Karl Heinrich Lieser

Nuclear and Radiochemistry

Fundamentals and Applications

Second, Revised Edition

Berlin · Weinheim · New York · Chichester Brisbane · Singapore · Toronto This Page Intentionally Left Blank

Karl Heinrich Lieser

Nuclear and Radiochemistry

Fundamentals and Applications

Second, Revised Edition

This Page Intentionally Left Blank

Karl Heinrich Lieser

Nuclear and Radiochemistry

Fundamentals and Applications

Second, Revised Edition

Berlin · Weinheim · New York · Chichester Brisbane · Singapore · Toronto Prof. Dr. Karl Heinrich Lieser Fachbereich Chemie TU Darmstadt Eduard-Zintl-Institut Hochschulstraße 4 D-64289 Darmstadt

This book was carefully produced. Nevertheless, author and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

1st edition, 1997 2nd edition, 2001

Library of Congress Card No.: applied for.

A catalogue record for this book is available from the British Library.

Die Deutsche Bibliothek - CIP Cataloguing-in-Publication-Data

A catalogue record for this publication is available from Die Deutsche Bibliothek

ISBN 3-527-30317-0

[©] WILEY-VCH Verlag GmbH, D-69469 Weinheim (Federal Republic of Germany). 2001

Printed on acid-free paper.

All rights reserved (including those of translation in other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Composition: Asco Typesetters, Hong Kong.

Printing: Strauss Offsetdruck GmbH, 69503 Mörlenbach. Bookbinding: J. Schäffer & Co. KG, 67269 Grünstadt.

Printed in the Federal Republic of Germany.

Preface

This textbook gives a complete and concise description of the up-to-date knowledge of nuclear and radiochemistry and applications in the various fields of science. It is based on teaching courses and on research spanning over 40 years.

The book is mainly addressed to chemists desiring sound information about this branch of chemistry dealing with the properties of radioactive matter. Students and scientists working in other branches of chemistry, in environmental science, physics, geology, mineralogy, biology, medicine, technology and other fields will also find valuable information about the principles and applications of nuclear and radiochemistry.

Nuclear science comprises three overlapping fields, nuclear physics, nuclear and radiochemistry, and nuclear technology. Whereas nuclear physics deals with the physical properties of the atomic nucleus and the energetic aspects of nuclear reactions, in nuclear and radiochemistry the chemical aspects of atomic nuclei and of nuclear reactions (nuclear chemistry) and the chemical properties, preparation and handling of radioactive substances (radiochemistry) are considered. The concern of nuclear technology, on the other hand, is the use of nuclear energy, in particular the production of nuclear fuel and the operation of nuclear reactors and reprocessing plants. A well-founded knowledge of nuclear reactions and of nuclear and radiochemistry is needed in nuclear technology. Another related field, radiation chemistry, deals with the chemical effects of radiation, in particular nuclear radiation, and is more closely related to physical chemistry.

Research in nuclear and radiochemistry comprises: Study of radioactive matter in nature, investigation of radioactive transmutations and of nuclear reactions by chemical methods, hot atom chemistry (chemical effects of nuclear reactions) and influence of chemical bonding on nuclear properties, production of radionuclides and labelled compounds, and the chemistry of radioelements – which represent more than a quarter of all chemical elements.

Applications include the use of radionuclides in geo- and cosmochemistry, dating by nuclear methods, radioanalysis, the use of radiotracers in chemical research, Mössbauer spectrometry and related methods, the use of radionuclides in the life sciences, in particular in medicine, technical and industrial applications and investigations of the behaviour of natural and man-made radionuclides, in particular actinides and fission products, in the environment (geosphere and biosphere). Dosimetry and radiation protection are considered in the last chapter of the book.

Fundamentals and principles are presented first, before progressing into more complex aspects and into the various fields of application. With regard to the fact that radioactivity is a property of matter, chemical and phenomenological points of view are presented first, before more theoretical aspects are discussed. Physical properties of the atomic nucleus are considered insofar as they are important for nuclear and radiochemists.

