical film that is blackened by the incident
laser light (big blotch) and the much weaker emission at half the wavelength (arrow). It is a
curiosity of this landmark publication that the actual data point (arrow) is not visible. It was
erased by the journal staff as an alleged dust particle when the figure was processed for
publication. Source: (a) Reproduced with permission from Yadav [4]. (b) Reproduced with
permission from Franken et al. [5]/with permission of American Physical Society.

The exceptional intensity associated with laser light comes about in two ways.
First, the laser light is highly directed, whereas a light bulb emits its radiation in all
directions. At the same emitted power, a laser beam of 4 mm diameter at a distance of
1 m from the laser is a million times as intense with respect to the area it illuminates
than a light bulb. Second, lasers often emit light pulses rather than continuous radi-
ation. Hence, the emission is ‘compressed’ into a very short time bracket, whereas
the laser is ‘off’ during the rest of the time. While the emission is taking place, it is
therefore much stronger than if the emission was occurring in a continuous way. If
the two types of pulsed lasers we consider in the context of this book were operated
all the year round without interruption, they would only emit light for an integrated
time of 10 s and 10 ms, respectively.
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Apart from its unsurpassed intensity, laser light is also very clean in the sense that
it has a very well-defined colour and thus wavelength, unlike light bulbs or the sun,
which emit a broad distribution of wavelengths interpreted by the eye as white. In
addition, the laser light wave forms a very even wave pattern, such as in the case of
a rock thrown into a calm lake as opposed to wind rippling its surface.

With the laser, we thus have an extremely intense and uniform light source that
helps us to detect optical processes that are normally too weak to be observed. These
are foremost processes, where the colour of the light changes when it interacts with
a material. Typically, an object that is illuminated with light at a specific colour
(as opposed to the white light emitted by the sun or a light bulb) scatters back light
at exactly this wavelength. We can picture this scattering process in the way that
the atoms of the material absorb an optical quantum, called photon, from the light
field and emit it again after a while. The photon and its energy do not change in the
process so that the colour of the light remains the same.

If the radiation is very intense, as when using a laser, it is possible that an atom
absorbs two photons at once because they are so densely distributed. In the sub-
sequent re-emission, however, only a single photon is typically generated, which
then carries the energy of both of the two ingoing photons. The higher energy cor-
responds to a shorter wavelength and, hence, to a change in colour. Thus, an object
illuminated with deep red laser light emits a little bit of deep blue light as well. The
part of optics dealing with wavelength-shifting processes of this type is denominated
as nonlinear optics.

It is quite striking how closely the foundation of the field of nonlinear optics is
tied to the invention of the laser as the intense light source permitting us to detect
nonlinear optical processes. The laser was introduced in 1960 [3], and the first report
of a nonlinear optical process was published in 1961 [5], see Figure 1.3b. This rapid
succession was possible because the theory for the simultaneous absorption of two
photons had already been existing for 30 years, and only the appropriate tool for
visualising it was missing [6]. By now, nonlinear optical processes have become very
important in studying the structure and properties of materials. Since more photons
and more wavelengths than in a conventional optical process are involved, nonlin-
ear optics opens up access to a larger reservoir of information about a material. In
addition, it allows researchers to literally ‘see’ this information, for example when
taking photos of a sample using the light generated in a nonlinear optical process.

1.4 Creating the Trinity

In Sections 1.1–1.3, we have introduced three seemingly unrelated subjects. Symme-
try has a proximity to mathematics, ferroic order refers to materials, and nonlinear
laser optics deals with electromagnetic radiation fields. In the following discussion,
we will see that these three so very different subjects are in fact perfectly made for one
another. As we have explained, symmetry is a tool that enables us to make rather spe-
cific statements about systems whose inner structure and functioning are unknown
to us. This makes it perfect for characterising and analysing ferroic systems because
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ferroic order is defined at the macroscopic level, that is disregarding the inner struc-
ture. In particular, for some of the lesser studied manifestations of ferroic order, we
do not know the microscopic, atomic origin of the transition to spontaneous order.

All types of ferroic order break symmetries by definition, which may help us to
develop a concept for ferroic order at large [1] and search for materials exhibiting
novel types of ferroic order. Symmetry, or rather its loss, is also particularly well
suited to describe materials exhibiting more than one type of ferroic order in the
same phase.

In summary, symmetry can help us to find novel types of ferroic order, to explore
systems with multiple manifestations of ferroic order, and to find overarching cri-
teria helping us to overcome the existing ambiguities surrounding the concept of
ferroic order.

While symmetry is our conceptual approach to exploring ferroic states of matter,
nonlinear laser optics is the practical way to probe it. Just like matter, light as an
electromagnetic radiation field has its characteristic symmetries. For example, an
oscillating electric field as simple representation of a light wave would not look
different if it is mirrored on the plane in which the oscillation occurs. This mirror
operation thus is a symmetry operation with respect to the light field. In contrast,
time reversal is not a symmetry operation because it would reverse the direction
in which the light is propagating. One can therefore assume that light can address
and thus probe a specific type of ferroic order if the symmetry of the light field is
compatible with the symmetry of the ferroic state. The symmetry of the light field
is controlled by setting its polarisation and direction of propagation. This makes
polarisation-dependent optical spectroscopy the perfect tool for investigating ferroic
materials because for both the experimental tool and the system to which it is
applied, symmetry is the common ground.

