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IX

Preface

Though being taught as a traditional subfield of classical electrodynamics, the
field of optics is now once again considered to be an important branch of the
physical sciences. Some even say that the 21st century will be the century of
the photon, following the era of the electron.

In teaching physics, wave optics and interferometry are important topics
with beneficial propaedeutic contributions to the theory of classical fields and
quantum mechanics. In lecture halls today we can easily demonstrate wave,
i.e., coherence phenomena with laser light sources. It is hence appropriate
also in lecturing to devote more room to the concepts of optics created since
the 1960s.

This textbook attempts to link the central topics of optics that were estab-
lished 200 years ago to the most recent research topics such as nonlinear op-
tics, laser cooling or photonic materials. To compromise between depth and
breadth, it is assumed that the reader is familiar with the formal concepts of
electrodynamics and also basic quantum mechanics. This new edition has not
only grown by an entire new chapter introducing the field of quantum optics.
It also presents new material describing the rapidly rising role of photonic ma-
terials and fibres. Last but not least about 100 problems with varying degrees
of difficulty have been included.

In scientific education, this textbook may serve as a reference for the foun-
dations of modern optics: classical optics, laser physics, laser spectroscopy,
concepts of quantum optics, nonlinear optics as well as applied optics may
profit. Teaching will be complemented through materials presented by new
media such as the internet. Nevertheless, the author strongly believes that
conventional textbooks will continue to be a prime source of learning. Novel
materials and complements will be made available, however, through the fol-
lowing website: www.uni-bonn.de/iap/oll.

Bonn, October 2006 Dieter Meschede





1

1
Light rays

1.1
Light rays in human experience

The formation of an image is one

Fig. 1.1 Light rays.

of our most fascinating emotional
experiences. Even in ancient times
it was realized that our ‘vision’
is the result of rectilinearly prop-
agating light rays, because every-
body was aware of the sharp shad-
ows of illuminated objects. Indeed,
rectilinear propagation may be in-
fluenced by certain optical instru-
ments, e.g. by mirrors or lenses. Fol-
lowing the successes of Tycho Brahe
(1546–1601), knowledge about geo-
metrical optics made for the conse-
quential design and construction of
magnifiers, microscopes and tele-
scopes. All these instruments serve
as aids to vision. Through their as-
sistance, ‘insights’ have been gained
that added to our world picture of natural science, because they enabled ob-
servations of the world of both micro- and macro-cosmos.

Thus it is not surprising that the terms and concepts of optics had tremen-
dous impact on many areas of natural science. Even such a giant instrument
as the new Large Hadron Collider (LHC) particle accelerator in Geneva is
basically nothing other than an admittedly very elaborate microscope, with
which we are able to observe the world of elementary particles on a subnu-
clear length scale. Perhaps as important for the humanities is the wave the-
oretical description of optics, which spun off the development of quantum
mechanics.



2 1 Light rays

In our human experience, rectilinear propagation of light rays – in a homo-
geneous medium – stands in the foreground. But it is a rather newer under-
standing that our ability to see pictures is caused by an optical image in the
eye. Nevertheless, we can understand the formation of an image with the fun-
damentals of ray optics. That is why this textbook starts with a chapter on ray
optics.

1.2
Ray optics

When light rays spread spherically into all regions of a homogeneous
medium, in general we think of an idealized, point-like and isotropic lu-
minous source at their origin. Usually light sources do not fulfil any of these
criteria. Not until we reach a large distance from the observer may we cut
out a nearly parallel beam of rays with an aperture. Therefore, with an or-
dinary light source, we have to make a compromise between intensity and
parallelism, to achieve a beam with small divergence. Nowadays optical
demonstration experiments are nearly always performed with laser light
sources, which offer a nearly perfectly parallel, intense optical beam to the
experimenter.

When the rays of a beam are confined within only a small angle with a
common optical axis, then the mathematical treatment of the propagation of
the beam of rays may be greatly simplified by linearization within the so-
called ‘paraxial approximation’. This situation is met so often in optics that
properties such as those of a thin lens, which go beyond that situation, are
called ‘aberrations’.

The direction of propagation of light rays is changed by refraction and re-
flection. These are caused by metallic and dielectric interfaces. Ray optics
describes their effect through simple phenomenological rules.

1.3
Reflection

We observe reflection of, or mirroring of light rays not only on smooth metallic
surfaces, but also on glass plates and other dielectric interfaces. Modern mir-
rors may have many designs. In everyday life they mostly consist of a glass
plate coated with a thin layer of evaporated aluminium. But if the application
involves laser light, more often dielectric multi-layer mirrors are used; we will
discuss these in more detail in the chapter on interferometry (Chap. 5). For ray
optics, the type of design does not play any role.



1.4 Refraction 3

1.3.1
Planar mirrors

We know intuitively that at a planar
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Fig. 1.2 Reflection at a planar mirror.

mirror like in Fig. 1.2 the angle of inci-
dence θ1 is identical with the angle of re-
flection θ2 of the reflected beam,

θ1 = θ2, (1.1)

and that incident and reflected beams
lie within a plane together with the sur-
face normal. Wave optics finally gives
us a more rigid reason for the laws of
reflection. Thereby also details like, for
example, the intensity ratios for dielec-
tric reflection (Fig. 1.3) are explained,
which cannot be derived by means of
ray optics.

1.4
Refraction

At a planar dielectric surface, like e.g. a
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Fig. 1.3 Refraction and reflection at a
dielectric surface.

glass plate, reflection and transmission oc-
cur concurrently. Thereby the transmit-
ted part of the incident beam is ‘refracted’.
Its change of direction can be described
by a single physical quantity, the ‘index
of refraction’ (also: refractive index). It is
higher in an optically ‘dense’ medium than
in a ‘thinner’ one.

In ray optics a general description in
terms of these quantities is sufficient to un-
derstand the action of important optical
components. But the refractive index plays
a key role in the context of the macroscopic
physical properties of dielectric matter and their influence on the propagation
of macroscopic optical waves as well. This interaction is discussed in more
detail in the chapter on light and matter (Chap. 6).