VI Preface

Endeavours are made to present the subjects in clear and comprehensible form and to arrange them in a logical sequence. All the technical terms used are defined when they are first introduced, and applied consistently. A glossary can be found at the end of the text. In order to restrict the volume of the book, detailed derivations of equations are avoided and relevant information is compiled in tables, as far as possible. More complex relations are preferably elucidated by examples rather than by giving lengthy explanations.

For further reading, relevant literature is listed abundantly at the end of each chapter. Generally, it is arranged in chronological order, beginning with literature of historical relevance and subdivided according the subject matter, into general and more special aspects.

I am indebted to many colleagues for valuable suggestions, and I wish to thank Mrs. Boatman for reading the manuscript.

Darmstadt, April 1996

K. H. Lieser

Preface to the second edition

After concept and structure of the book proved to be useful, they have not been changed in the second edition. However, new developments and results have been considered and the text has been revised taking into account new data.

In preparing this edition, I enjoyed the assistance of my son Joachim Lieser, who gave me many valuable hints.

I acknowledge the readiness of the publishers to supplement the text and to make the corrections necessary to bring this book up to date.

Darmstadt, April 2000

K. H. Lieser

Contents

Pre	Preface		
1	Radi 1.1 1.2	Dactivity in Nature Discovery of Radioactivity Radioactive Substances in Nature Literature	1 1 1 4
2	Radi 2.1 2.2 2.3 2.4 2.5	Delements, Isotopes and Radionuclides Periodic Table of the Elements Isotopes and the Chart of the Nuclides Stablility and Transmutation of Nuclides Binding Energies of Nuclei Nuclide Masses Literature	5 5 6 10 11 14 16
3	Phys 3.1 3.2	ical Properties of Atomic Nuclei and Elementary Particles Properties of Nuclei Elementary Particles and Quarks Literature	19 19 24 27
4	Radi 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	oactive Decay Decay Series Law and Energy of Radioactive Decay Radioactive Equilibria Secular Radioactive Equilibrium Transient Radioactive Equilibrium Half-life of Mother Nuclide Shorter than Half-life of Daughter Nuclide Similar Half-lives Branching Decay Successive Transformations Literature	29 32 35 37 39 40 41 42 44 46
5	Deca 5.1 5.2 5.3 5.4 5.5 5.6	ay Modes Survey Alpha-Decay Beta-Decay Gamma-Transitions Proton-Decay and Other Rare Decay Modes Spontaneous Fission Literature	47 47 49 53 61 66 67 72

6	Nucle	ear Radiation	75
	6.1	General Properties	75
	6.2	Alpha Radiation	77
	6.3	Beta Radiation	81
	6.4	Gamma Radiation	85
	6.5	Neutrons	90
	6.6	Short-lived Elementary Particles in Atoms and Molecules	91
		Literature	93
7	Meas	surement of Nuclear Radiation	95
	7.1	Activity and Counting Rate	95
	7.2	Gas-filled Detectors	100
	7.3	Scintillation Detectors	104
	7.4	Semiconductor Detectors	106
	7.5	Choice of Detectors	110
	7.6	Spectrometry	113
	7.7	Determination of Absolute Disintegration Rates	116
	7.8	Use of Coincidence and Anticoincidence Circuits	117
	7.9	Low-level Counting	117
	7.10	Neutron Detection and Measurement	118
	7.11	Statistics and Errors of Counting	119
	7.12	Track Detectors	120
	7.13	Detectors Used in Health Physics	124
		Literature	125
8	Nucl	ear Reactions	127
	8.1	Mono- and Binuclear Reactions	127
	8.2	Energetics of Nuclear Reactions	128
	8.3	Projectiles for Nuclear Reactions	130
	8.4	Cross Sections of Nuclear Reactions	134
	8.5	Yield of Nuclear Reactions	138
	8.6	Investigation of Nuclear Reactions	143
	8.7	Mechanisms of Nuclear Reactions	144
	8.8	Low-energy Reactions	146
	8.9	Nuclear Fission	149
	8.10	High-energy Reactions	158
	8.11	Heavy-ion Reactions	162
	8.12	Nuclear Fusion–Thermonuclear Reactions	165
		Literature	169