The particular advantage of optical experiments is that we can expand from linear
optics involving a single light field towards nonlinear optics, where multiple light
fields are brought in connection, as described above. By combining the symmetries
of these light fields in the appropriate way, the very specific symmetry configurations
of a ferroic state can be addressed with high selectivity. This can even be used to the
extent that in systems featuring multiple types of ferroic order, the respective ferroic
states can be addressed selectively by different nonlinear optical experimental con-
figurations. Specifically, in a multiferroic exhibiting magnetic and electric order at
the same time, the coexistence and interaction of the two forms of order can thus be
investigated. No other experimental technique permits this to the extent nonlinear
optics does.

As we see, the combination of symmetry, ferroic order, and nonlinear optics with
lasers can give us unprecedented access to one of the most fascinating classes of
materials. The nonlinear optical properties of ferroics have been investigated since
the invention of the laser. From then on, the field has been developing with remark-
able success. Despite several decades of research, however, there is only a relatively
small number of review articles on this subject, and these articles are mostly focused
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on selected aspects. In particular, there appears to be no monograph presenting a
comprehensive view on nonlinear optics applied to ferroic materials. It is the pur-
pose of the work at hand to change this.

1.5 Structure of this Book

The Part I of this book is devoted to the basics and presents self-contained introduc-
tions on symmetry, ferroic order, and nonlinear optics. Rather than summarising
earlier literature on these well-covered fields, we focus on those aspects that are little
considered in the existing literature or that are relevant in bringing the three subjects
together. This part concludes with an intuitive example uniting the introductions
on symmetry, ferroic order, and nonlinear optics in a single model compound. This
example provides a first glimpse at the extraordinary power of applying nonlinear
optics to the study of ferroic materials and reveals several properties in our model
compound that are inaccessible with other characterisation techniques.

The Part II of this book makes the transition from basics to materials.
It elaborates on the added value that results from combining the fields of symmetry,
ferroic order, and nonlinear optics. In terms of materials science, ‘ferroic’ was
mostly understood as ‘magnetic’ or rather ‘ferromagnetic’. The contemporary
search for novel multifunctional and so-called ‘smart’ materials has been shifting
the emphasis towards other forms of long-range, potentially ferroic types of order.
There are, however, very few techniques allowing us to study these. Here, nonlinear
optics is an outstanding tool with unique degrees of freedom, such as spectral
resolution (access to those electronic states and sublattices of a crystal involved in
the emergence of ferroic order), spatial resolution (visualisation and manipulation
of differently ordered regions), and time resolution (visualisation of dynamical
processes down to the femtosecond range).

In Part III of this book, classes of ferroic materials of central interest to con-
temporary condensed-matter physics are explored. This includes multiferroics
with magnetoelectric correlations as materials uniting magnetic and ferroelectric
order. Here, the scope is to achieve control of magnetic properties by electric
fields as a foundation in the design of novel and energy-efficient magnetic devices.
We also discuss oxide-electronic materials with a special focus on ferroelectrics.
With oxide electronics, we furthermore enter the realm of thin films, multilayers,
and nanostructuring. Finally, a variety of material classes with forms of ordering
other than ferroic are discussed. Their nonlinear optical characterisation is at its
infancy, and our brief review may help to stimulate further investigations. The book
concludes with an epilogue that leads to the inevitable realisation that our work
can only be a first step into largely uncharted territory. The best imaginable success
of this monograph would be to foster and guide the ongoing exploration of the field.
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Part I

The Ingredients and Their Combination
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2

Symmetry

CALDICOTT: Lucky some of you fellows understand English.

ENEMY OFFICER: Well, I was at Oxford.

CHARTERS: Oh, really – so was I. What year?

REDMAN: Hold on, this woman seems to be trying to say something. I don’t understand the language;
it may be important. Would you…?

(The enemy officer bows to listen. Redman hits him over the head with a chair.)

REDMAN: That’s fixed him.

CHARTERS: What the blazes did you do that for?

REDMAN: I was at Cambridge.

The Lady Vanishes, Alfred Hitchcock, England (1938)

2.1 Describing Interactions in Condensed-Matter
Systems

Let us assume that we apply an external perturbation to a chunk of material, and
the material responds in some form. Say, we take a crystal and place it in a static
electric field, and in return, the crystal deforms by getting a bit longer in one and a
bit shorter in the other directions. This property is called the (converse) piezoelectric
effect, and it is actually quite useful. For example, when we use the electric voltage
to set an acoustic membrane in motion, we get a buzzer or a loudspeaker.

We can describe this piezoelectric effect in two ways. The first approach would be
to do this phenomenologically, at the macroscopic level of our daily-life world. We
describe our experiment by putting the electric field on one side of the equation and
the resulting deformation on the other. In principle, each of the components of the
electric-field vector E has an influence on each of the components of the second-rank
strain tensor Ŝ parameterising the deformation. This leads to

Sij =
3∑

k=1
dpe

ijkEk, (2.1)

Nonlinear Optics on Ferroic Materials, First Edition. Manfred Fiebig.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH GmbH.
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where the third-rank tensor d̂
pe

mediates the piezoelectric coupling. Indices i, j, and
k refer to the unit vectors defining the underlying coordinate system. From now on,
it is implied that a sum as in Eq. (2.1) is executed over all doubly occurring indices
so that the sigma sign is omitted from the equations.

Alternatively, we can describe the piezoelectric coupling ab initio, at the micro-
scopic level of the electronic and ionic states and quantum-mechanical interactions
of the material. Our unperturbed system is then described by a Hamilton operator
with eigenfunctions that are populated according to a density matrix 𝜌̂0. At the time
t′ = 0, a perturbation, in our case the electric field, is applied. This changes the
Hamilton operator and the eigenfunctions of our system until after some time a new
equilibrium, in our case the strained state, is reached. If the perturbation is small,
this response can be described by linear response theory [7]. In our case, it leads to

dpe
ijk ∝ lim

t→∞∫
∞

0
tr
(
𝜌̂0

[
Ŝij(t),Êk(t′)

])
dt′. (2.2)

Both the electric field and the strain become operators. The trace in combination
with the density matrix for the unperturbed system associates these to measurable
values. The time t of the strain response must always be larger than the time t′ of
the strain-generating electric field in order to retain causality.

