
# Hand and Wrist Anatomy and Biomechanics

A Comprehensive Guide





## Hand and Wrist Anatomy and Biomechanics

#### A Comprehensive Guide

**Bernhard Hirt, MD** Professor Institute for Clinical Anatomy University of Tübingen Tübingen, Germany

Harun Seyhan, MD Assistant Medical Director Department of Plastic Surgery Hand Surgery – Burn Center University of Witten/Herdecke Cologne-Merheim Medical Center (CMMC) Cologne, Germany

Michael Wagner, PT Private Practice Hannover, Germany

**Rainer Zumhasch, OT** Director Academy for Hand Rehabilitation Bad Pyrmont, Germany

130 illustrations

Thieme Stuttgart • New York • Delhi • Rio de Janeiro

#### **Library of Congress Cataloging-in-Publication Data** is available from the publisher.

This book is an authorized translation of the 3rd German edition published and copyrighted 2015 by Georg Thieme Verlag, Stuttgart. Title of the German edition: Anatomie und Biomechanik der Hand

Translator: Karen Leube, PhD, Aachen, Germany

Illustrator: Markus Voll, Munich, Germany; anatomical water colors: from THIEME Atlas of Anatomy, General Anatomy and Musculoskeletal System. 2nd ed, © Thieme 2014, illustrations by M. Voll and K. Wesker; adaptations by WEYOU, Leonberg, Germany

© 2017 by Georg Thieme Verlag KG

Thieme Publishers Stuttgart Rüdigerstrasse 14, 70469 Stuttgart, Germany +49 [0]711 8931 421, customerservice@thieme.de

Thieme Publishers New York 333 Seventh Avenue, New York, NY 10001 USA +1 800 782 3488, customerservice@thieme.com

Thieme Publishers Delhi A-12, Second Floor, Sector-2, Noida-201301 Uttar Pradesh, India +91 120 45 566 00, customerservice@thieme.in

Thieme Publishers Rio de Janeiro, Thieme Publicações Ltda. Edifício Rodolpho de Paoli, 25º andar Av. Nilo Peçanha, 50 – Sala 2508 Rio de Janeiro 20020-906 Brasil +55 21 3172 2297 / +55 21 3172 1896

Cover design: Thieme Publishing Group Typesetting by DiTech Process Solutions Pvt. Ltd., India

54321

Printed in Germany by CPI Books

ISBN 978-3-13-205341-0

Also available as an e-book: eISBN 978-3-13-205351-9 **Important note:** Medicine is an ever-changing science undergoing continual development. Research and clinical experience are continually expanding our knowledge, in particular our knowledge of proper treatment and drug therapy. Insofar as this book mentions any dosage or application, readers may rest assured that the authors, editors, and publishers have made every effort to ensure that such references are in accordance with **the state of knowledge at the time of production of the book.** 

Nevertheless, this does not involve, imply, or express any guarantee or responsibility on the part of the publishers in respect to any dosage instructions and forms of applications stated in the book. Every user is requested to examine carefully the manufacturers' leaflets accompanying each drug and to check, if necessary in consultation with a physician or specialist, whether the dosage schedules mentioned therein or the contraindications stated by the manufacturers differ from the statements made in the present book. Such examination is particularly important with drugs that are either rarely used or have been newly released on the market. Every dosage schedule or every form of application used is entirely at the user's own risk and responsibility. The authors and publishers request every user to report to the publishers any discrepancies or inaccuracies noticed. If errors in this work are found after publication, errata will be posted at www.thieme.com on the product description page.

Some of the product names, patents, and registered designs referred to in this book are in fact registered trademarks or proprietary names even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain.

This book, including all parts thereof, is legally protected by copyright. Any use, exploitation, or commercialization outside the narrow limits set by copyright legislation without the publisher's consent is illegal and liable to prosecution. This applies in particular to photostat reproduction, copying, mimeographing or duplication of any kind, translating, preparation of microfilms, and electronic data processing and storage.