Contents	IX

9	Chemi	ical Effects of Nuclear Reactions	171
	9.1	General Aspects	171
	9.2	Recoil Effects	172
	9.3	Excitation Effects	177
	9.4	Gases and Liquids	181
	9.5	Solids	184
	9.6	Szilard–Chalmers Reactions	188
	9.7	Recoil Labelling and Self-labelling	189
	2.1	Literature	191
10	Influe	nce of Chemical Bonding on Nuclear Properties	193
	10.1	Survey	193
	10.2	Dependence of Half-lives on Chemical Bonding	194
	10.3	Dependence of Radiation Emission on Chemical Bonding	195
	10.4	Mössbauer Spectrometry	195
		Literature	199
11	Nucle	ar Energy, Nuclear Reactors, Nuclear Fuel and Fuel Cycles	201
	11.1	Energy Production by Nuclear Fission	201
	11.2		206
	11.3	Production of Uranium and Uranium Compounds	211
	11.4	Fuel Elements	213
	11.5	Nuclear Reactors, Moderators and Coolants	217
	11.6	Reprocessing	224
	11.7	Radioactive Waste	229
	11.8	The Natural Reactors at Oklo	232
		Controlled Thermonuclear Reactors	233
		Nuclear Explosives	235
	11.10	Literature	236
12	Produ	ction of Radionuclides and Labelled Compounds	239
	12.1	Production in Nuclear Reactors	239
	12.2	Production by Accelerators	244
	12.3	Separation Techniques	249
	12.4	Radionuclide Generators	253
	12.5	Labelled Compounds	255
	~ 210	Literature	261
13	Speci	al Aspects of the Chemistry of Radionuclides	265
	13.1	Short-lived Radionuclides and the Role of Carriers	265
	13.2	Radionuclides of High Specific Activity	267
	13.3	Microamounts of Radioactive Substances	267
	13.4	Radiocolloids	272
	13.5	Tracer Techniques	274
		Literature	275

14	Radio	elements	277
	14.1	Natural and Artificial Radioelements	277
	14.2	Technetium and Promethium	280
	14.3	Production of Transuranium Elements	283
		Further Extension of the Periodic Table of the Elements	292
		Properties of the Actinides	295
		Properties of the Transactinides	301
	-	Literature	306
15	Radio	nuclides in Geo- and Cosmochemistry	309
	15.1	Natural Abundances of the Elements and Isotope Variations	309
	15.2	General Aspects of Cosmochemistry	312
	15.3	Early Stages of the Universe	313
	15.4	Synthesis of the Elements in the Stars	315
	15.5	Evolution of the Stars	317
	15.6	Evolution of the Earth	318
	15.7	Interstellar Matter and Cosmic Radiation	320
		Literature	321
16	Dating	g by Nuclear Methods	323
	16.1	General Aspects	323
		Cosmogenic Radionuclides	324
	16.3	Terrestrial Mother/Daughter Nuclide Pairs	328
	16.4	Natural Decay Series	330
	16.5	Ratios of Stable Isotopes	332
		Radioactive Disequilibria	333
	16.7	Fission Tracks	334
		Literature	335
17		analysis	337
		General Aspects	337
		Analysis on the Basis of Inherent Radioactivity	338
		Neutron Activation Analysis (NAA)	340
	17.4	Activation by Charged Particles	344
	17.5	Activation by Photons	346
	17.6	Special Features of Activation Analysis	347
		Isotope Dilution Analysis	349
	17.8	Radiometric Methods	351
	17.9	Other Analytical Applications of Radiotracers	353
	17.10	Absorption and Scattering of Radiation	353
	17.11	Radionuclides as Radiation Sources in X-ray Fluorescence	
		Analysis (XFA)	354
		Literature	355