So far, we have described and parameterised the piezoelectric effect on different
levels, but we have not explained anything. Nevertheless, we have gained a lot.
We have realised that we can divide the treatment of the piezoelectric effect
into two entirely separate steps, represented by Eqs. (2.1) and (2.2), respectively.
Equation (2.1) permits us to quantify the piezoelectric effect and work with it. At
this point, we do not have to care about the physical origin of the effect because we
have disposed of this discussion by shifting it into Eq. (2.2). In many cases, we can
omit the discussion entirely because for building loudspeakers, an understanding
of the sources of the piezoelectric coupling is usually not required.

The real power of the separation of physical effects into the macroscopic and
the microscopic levels is that despite our complete ignorance about the physical
sources of an effect its treatment at the macroscopic level already allows us to reach
surprisingly detailed conclusions about these sources. The key to this is symmetry.
Its significance lies in the fact that the symmetry of a material in its ground state
must be reflected in the transformation behaviour of each of its measurable physical
properties. This fundamental relation, known as the Neumann principle [8, 9],
combines the structure of a material with its behaviour. Thus, when describing
a macroscopic physical property by a tensor as in Eq. (2.1), then according to the
Neumann principle, the application of any of the symmetry operations characteris-
ing a material must not change the components of this tensor. From this invariance
follows a set of linear transformations in the tensor components. The solution of
this set of equations provides statements about the structure of the tensor, especially
about the relation between or zeroness of certain tensor components.

With some care, the Neumann principle can be applied bidirectionally. If we
know the symmetry of a material, we can say if it permits the occurrence of the
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piezoelectric effect. In turn, if we find that a material displays a piezoelectric
effect, we can reach conclusions on the structure and symmetry of the system.
We use the latter route in particular throughout this book and therefore need to
develop a mathematical apparatus to work with symmetries. This leads us to group
theory.

2.2 Introduction to Practical Group Theory

There is plenty of literature providing comprehensive introductions to group theory
with a focus on the link between physical properties and mathematics [10], mag-
netic materials [11], semiconductors [12], molecules [13], or elementary particles
[14]. Here, we restrict ourselves to an introduction of group theory on an applied
level, as we require it for the description of crystalline ferroic materials and their
investigation by nonlinear-optical techniques.

The system with the highest symmetry is the vacuum. It is homogeneous and
isotropic in space and time. It is thus invariant under all space–time rotations SO(4)
and translations T4∞ as well as under the discrete operations of spatial inversion Î,
time reversal T̂, and charge reversal Ĉ. The combined set of operations forms the
Poincaré group G0, with

G0 = T4∞ ⊗ SO(4)⊗ Î ⊗ T̂ ⊗ Ĉ. (2.3)

Here, a group G is an algebraic structure consisting of a set of elements ai (with i as
numerator) and an operation ⊗ defining how to combine any two elements into a
third element. As a group, this structure satisfies the following conditions:

● Closure. The result of the combination of any two elements of a group is an
element of the group as well: ai ⊗ aj = ak with ai,j,k ∈ G.

● Associativity. Consecutive combinations of elements in G can be grouped at will:
ai ⊗ (aj ⊗ ak) = (ai ⊗ aj)⊗ ak.

● Identity element. There exists a unique element 𝟙 in G that, combined with any
group element, does not change this element: 𝟙⊗ ai = ai.

● Inverse element. For each element ai of G, there exists an inverse element a−1
i

such that their combination yields the identity element: ai ⊗ a−1
i = 𝟙.

● Commutativity. When two elements of G are combined, their sequence can be
rearranged: ai ⊗ aj = aj ⊗ ai. This condition is not mandatory. Groups satisfying
it are called Abelian groups.

In vacuum, translations and rotations are continuous symmetry operations,
whereas spatial inversion, time reversal, and charge reversal are discrete. We can
limit the space we are working in by splitting off charge reversal and temporal trans-
lations because they are not required when considering light–matter interaction in
ferroic materials. This gets us to G′

0 = T3∞ ⊗ SO(3)⊗ Î ⊗ T̂, which is a subgroup of
G0. Here, a group Gs is called a subgroup of G if both Gs and G are groups and follow
the relation Gs ⊆ G. In the following section, we will see that it is often possible to
restrict our working space even further and move on to the subgroups of G′

0.
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2.3 Crystals

A crystal is a solid material whose atoms, ions, or molecules are arranged in a
periodic fashion in the three spatial directions. Its defining element is the unit cell,
an imaginary box whose periodic repetition fills the entire space without gaps. For
their classification, crystals are conceptually divided into the lattice and a basis.
The lattice is a mathematical construct filling three-dimensional space with an
infinite periodic arrangement of points. Three linearly independent so-called lattice
vectors, say a, b, and c, span this lattice. Their linear combination according to
naa + nbb + ncc with na,b,c as integers defines the lattice points, so that the lattice
exhibits a trivial translation symmetry with respect to its lattice vectors. There
are only 14 different types of the so-called Bravais lattices, which differ from one
another in terms of their symmetry properties. The Bravais lattices are in turn
divided into seven crystal systems, namely triclinic, monoclinic, orthorhombic,
tetragonal, trigonal, hexagonal, and cubic [9].