## Contents

| 1     | Anatomy and Functional Anatomy                                                           | of t     | he Han | nd                                         | . 2      |
|-------|------------------------------------------------------------------------------------------|----------|--------|--------------------------------------------|----------|
| 1.1   | Introduction                                                                             | 2        |        | Blood Supply to the Wrist Joint and Hand   | 46<br>47 |
| 1.2   | Structure and Function of the Proximal                                                   |          |        |                                            |          |
|       | and Distal Radioulnar Joints                                                             | 2        | 1.4    | Thumb                                      | 48       |
| 1.2.1 | Anular Ligament of the Radius                                                            | 3        | 1.4.1  | Movements and Range of Motion              | 48       |
| 1.2.2 | Oblique Cord                                                                             |          |        | Movements of the Thumb CMC Joint           | 48       |
| 1.2.3 | Interosseous Membrane of the                                                             |          |        | Range of Motion of the Thumb MCP and       |          |
|       | Forearm                                                                                  | 4        |        | IP Joints                                  | 49       |
| 1.2.4 | Structure and Function of the                                                            |          | 1.4.2  | Structure and Function of the Thumb        |          |
|       | Triangular Fibrocartilage Complex                                                        | 6        |        | CMC Joint                                  | 49       |
|       | Ulnocarpal Disc and Meniscal Homologue                                                   | 8        |        | Ligaments of the Thumb CMC Joint           | 51       |
|       | Palmar and Dorsal Radioulnar Ligaments                                                   | 8        |        | Muscles of the Thumb CMC Joint             | 54       |
|       | Ulnolunate and Ulnotriquetral Ligaments                                                  | 8        | 1.4.3  | Structure and Function of the Thumb        |          |
|       | Ulnar Collateral Ligament of Wrist Joint                                                 | 8        |        | MCP and IP Joints                          | 57       |
|       | Tendon Sheath of the Extensor Carpi Ulnaris                                              |          |        | MCP Joint of the Thumb                     | 58       |
|       | Muscle                                                                                   | 9        |        | IP Joint of the Thumb                      | 59       |
| 1.2.5 | Muscles of the Radioulnar Joint—Pronation                                                |          |        |                                            |          |
|       | and Supination                                                                           |          | 1.5    | Structure and Function of the Palm         | 60       |
|       | Pronator Muscles                                                                         |          |        |                                            |          |
|       | Supinator Muscles                                                                        | 10       | 1.5.1  | Structure and Function of the Second to    |          |
|       |                                                                                          |          |        | Fifth Metacarpals                          | 60       |
| 1.3   | Wrist and Movement Axes                                                                  | 10       | 1.5.2  | Muscles of the Metacarpals                 | 62       |
| 1.2.1 |                                                                                          | 10       |        | Dorsal and Palmar Interossei               | 62       |
| 1.3.1 | Movement Axes                                                                            | 10       |        | Lumbricals                                 | 63       |
| 1.3.2 | Structure and Function of the Wrist                                                      | 10       |        | Abductor Digiti Minimi Muscle              | 63       |
|       | Joint                                                                                    | 12       |        | Flexor Digiti Minimi Brevis Muscle         | 64       |
|       | Carpal Bones                                                                             | 12       | 1 5 0  | Opponens Digiti Minimi Muscle              | 64       |
| 1 2 2 | Joints                                                                                   | 14<br>16 | 1.5.3  | Palmar Aponeurosis (Metacarpal Area)       | 64       |
| 1.3.3 | Ligament System and Wrist Stability                                                      | 10       |        | Longitudinal Fibers                        | 65       |
|       | Superficial Layer of the Ligaments of the Wrist<br>Middle Layer of Ligaments of the Hand | 19       |        | Transverse Fibers                          | 66       |
|       | Deep Layer of the Ligaments of the Hand                                                  | 23       | 1.6    | Structure and Function of the Finger       |          |
|       | Conclusions                                                                              | 25       | 1.0    | Joints                                     | 66       |
| 1.3.4 | Muscles of the Wrist: Extension–Flexion,                                                 | 23       |        |                                            | 00       |
| 1.5.1 | Radial Deviation–Ulnar Deviation, and                                                    |          | 1.6.1  | Structure and Function of the              |          |
|       | Circumduction                                                                            | 25       | 11011  | MCP Joints                                 | 66       |
|       | Muscles Involved in Flexion and Ulnar Deviation                                          |          |        | Collateral Ligaments                       | 67       |
|       | of the Wrist                                                                             | 26       |        | Palmar and Dorsal Connective Tissue Plate  | 68       |
|       | Muscles Involved in Extension and Radial                                                 |          |        | Deep and Superficial Transverse Metacarpal |          |
|       | Deviation of the Wrist                                                                   | 28       |        | Ligaments                                  | 69       |
| 1.3.5 | Arthrokinematics of the Wrist Joint                                                      | 28       | 1.6.2  | Structure and Function of the              |          |
|       | Kinematics of the Wrist: General Aspects                                                 | 30       |        | PIP Joints                                 | 69       |
|       | Arthrokinematics of the Wrist Joint: Specific                                            |          |        | Collateral Ligaments of the PIP Joint      | 70       |
|       | Aspects                                                                                  | 30       |        | Palmar and Dorsal Fibrocartilage Plate     | 70       |
| 1.3.6 | Other Important Anatomical Structures                                                    |          |        | Anular and Cruciate Ligaments              | 70       |
|       | of the Wrist                                                                             | 33       |        | Dorsal Digital Expansion                   | 72       |
|       | Dorsal and Palmar Tendon Compartments                                                    | 33       | 1.6.3  | Structure and Function of the              |          |
|       | Carpal Tunnel, Ulnar Tunnel, and Innervation                                             |          |        | DIP Joints                                 | 73       |
|       | of the Hand                                                                              | 38       | 1.6.4  | Range of Motion of the MCP, PIP, and       |          |
|       |                                                                                          |          |        | DIP Joints                                 | 75       |