Contents	XI
----------	----

18	Radio	tracers in Chemistry	357
	18.1		357
	18.2	Chemical Equilibria and Chemical Bonding	357
	18.3	Reaction Mechanisms in Homogeneous Systems	359
	18.4	Reaction Mechanisms in Heterogeneous Systems	363
		Diffusion and Transport Processes	368
	18.6	Emanation Techniques	369
	1010	Literature	372
19	Radio	nuclides in The Life Sciences	373
17	19.1	Survey	373
	19.2	Application in Ecological Studies	374
	19.2	Radioanalysis in The Life Sciences	374
	19.4	Application in Physiological and Metabolic Studies	376
	19.5	Radionuclides Used in Nuclear Medicine	377
	19.5	Single Photon Emission Tomography (SPET)	380
		Positron Emission Tomography (PET)	381
	19.7		382
		Literature	502
20	Tech	ical and Industrial Applications of Radionuclides and Nuclear	
	Radia	ition	385
	20.1	Radiotracer Techniques	385
	20.2	Absorption and Scattering of Radiation	387
	20.3	Radiation-induced Reactions	388
	20.4	Energy Production by Nuclear Radiation	391
		Literature	393
21	Radio	nuclides in the Geosphere and the Biosphere	395
	21.1	Sources of Radioactivity	395
	21.2	Mobility of Radionuclides in the Geosphere	398
	21.2	Reactions of Radionuclides with the Components of Natural	
	21.5	Waters	400
	21.4	Interactions of Radionuclides with Solid Components of the	
	21.7	Geosphere	404
	21.5	Radionuclides in the Biosphere	408
	21.5	Literature	413
	ъ ·	(417
22		netry and Radiation Protection	41 7 417
	22.1	Dosimetry	417
	22.2	External Radiation Sources	420
	22.3	Internal Radiation Sources	
	22.4	Radiation Effects in Cells	423
	22.5	Radiation Effects in Man, Animals and Plants	424
	22.6	Non-occupational Radiation Exposure	427
	22.7	Safety Recommendations	429
	22.8	Safety Regulations	431
	22.9	Monitoring of the Environment	434
		Literature	434

XII Contents

Appendix	437
Glossary	437
Fundamental Constants	439
Conversion Factors	439
Relevant Journals	439
Name index	441
Subject index	443

1 Radioactivity in Nature

1.1 Discovery of Radioactivity

Radioactivity was discovered in 1896 in Paris by Henri Becquerel, who investigated the radiation emitted by uranium minerals. He found that photographic plates were blackened in the absence of light, if they were in contact with the minerals. Two years later (1898) similar properties were discovered for thorium by Marie Curie in France and by G. C. Schmidt in Germany. That radioactivity had not been discovered earlier is due to fact that human beings, like animals, do not have sense organs for radioactive radiation. Marie Curie found differences in the radioactivity of uranium and uranium minerals and concluded that the minerals must contain still other radioactive elements. Together with her husband, Pierre Curie, she discovered polonium in 1898, and radium later in the same year.

Radioactivity is a property of matter and for the detection of radioactive substances detectors are needed, e.g. Geiger-Müller counters or photographic emulsions. It was found that these detectors also indicate the presence of radiation in the absence of radioactive substances. If they are shielded by thick walls of lead or other materials, the counting rate decreases appreciably. On the other hand, if the detectors are brought up to greater heights in the atmosphere, the counting rate increases to values that are higher by a factor of about 12 at a height of 9000 m above ground. This proves the presence of another kind of radiation that enters the atmosphere from outside. It is called cosmic radiation to distinguish it from the terrestrial radiation that is due to the radioactive matter on the earth. By cascades of interactions with the gas molecules in the atmosphere, cosmic radiation produces a variety of elementary particles (protons, neutrons, photons, electrons, positrons, mesons) and of radioactive atoms.

1.2 Radioactive Substances in Nature

Radioactive substances are widely distributed on the earth. Some are found in the atmosphere, but the major part is present in the lithosphere. The most important ones are the ores of uranium and thorium, and potassium salts, including the radioactive decay products of uranium and thorium. Uranium and thorium are common elements in nature. Their concentrations in granite are about 4 and 13 mg/kg, respectively, and the concentration of uranium in seawater is about $3 \mu g/l$. Some uranium and thorium minerals are listed in Table 1.1. The most important uranium mineral is pitchblende (U₃O₈). Uranium is also found in mica. The most important thorium mineral is monazite, which contains between about 0.1 and 15% Th.

The measurement of natural radioactivity is an important tool for dating, e.g. for the determination of the age of minerals (see section 16.1).