The basis is a group of atoms, ions, or molecules assigned to each lattice point.
Since the assignment is the same for all points, the basis does not break the trivial
translation symmetry of the lattice. A special case occurs when the basis of a crystal
consists of a single atom. In this case, the positions of the lattice points and of the
crystal atoms coincide, and it is tempting to give up the distinction between the lat-
tice and the basis. This would not be correct, however, as the former remains to be
a mathematical construct, whereas it is the basis that fills the crystal with life. The
physical basis as defined here must not be confused with the crystallographic basis
as the set of lattice vectors defining the crystal [15].

Since the positions of the basis atoms are not determined by integer or even
rational multiples of the lattice vectors, the number of possible crystal structures
is, in principle, infinite. Indeed, more than a million crystal structures and several
thousand naturally occurring minerals forming crystals are known [16]. Neverthe-
less, all of these can be described by a well-defined, restricted set of crystallographic
symmetries [9]. These symmetries are distinguished with respect to the unitary, that
is length-conserving transformations in space and time, leaving them invariant. The
different types of symmetry operations of this kind are introduced in Section 2.3.1.
The classification of a crystal in terms of symmetry happens in two ways.

On the one hand, we distinguish between the sets of operations leaving the crystal
structure as a whole invariant. This leads to the different types of symmetry groups
introduced in Section 2.4.

On the other hand, the site symmetry of each basis atom at its specific position in
the unit cell is considered. For example, let us consider a cubic unit cell as depicted
in Figure 2.1. For an atom occupying the corner of a cubic unit cell defined by the
cube edges as lattice vectors a, b, and c (Figure 2.1a), rotations around the cube’s
body diagonals by multiples of 120∘ are symmetry operations with respect to the
position of the atom. There is one such position in each unit cell, composed of eight
corner atoms, each of which protrudes 1∕8 into the cubic cell. If the atom sits on a
position halfway along the edge of the cubic unit cell (Figure 2.1b), the aforemen-
tioned rotations around the cube’s body diagonals are no longer symmetry opera-
tions with respect to the position of the atom. Here, the site symmetry differs from
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Figure 2.1 Site symmetry and the Wyckoff notation. For the same crystallographic
symmetry, an atom placed at the corner of a cubic unit cell and an atom placed halfway
along one of its edges experience different site symmetries. These are distinguished by the
Wyckoff notation. (a) For an atom at the corner, a rotation by ±120∘ around the cubic body
diagonal is a symmetry operation (label ‘3’). The corner position has the highest site
symmetry (Wyckoff label ‘a’) and is associated with one atom per unit cell of this type
(Wyckoff label ‘1’). The resulting Wyckoff position is 1a. (b) For an atom halfway along one
of the cube edges, the rotation by ±120∘ around the cubic body diagonal is no longer a
symmetry operation even though it remains a symmetry operation of the crystal as a whole.
There are three independent displacements along lattice vectors (thick lines) a, b, or c,
associated with three atoms per unit cell. This and the lower site symmetry lead to the
designation as Wyckoff position 3d.

the symmetry of the crystallographic lattice as a whole. Since we can displace the
atom along a, b, or c, we have three equivalent positions of this type per unit cell. The
choice of three corresponds to the 12 edges of the cube, where each of the associated
atoms protrudes 1∕4 into the unit cell.

In the Wyckoff notation [15], a number and a letter are assigned to the position of
each atom of the basis. Equal letters indicate all the positions in the unit cell having
the same site symmetry. Enumeration according to a, b, c,… occurs in the order of
decreasing site symmetry of the atomic position. The preceding number indicates the
number of symmetry-equivalent positions in the unit cell. In the previous example
of a cubic crystal with atoms at the corners and halfway along the edges, the two
locations correspond to the Wyckoff positions 1a and 3d, respectively. This also holds
if both positions are occupied by the same type of atom. (Note that the b and c sites
correspond to other displacements we have not discussed.)

2.3.1 Types of Symmetry Operations

2.3.1.1 Translations
A translation is a geometric transformation 𝜏 that moves every point r of a space
by the same distance in a given direction. In crystals, we have to distinguish
between translations by linear combinations of the lattice vectors and other
three-dimensional translations. The lattice vectors define the space we are working
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in (the ‘crystallographic vacuum’), and as such, translations between the lattice
points are always symmetry operations. We therefore disregard this set of trivial
symmetry operations henceforth.

In contrast, we have translations by fractions of the lattice vectors that, often
in combinations with other transformations, are symmetry operations. These
non-trivial translations depend on the exact positions of the basis atoms. For optical
processes involving visible light, it is often a good approximation to disregard
these non-trivial translations nonetheless. The displacements defining them do not
exceed the expansion of the unit cell, and probing them at a wavelength of about
1000 unit cells leads to optical effects that are often negligible.

2.3.1.2 Rotations
A rotation is a displacement of every point r of a space by the same angle around
a central axis. In a three-dimensional vector space defined by a Cartesian system in
the coordinates x, y, and z, a rotation by an angle 𝜑 around the z-axis is described by
the matrix

R̂z(𝜑) =
⎛⎜⎜⎝

cos𝜑 sin𝜑 0
− sin𝜑 cos𝜑 0

0 0 1

⎞⎟⎟⎠ , (2.4)

from which the form of the unitary matrix R̂ for a rotation around an arbitrary axis
follows from coordinate transformation. Out of the infinite set of continuous symme-
try operations in SO(3), which describes the rotational symmetry of the vacuum, only
rotations by integer multiples of 360∘, 180∘, 120∘, 90∘, and 60∘, associated with the
order numbers 1, 2, 3, 4, and 6, respectively, remain as possible symmetry operations
of the infinitely extended crystal lattice. The transformation of a physical property
𝜒̂ = (𝜒ijk…) like the piezoelectric effect d̂ = (dijk) discussed in Section 2.1 under an
arbitrary three-dimensional rotations R̂ = (Rll′ ) is given by

𝜒
′
ijk…n = Rii′Rjj′Rkk′ …Rnn′𝜒i′j′k′…n′ . (2.5)

Note that we have 𝜒̂ ′ = 𝜒̂ if R̂ is a symmetry operation.