| 1.6.5 | Extrinsic Muscles of the Finger: Flexors         and Extensors         Extensor Apparatus of the Finger | 75<br>75 |                 | Extrinsic Flexors of the Finger                                                                                  | 76             |
|-------|---------------------------------------------------------------------------------------------------------|----------|-----------------|------------------------------------------------------------------------------------------------------------------|----------------|
| 2     | Surface Anatomy of the Forearm,                                                                         | Wris     | t, and I        | Hand Structures                                                                                                  | 82             |
| 2.1   | Introduction                                                                                            | 82       |                 | Second Dorsal Tendon Compartment                                                                                 | 88<br>89       |
| 2.2   | Practical Foundations of Surface Anatomy                                                                | 82       |                 | Fourth Dorsal Tendon Compartment         Fifth Dorsal Tendon Compartment         Sixth Dorsal Tendon Compartment | 89<br>90<br>90 |
| 2.3   | Practical Procedure for Surface<br>Anatomy of the Forearm, Wrist, and                                   |          | 2.3.3           | Surface Anatomy of the Extrinsic Dorsal Forearm Muscles                                                          | 91             |
|       | Hand                                                                                                    | 83       | 2.3.4           | Surface Anatomy of the Palmar Wrist,<br>Three Palmar Tendon Compartments,                                        |                |
| 2.3.1 | Surface Anatomy of the Distal<br>Radioulnar Joint and Wrist                                             | 83       | 2.3.5           | and Palmar Nerves and Vessels<br>Surface Anatomy of the Extrinsic                                                | 92             |
|       | Radiocarpal Joint Line and Its Structures<br>Metacarpophalangeal Joint Line and Its                     | 83       | 2.3.6           | Palmar Forearm Muscles<br>Surface Anatomy of the Palm, Thumb,                                                    | 96             |
|       | Structures Dorsal Carpal Bones                                                                          | 84<br>84 | 2.3.7           | and Fingers<br>Surface Anatomy of the Intrinsic Muscles                                                          | 96             |
| 2.3.2 | Surface Anatomy of the Six Dorsal<br>Tendon Compartments                                                | 86       |                 | of Thenar, Palm, and Hypothenar Areas                                                                            | 98             |
|       | First Dorsal Tendon Compartment                                                                         | 87       |                 |                                                                                                                  | 100            |
|       | References                                                                                              |          |                 |                                                                                                                  | 100            |
|       | Index                                                                                                   |          | • • • • • • • • |                                                                                                                  | 106            |