2.3.1.3 Spatial Inversion
Translations and rotations as continuous geometric transformations are comple-
mented by discrete operations, such as spatial inversion, time reversal, and the
already omitted charge reversal. Since these have only two possible eigenvalues, +1
and−1, they are also called parity operations. If we ignore the magnetic structure, we
consider only spatial inversion, which mirrors every point r of a space at the origin.
In three-dimensional vector space, this is described by the anti-unitary matrix Î with

Î =
⎛⎜⎜⎝
−1 0 0
0 −1 0
0 0 −1

⎞⎟⎟⎠ . (2.6)

We can combine pure rotations as in Eq. (2.5) with the spatial inversion opera-
tion. For this purpose, the property tensor is expanded into the two eigenstates of
the inversion operator associated with the eigenvalues +1 and −1. This leads to an
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axial and a polar component with symmetric and antisymmetric transformations,
respectively, under the inversion operation. The transformation of the axial and the
polar components of the property tensor 𝜒̂ of rank N is then given by

𝜒
′
ijk…n = +Iii′ Ijj′ Ikk′ … Inn′𝜒i′j′k′…n′ = +(−1)N

𝜒i′j′k′…n′ (polar),

𝜒
′
ijk…n = −Iii′ Ijj′ Ikk′ … Inn′𝜒i′j′k′…n′ = −(−1)N

𝜒i′j′k′…n′ (axial). (2.7)

Therefore, polar tensors of odd rank and axial tensors of even rank change their sign
under the inversion operation, whereas axial tensors of odd rank and polar tensors
of even rank do not. Because of the dependence of the sign change on the rank of
the property tensor, it is useful to introduce even and odd as additional quasi-parity
characterising the rank of the tensor.

2.3.1.4 Time Reversal
For describing the symmetry of magnetically ordered crystals, spatial transforma-
tions are no longer sufficient. An intuitive reason for the involvement of the time-
reversal operation is the classical association of the magnetic moment or spin with
a circular electric current, as sketched in Figure 2.2. Inverting the flow of time
reverses the direction of this current and therefore breaks the time-reversal sym-
metry. The association of time reversal to magnetisation reversal is formalised in
the field of quantum mechanics, where we introduce the time-reversal operator T̂.
In the non-relativistic limit for a spin- 1

2
particle, it has the form

T̂ =
(

0 +1
−1 0

)
ĉ.c. (2.8)

The matrix acts on the spinor of the particle, and the operator ĉ.c. complex-
conjugates the spatial part of the wave function. Here, T̂ is an antilinear, antiunitary
operator. The exchange of the spinor components under T̂ represents the reversal
of the spin direction and thus relates time reversal to spin reversal or magnetisation
reversal in condensed-matter systems. In analogy to spatial inversion, time reversal
is a discrete operation with two eigenstates and the two eigenvalues +1 and −1.

Expanding the property tensor into these two eigenstates yields an i-type and a
c-type component with symmetric and antisymmetric transformations, respectively,
under time reversal. In three-dimensional space, the transformation properties of
the i-type and c-type components of the property tensor under the time-reversal
operation are given by

𝜒
′
ijk…n = +𝜒i′j′k′…n′ (i-type),

𝜒
′
ijk…n = −𝜒i′j′k′…n′ (c-type). (2.9)

Figure 2.2 Association of
time reversal with
magnetisation reversal.
Sketched for the classical
interpretation of (a) the
spin and (b) the orbital
magnetic moment. Time

reversal
Time

reversal

e– e–

–s –m+s +m

(a) (b)
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Thus, i-tensors of any rank change their sign under the time-reversal operation, and
c-tensors do not. Note that despite their magnetic origin, a process coupling to an
even power of the magnetisation is parameterised by an i-tensor because of the even
number of factors −1 that time reversal enters into the property tensor.

2.3.2 Combinations of Operations

The transformations introduced in Sections 2.3.1.1–2.3.1.4 can be combined into
new types of operations. A rotation combined with a translation is denominated as
improper rotation, and the defining axis is a screw axis. A rotation by 180∘ combined
with the inversion operation yields a mirror operation defined by a mirror plane per-
pendicular to the rotation axis. A mirror operation combined with a translation leads
to a glide defined by a glide plane. Combinations of spatial symmetry operations with
time reversal are usually indicated by the prefix ‘time-odd’ or ‘c-type’, in distinction
to ‘time-even’ or ‘i-type’ if time reversal is not involved.

2.3.3 Nomenclature

After introducing the different types of symmetry operations that have to be
considered in crystals, we now require a nomenclature denoting the operations and
their orientation in three-dimensional space. Here, we mostly follow the intuitive
nomenclature of Ref. [17], which is summarised in Table 2.1. Only designations nec-
essary for the unambiguous definition of a symmetry operation are usually given.

Table 2.1 Denomination of point-group symmetry operations.

Basic structure of symmetry operation: N(±n
′
i )[𝝉x , 𝝉y , 𝝉z]

n Rotation of order n with n ∈ {1, 2, 3, 4, 6}
i Direction of rotation axis with i ∈ {x, y, z, xy,−xy,⟂}
± Mathematical sense of rotation
n Combination of n with spatial inversion operation
m Mirror operation as alternative to 2
n′ Combination of n with time-reversal operation
N(…) Number N of equivalent symmetry operations of this type
[𝜏x , 𝜏y, 𝜏z] Translation by vector 𝜏 = (𝜏x , 𝜏y, 𝜏z)

Only designations necessary for the unambiguous definition of a symmetry operation
are usually given. The z-axis is chosen as the axis of the highest rotational symmetry.
Indices xy and −xy denote the diagonal directions between the x and y axes. The symbol
⟂ denotes the axes perpendicular to the axis of the highest symmetry. Note that the
mirror operation m is introduced as an alternative to 2. Furthermore, 1′ instead of 1
denotes time reversal in contrast to Ref. [17] in order to adhere to the nomenclature
used in the International Tables for Crystallography [15].
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For example, a rotation by 180∘ around the z-axis is represented by 2z instead of
1(+2z)[0, 0, 0]. For some symmetries it may be necessary to state the exact orientation
perpendicular to the axis of the highest symmetry, z. This is expressed by the indices
x, y, xy, and−xy, where the latter two refer to the diagonal directions between x and y.
For other symmetries, a general reference to the perpendicular orientation (⟂) may
suffice. Furthermore, the rotational symmetry of the z-axis defines the number N
of equivalent symmetry operations perpendicular to it, which is written as N(…).

2.4 Point Groups and Space Groups

In Section 2.3.2, we pointed out that combinations of spatial transformations can
reveal new types of operations. Note that if the combination of two transforma-
tions is a crystallographic symmetry operation, this does not have to be the case
for the constituting operations. The reverse, however, is always true. If two trans-
formations are symmetry operations, their combination is a symmetry operation
as well. This has the consequence that the complete set of symmetry operations
describing a crystal forms a mathematical group as introduced in Section 2.2, the
so-called symmetry group of the crystal. The number of symmetry groups describ-
ing all the crystallographic structures that may occur in nature is finite and depends
on the type of symmetry operations we include in our consideration. We distinguish
between point groups, which involve only operations leaving at least one point in
space unchanged, and space groups otherwise. Simply put, point groups can include
any type of operation except translations, and space groups include translations as
well. The former may be convenient to derive certain physical properties, but only
the latter fully describe the structure of a crystal. In Section 2.3.1.1, we argued that for
the description of optical processes in the visible range it is often sufficient to work
with point-group symmetries. The concepts of point- and space-group symmetries
are compared in Figure 2.3.

2.4.1 Point Groups

2.4.1.1 Enantiomorphic Groups
When absorption is negligible, and the Friedel law stating that X-ray diffraction
intensity patterns are symmetric with respect to the application of the inversion
operation [18] applies, it is impossible to distinguish by diffraction between a
centrosymmetric point group and its highest-symmetry non-centrosymmetric
subgroups. In that case, the inversion operation can be disregarded in a symmetry
analysis. The one-, two-, three-, four-, and sixfold rotations can be combined into
11 so-called enantiomorphic groups which are associated with point groups E
containing rotations as the only type of symmetry operation. There are more than
five of these because multiple rotations around different axes in three-dimensional
space contribute to their formation.
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Figure 2.3 Point-group symmetry and space-group symmetry. Exemplified on the unit cell
of a tetragonal crystal with atoms as black spheres and z-axis values given in units of the
lattice constant c. (a) Crystal where a rotation by 90∘ around the z-axis is a symmetry
operation. The rotation leaves all the points on the central axis unchanged, and the crystal
can be described in the frame of point-group symmetries. (b) Crystal where a rotation by
90∘ around the z-axis in combination with a shift by c∕4 along this axis is a symmetry
operation. Because of this displacement, no points are left invariant by this screw
operation. The crystal is associated with one of the space-group symmetries. (c) A specific
situation may permit the description of a crystal in terms of point-group symmetries
irrespective of its actual structure. For example, if only the top view of the structures in
(a) and (b) is addressed by an experiment, the [0, 0, 1∕4] displacement associated with the
structure in (b) becomes invisible, and the structures in (a) and (b) are both fully captured by
the point-group symmetry. Likewise, in optical experiments, displacements are almost
imperceptible to visible light with its wavelength of 103 unit cells so that a description in
terms of point-group symmetries suffices.

2.4.1.2 Crystallographic Point Groups
Expanding E by the inversion operation yields the 32 crystallographic point groups
G [12, 17]. These include pure rotations (proper) and rotations combined with the
inversion operation (improper). This leads to three types of point groups.

● 11 groups of the type𝓖 = 𝓔 + Î𝓔. In centrosymmetric crystals, every element in
E can be combined with Î to yield another symmetry operation. The resulting point
group thus contains twice as many elements as the corresponding enantiomorphic
group.

● 11 groups of the type𝓖 = 𝓔. In these point groups, Î is not a symmetry operation
in combination with any of the elements in E. Inversion symmetry is broken in
every respect, so that G contains the same elements as E.
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● 10 groups of the type 𝓖 = 𝓔𝟏∕𝟐 + Î(𝓔\𝓔𝟏∕𝟐). In these point groups, half of the
elements of E remain symmetry operations, while for the other half the elements
are symmetry operations only in combination with Î.

Note that although the enantiomorphic point group E and the crystallographic
point group G = E contain the same set of symmetry operations, they represent
different symmetries and point groups. For E, the inversion operation is absent
because it is not considered in the first place (even though it may be a symmetry
operation), whereas in G, the inversion operation is considered and explicitly broken
in combination with every element of E. Thus, E and G = E contain the same set
of operations but in different mathematical spaces that, respectively, exclude or
include inversion as one of its dimensions.

2.4.1.3 Magnetic Point Groups
Expanding G by the time-reversal operation yields the 122 magnetic point groups M,
also called colour groups or Shubnikov groups [11, 17, 19]. As in the case of including
the inversion operation, transformations may be symmetry operations as such or in
combination with time reversal, or both. This leads to three types of magnetic point
groups.