#### Preface

In order to diagnose and treat hand disorders, medical professionals must be intimately familiar with the anatomical structures in question. They must also understand their specific functions in terms of biomechanics and have the practical skills needed to determine and palpate them. These skills are indispensable for physicians, occupational therapists, and physical therapists when choosing the best treatment for the patient.

While there are many books available on the anatomy, surface anatomy, and kinematics of the hand, no book to date has gathered all of these disciplines in a single volume. When practitioners work with patients, they need to address these aspects simultaneously. They are forced to consult a number of different books when treating a single patient. In many cases the particular reference needed is not in the practitioner's library—or the information in the book to hand is too detailed for a salient answer to be found in the time available. As we planned this book, we felt that several features were essential: it needed to have a convenient format; it should cover all important aspects of this broad spectrum; and can be referred to quickly and easily wherever hand injuries and conditions are diagnosed and treated.

We hope that we have met our goal in *Anatomy and Biomechanics of the Hand* with regard to both subject matter and ease of use. This book is intended to help health care professionals diagnose and treat patients more efficiently and to provide a solid foundation for interdisciplinary communication among all of the professionals involved. "If we expect to understand each other, we all need to speak the same language."

> Prof. Bernhard Hirt, MD Harun Seyhan, MD Michael Wagner, PT Rainer Zumhasch, OT

#### Acknowledgments

We would like to thank Mr. Klausch for editing the images for this book, as well as Ms. Cornelia Paries for the wealth of tips and suggestions for improving the text. We are also grateful to our family members, to whom we dedicate this book, Anatomy and Biomechanics of the Hand. They picked up the slack for us, allowing us to complete this book in a timely manner despite all of our other professional commitments. Special thanks go to the wife of Rainer Zumhasch, who exhibited a great deal of patience and understanding as she allowed us to draw the anatomical structures on her arms and hands. In so doing, she made a valuable contribution to conveying the knowledge in a way that is easy to see and understand.

Furthermore, we would like to thank all of the participants in our seminars at the Academy of Hand Rehabilitation, Bad Münder, Germany. It was their requests for information on various topics that inspired us to write this book.

We also gratefully acknowledge the entire staff of Thieme Publishers. Our cooperation was always pleasant and quickly grew into a collaboration characterized by friendship. When selecting the numerous anatomical illustrations, they respected our wishes, worked meticulously and ensured that the images underpinned the individual text passages.

Particular thanks go to the Department of Anatomy at the University of Tübingen, Germany, which assisted us in both word and deed at all times.

Finally, we would also like to thank all of the readers of this book. We thank you for choosing this publication and hope that we have been able to address your needs.

## **Chapter 1**

#### Anatomy and Functional Anatomy of the Hand

| 1.1 | Introduction                                                              | 2  |
|-----|---------------------------------------------------------------------------|----|
| 1.2 | Structure and Function of the<br>Proximal and Distal Radioulnar<br>Joints | 2  |
| 1.3 | Wrist and Movement Axes                                                   | 10 |
| 1.4 | Thumb                                                                     | 48 |
| 1.5 | Structure and Function of the<br>Palm                                     | 60 |
| 1.6 | Structure and Function of the<br>Finger Joints                            | 66 |