● 32 grey groups with 𝓜 = 𝓖 + T̂𝓖. In time-reversal-symmetric crystals, every
element in G can be combined with T̂ to yield another symmetry operation. The
resulting point group contains twice as many elements as the corresponding crys-
tallographic point group. The grey groups describe dia- and paramagnetic crystals
and antiferromagnetically ordered crystals in which time-reversal symmetry is
broken only in combination with a translation.

● 32 colourless groups with 𝓜 = 𝓖. In these point groups, T̂ is not a symmetry
operation in combination with any of the elements in G, and M contains the same
elements as G. Colourless groups describe crystals with certain types of long-range
magnetic order.

● 58 black-and-white groups with 𝓜 = 𝓖𝟏∕𝟐 + T̂(𝓖∖𝓖𝟏∕𝟐). In these point
groups, half of the elements of G remain symmetry operations, while for the
other half, the elements are symmetry operations only in combination with T̂.
Black-and-white groups also describe crystals with certain types of long-range
magnetic order.

In analogy to the discussion on Î, we have to distinguish the colourless magnetic
point groups from the crystallographic point groups with the same set of symmetry
operations. Both groups represent different symmetries and point groups because
they are defined in different mathematical spaces. Usually they are both represented
by the same symbol so that it needs to be clarified whether a discussion refers to
crystallographic or magnetic symmetries. When addressing magnetic symmetries,
the grey groups are distinguished from the colourless groups by adding 1′ to the
symbol of the former. The addition indicates that time reversal is a symmetry oper-
ation in combination with all elements of the associated crystallographic group.
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For example, the crystallographic point-group symmetry 2 = {1, 2z} is associated
with the grey magnetic point-group symmetry 21′ = {1, 2z, 1′, 2′z} and the colour-
less magnetic point-group symmetry 2 = {1, 2z}. We will always make clear through
context or explicit reference whether we refer to crystallographic or magnetic point
groups in a discussion.

2.4.1.4 Other Types of Point-Group Symmetries
The same procedure used for the implementation of spatial and temporal inversion
symmetries can be applied to include further types of parity operations. For example,
the sense of the rotation of a subset of atoms within a unit cell was proposed to define
a distortive parity operation denominated as ‘roto-inversion’, Ŝ [20]. With ‘counter-
clockwise’ (+1) and ‘clockwise’ (−1), we obtain its two eigenstates and eigenvalues.
In the specific example in Ref. [20], crystals without magnetic order were considered
so that in the description of roto-symmetries, Î and Ŝ replace Î and T̂. We thus obtain
the same colour groups as for magnetically ordered crystals, albeit with the substi-
tution of magnetic order by distortive order. It is still debated if three-dimensional
space permits such additional parity operations, or if these are only replica of the
existing symmetry operations in space and time.

Quasicrystals are structures that are ordered but not periodic in three-
dimensional space [21]. They exhibit symmetries under certain point-group
operations but no translational symmetries and in particular no unit cell. The point
operations include rotational axes of an order n not permitted in crystals, such as
n = 5, 10, or 12.

Furthermore, crystals may exhibit incommensurate forms of ordering, that is a
periodicity in the arrangement of atoms, electrons, or spins that cannot be written
as a rational multiple of the lattice constants [21]. As in the case of quasicrystals,
these structures exhibit symmetries under certain point-group operations but no
lattice-translational symmetries. They can, however, be described by referring to the
same crystallographic or magnetic point-group symmetries as in the case of con-
ventional (commensurate) crystals. Alternatively, incommensurate crystals as well
as quasicrystals may be described as regular lattice-periodic structures in spaces of
more than three dimensions. It is the projection onto three-dimensional, real space
that destroys their translational symmetries.

2.4.2 Space Groups

In certain cases, omission of translational symmetry operations in optics is no
longer a good approximation. This may be the case if spectral features in the optical
response that originate in the exact position of the atoms in the unit cell become
important, or if the translational symmetry operations introduce a distinction
between crystallographic directions that point operations would not provide. By
including translations as symmetry operations, we expand the number of crystallo-
graphic symmetry groups to 230 and the number of magnetic symmetry groups to
1651. For the definitions and characteristics of all these groups, the International
Tables for Crystallography [15], the Bilbao Crystallographic Server [22], and the
magnetic group tables by Litvin [23] are helpful sources.
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2.5 From Symmetries to Properties

2.5.1 Deriving the Components of the Property Tensors

Equation (2.5) describes how a tensor 𝜒̂ parameterising the macroscopic physical
properties of a material is transformed into the tensor 𝜒̂ ′ under the application
of a rotation or of spatial or temporal inversion. If such a transformation is a
symmetry operation, we have 𝜒̂ ′ = 𝜒̂ , and relations as in Eq. (2.5) become a system
of linear equations that allows to derive conclusions about the components of 𝜒̂
and, hence, on the manifestation of the physical effect represented by this tensor.
Typical conclusions are that a certain tensor component vanishes or stands in a
linear relation to other tensor components. Let us, as an example, consider the
dielectric tensor 𝜖 mediating the relation between an applied electric field E and
the resulting dielectric shift D in a material according to Di = 𝜖0𝜖ijEj with 𝜖0 as the
vacuum permittivity. In a material possessing a threefold symmetry axis along z,
we get

𝜖ij = Rz(120∘)ii′Rz(120∘)jj′𝜖i′j′ , (2.10)

with R̂z as in Eq. (2.4) for 𝜑 = 120∘. This leads to the two equations

𝜖31 = −1
2
𝜖31 +

√
3

2
𝜖32, (2.11)

𝜖32 = −
√

3
2
𝜖31 −

1
2
𝜖32, (2.12)

and thus to the solution

𝜖31 = 𝜖32 = 0. (2.13)

Proceeding in this fashion, one can determine the zeroness or interrelation of all
the components of 𝜖. The transformation behaviour under spatial inversion or time
reversal allows to specify the form of the property tensors 𝜒̂ further. Applying this
procedure to all the 122 point groups describing crystals with and without magnetic
order results in not more than 21 types of tensors at any rank considered. The vanish-
ing components and the interrelation of the non-zero components for the 21 types
of tensors are tabulated up to rank four [17], and for even higher ranks other sources
can be consulted [24].

2.5.2 Parity of the Property Tensors

The relations imposed by the parity operations are especially stringent. For
example, all axial i-tensors of even rank and all polar i-tensors of odd rank vanish
in centrosymmetric crystals because for these, Eq. (2.7) leads to 𝜒̂ = −𝜒̂ ≡ 0.
Table 2.2 lists further tensors vanishing if certain parity operations are symmetry
operations.

Furthermore, the parity of the property tensors can be concluded from the parity
of the measurable physical quantities (called observables) they connect. Let us, for



26 2 Symmetry

Table 2.2 Vanishing tensors in the 122 colour point groups.

i-tensors c-tensors

Even rank Odd rank Even rank Odd rank
Symmetry
element

Number
of

groups Polar Axial Polar Axial Polar Axial Polar Axial

Î T̂ T̂Î 11 ✓ 0 0 ✓ 0 0 0 0
— T̂ — 21 ✓ ✓ ✓ ✓ 0 0 0 0
Î — — 21 ✓ 0 0 ✓ ✓ 0 0 ✓

— — T̂Î 21 ✓ 0 0 ✓ 0 ✓ ✓ 0
— — — 48 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Zeroes and ticks denote vanishing and non-vanishing tensors, respectively. The upper two lines
refer to the grey groups describing systems with or without magnetic order. The lower three lines
refer to the 90 colourless and black-and-white groups exclusively describing magnetically ordered
materials.

example consider the (converse) piezoelectric effect of Eq. (2.1). Strain is represented
by a polar even-rank i-tensor, and for the electric field it is a polar odd-rank i-tensor.
Then, the property tensor for the piezoelectric effect has to be a polar odd-rank
i-tensor in order to establish the same set of parities on both sides of the equation.
For property tensors of any other parity, application of the associated parity opera-
tion would lead to d̂

pe
= −d̂

pe ≡ 0. Let us now look at the (converse) piezomagnetic
effect, where a magnetic field H rather than an electric field E induces strain:

Si,j = dpm
ijk Hk| | |

p, e, i a, o, c a, o, c
. (2.14)

The letters representing the parities immediately reveal that the piezomagnetic
effect, represented by d̂

pm
, is parameterised by an axial odd-rank c-tensor. Therefore,

it can occur in magnetically ordered materials only.

2.5.3 Introducing Inhomogeneity

So far, we only considered static physical effects that are homogeneously present in
infinitely extended crystals. Once we introduce spatial dependence, we have to take
into account that the transformations introduced in Section 2.3.1 do not only act on
the physical property considered but also on the point in space and time to which
this property is assigned. With A as property, Ô as transformation, and r and t as
spatial and temporal coordinates, we get

Ô[A(r, t)] = [ÔA]([Ôr], [Ôt]). (2.15)

For instance, the magnetic and electric field are prototypical examples associated
with axial and polar vectors, respectively. In Figure 2.4a, H keeps its sign under
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1 E(r) = –E(r), 1 H(r) = –H(r),1 E(r) = +E(r),1 H(r) = +H(r)

(a) (b)

Figure 2.4 Field distributions and the inversion operation. (a) Homogeneous vector field.
The inversion operation applied with respect to the point ‘×’ retains and reverses sign in
the case of a magnetic and an electric field, respectively. (b) Inhomogeneous vector field.
Behaviour under the inversion operation is opposite to (a) because both the field and its
distribution change sign under the inversion.

the inversion operation, and for E it changes. With the field distributions shown in
Figure 2.4b, however, H(r) changes its sign under Î, and E(r) does not. Neverthe-
less, they remain to be axial and polar vectors, respectively, because the reversed
behaviour is caused by the spatial distribution of the fields and not by the fields
as such.

Temporal inhomogeneity is introduced once we consider optical effects because
these involve time-dependent electric and magnetic fields proportional to ei𝜔t, with
𝜔 as frequency [25]. The consequence of the periodic time dependence is nicely illus-
trated by the Faraday effect, which describes the rotation of the plane of polarisation
(∼P(𝜔)) of a light wave E(𝜔) passing through a transparent material exposed to a
static longitudinal magnetic field H(0). Applying the same analysis as in Eq. (2.14)
leads to

Pi(𝜔) = Fijk Hj(0) Ek(𝜔)| | | |
p, o, i a, o, c a, o, c p, o, i → wrong!

, (2.16)

with the conclusion that the Faraday effect is parameterised by the axial odd-rank
c-tensor F̂. This may appear as correct at first glance because the Faraday effect is
the prototypical time-reversal-symmetry-breaking magneto-optical effect. Its occur-
rence is not limited to magnetically ordered materials, however, as the parity analysis
in Eq. (2.16) would imply. Therefore, the analysis cannot be correct.

The apparent contradiction is resolved by including the periodic time dependence
of the electric field representing the light wave. We have

E(𝜔) = E0ei𝜔t
, (2.17)

the time reversal of which converts this into

T̂E(𝜔) = E0ei𝜔(−t) = E∗(𝜔)t, (2.18)