#### 1 Anatomy and Functional Anatomy of the Hand

#### **1.1 Introduction**

In their biological taxonomy and status as "higher-level mammal-homo sapiens," humans owe their distinction from primates to the miraculous structure of the hand. With its 19 degrees of freedom and its opposing thumb, the hand is a highly developed and complex grasping organ. This enables a wide range of movement combinations while simultaneously allowing adaptation of force, speed, and facileness. Moreover, the hand also features a highly specific sensory and tactile organ that human beings use to perceive and assess themselves and their surroundings. Owing to its capacity for making gestures, the hand plays an important role in interpersonal communication. In writing, music, and the visual arts, the hand acts as a means of expression for the human mind.<sup>229</sup> These gross and fine motor skills, along with sensory capacities, enable humans to take care of and nourish their bodies, as well as communicate and shape their environment. With all these possibilities, the hand also plays a major role in self-expression and in developing the human mind, and significantly contributes to modifying human motor capacities.<sup>202</sup> The mobilizing of this functionality requires exceptional interaction between the central control system and anatomical structures such as bones and joints, muscles and tendons, nerves and blood vessels, making the hand an extremely complex organ.

The distal area of the lower arm consists of the distal radioulnar joint, the thumb and finger carpometacarpal (CMC) joints, the palm, and the fingers. In total, there are 27 bones with 36 articulations and 39 active muscles. In order for the hand to translate its wide range of fine and gross motor capabilities into its complex range of motion, these structures must all be coordinated.

#### **1.2 Structure and Function of the Proximal and Distal Radioulnar Joints**

The forearm skeleton consists of two bones: the **ulna** (elbow bone) and the **radius**. These two bones form two radioulnar joints, one near the elbow (**proximal radioulnar joint**) and one near the wrist (**distal radioulnar joint**) ( $\blacktriangleright$  Fig. 1.1). Pronation and supination movements are performed by these two joints with a contribution from the **shoulder joint** ( $\blacktriangleright$  Fig. 1.2).<sup>233</sup> During this movement, the radius takes a conical path, in which the rotation axis courses from the radial head through to the distal end of the ulna.<sup>3</sup> In so doing, the radial head rotates around itself within the anular ligament (wide ringlike band) in the proximal radioulnar joint, while the radius

simultaneously moves around the ulna (ulnar head) in the distal radioulnar joint. During supination, the radius and ulna are parallel, whereas these two cross during pronation, with the radius overlying the ulna. The range of the forearm's rotational motion is between 140° and 150°.<sup>190</sup> During **pronation**, the ulna glides more toward the dorsal aspect, and during supination it glides more toward the palmar aspect,<sup>262</sup> which extends the movement to 180°.229 The range of motion from the neutral zero position for pure pronation and supination is therefore approximately 80° to 90°–0–80° to 90°, or an average of 85° supination and 90° pronation.<sup>233</sup> With the contribution of the shoulder joint (continued movement), this range can increase to up to 230°.256 These possibilities of additional and substitute movements can simulate movements in the radioulnar joint by means of "pseudo-movements."149 The hand must follow these movements, since the proximal condyloid wrist joint does not allow any compensatory movements.<sup>149</sup>

In functional terms, the **proximal radioulnar joint** is a **pivot joint**. It consists of the convex surface of the articular circumference of the radius and the concave surface of the radial notch of the ulna.

The **distal radioulnar joint**, also functionally a **pivot joint** (▶ Fig. 1.3), consists of the convex semicylindrical surface of the articular circumference of the ulna, which is completely covered with cartilage, and the associated concave joint surface of the ulnar notch on the distal radius. The joint is enclosed by a thin connective-tissue capsule that has no stabilizing properties.<sup>49</sup> Its loose

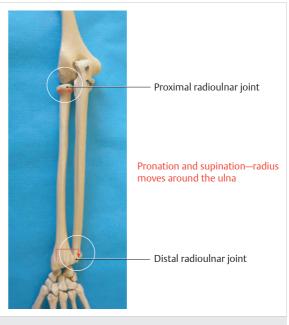



Fig. 1.1 Distal and proximal radioulnar joints.