
Interventional Stroke Therapy

Olav Jansen Hartmut Brueckmann

Interventional Stroke Therapy

Interventional Stroke Therapy

Edited by

Olav Jansen, MD, PhD

Professor Schleswig-Holstein University Hospital Department of Neuroradiology Kiel, Germany

Hartmut Brueckmann, MD, PhD

Professor University of Munich–Grosshadern Medical Center Department of Clinical Radiology Division of Neuroradiology Munich, Germany

Thieme New York • Stuttgart Library of Congress Cataloging-in-Publication Data Interventionelle Therapie des Schlaganfalls. English. Interventional stroke therapy / edited by Olav Jansen, Hartmut Br?ckmann.

p.; cm. Includes bibliographical references and index. ISBN 978-3-13-169921-3 I. Jansen, Olav. II. Br?ckmann, Hartmut. III. Title. [DNLM: 1. Stroke—therapy. WL 356]

616.8'106--dc23

2012042324

This book is an authorized translation of the first German edition published and copyrighted 2011 by Georg Thieme Verlag, Stuttgart, Germany. Title of the German edition: Interventionelle Therapie des Schlaganfalls

Translator: Terry C. Telger, Fort Worth, TX, USA

Important note: Medicine is an ever-changing science undergoing continual development. Research and clinical experience are continually expanding our knowledge, in particular our knowledge of proper treatment and drug therapy. Insofar as this book mentions any dosage or application, readers may rest assured that the authors, editors, and publishers have made every effort to ensure that such references are in accordance with **the state of knowledge at the time of production of the book.**

Nevertheless, this does not involve, imply, or express any guarantee or responsibility on the part of the publishers in respect to any dosage instructions and forms of applications stated in the book. Every user is requested to examine carefully the manufacturers' leaflets accompanying each drug and to check, if necessary in consultation with a physician or specialist, whether the dosage schedules mentioned therein or the contraindications stated by the manufacturers differ from the statements made in the present book. Such examination is particularly important with drugs that are either rarely used or have been newly released on the market. Every dosage schedule or every form of application used is entirely at the user's own risk and responsibility. The authors and publishers request every user to report to the publishers any discrepancies or inaccuracies noticed. If errors in this work are found after publication, errata will be posted at www.thieme.com on the product description page.

© 2013 Georg Thieme Verlag Rüdigerstrasse 14, 70469 Stuttgart, Germany http://www.thieme.de Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA http://www.thieme.com

Cover design: Thieme Publishing Group Typesetting by Maryland Composition, USA Printed in Italy by L.E.G.O., Vicenza

ISBN 978-3-13-169921-3 eISBN 978-3-13-169931-2 Some of the product names, patents, and registered designs referred to in this book are in fact registered trademarks or proprietary names even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain.

This book, including all parts thereof, is legally protected by copyright. Any use, exploitation, or commercialization outside the narrow limits set by copyright legislation, without the publisher's consent, is illegal and liable to prosecution. This applies in particular to photostat reproduction, copying, mimeographing, preparation of microfilms, and electronic data processing and storage.

Preface

The first endovascular recanalization was performed 30years ago by Hermann Zeumer. His technique for the local intra-arterial fibrinolysis of vertebrobasilar and middle cerebral artery occlusions was a major milestone in the development of interventional treatments for stroke.

Advances in both the diagnosis and treatment of stroke have followed in quick succession during the past three decades.

Initially, cranial CT could distinguish only between hemorrhage and ischemia and could supply information on the etiology of strokes. MRI, developed approximately 10 years after cranial CT, was initially important only for the evaluation of brainstem infarctions. But some 20 years ago MRI gained the ability to provide highcontrast diffusion-weighted images of a fresh cerebral infarction. The capabilities and individual components of "stroke MRI" significantly advanced our understanding of the pathophysiology of stroke and especially ischemic stroke. Today, the options of CT angiography and perfusion CT (*stroke CT*) have made computed tomography the first-line imaging study in stroke patients–especially for the relatively common ischemic strokes in the anterior circulation.

There has been equally rapid growth in the range of available interventional devices and techniques, fibrinolytic agents, platelet-aggregation inhibitors, and plateletreceptor inhibitors.

The wide range of techniques available for the diagnosis and interventional treatment of acute stroke prompted us to publish an "inventory" of these options in the form of a textbook. While we know that the techniques are still in flux, this is an opportune time to review current methods in detail, rate their efficacies, and make progress toward uniformity.

Fortunately, we had access to a strong "network" of neuroradiologists in which highly experienced colleagues were able to collaborate in the creation of this book.

The book is intended for all colleagues who seek concise, clinically relevant information in their day-to-day practice of diagnosing and treating stroke patients.

Kiel and Munich Winter, 2013 Olav Jansen Hartmut Brueckmann

Contributors

Editors

Olav Jansen, MD, PhD Professor Schleswig-Holstein University Hospital Department of Neuroradiology Kiel, Germany

Contributing Authors

Joachim Berkefeld, MD Johann Wolfgang Goethe University Hospital Department of Neuroradiology Frankfurt am Main, Germany

Ansgar Berlis, MD Augsburg Medical Center Department of Diagnostic Radiology and Neuroradiology Augsburg, Germany

Tibias Boeckh-Behrens, MD Technical University of Munich Rechts der Isar Hospital Department of Radiology Division of Neuroradiology Munich, Germany

Arnd Doerfler University of Erlangen Medical Center Department of Neuroradiology Erlangen, Germany

Bernd Eckert, MD Asklepios Hospital Altona Department of Neuroradiology Hamburg, Germany

Gunther Fesl, MD University of Munich-Grosshadern Medical Center Department of Clinical Radiology Division of Neuroradiology Munich, Germany Hartmut Brueckmann, MD, PhD Professor University of Munich-Grosshadern Medical Center Department of Clinical Radiology Division of Neuroradiology Munich, Germany

Holger Goerike, MD Conradia Imaging Center Hamburg, Germany

Gerhard F. Hamann, MD Dr. Horst Schmidt Hospital Department of Neurology Wiesbaden, Germany

Markus Holtmannspoetter, MD Rigshospitalet Diagnostik Department of Radiology Copenhagen, Denmark

Joachem Klisch, MD Helios Hospital Erfurt Department of Diagnostic and Interventional Radiology and Neuroradiology Erfurt, Germany

Michael Knauth, MD Göttingen University Hospital Department of Neuroradiology Göttingen, Germany

Andreas Kreusch Göttingen University Hospital Department of Neuroradiology Göttingen, Germany

Wiebke Kurre, MD Supervising Physician at Department of Diagnostic and Interventional Radiology Katharinenhospital Stuttgart, Germany Thomas Liebig, MD Cologne University Hospital Department of Diagnostic Radiology and Neuroradiology Cologne, Germany

Jennifer Linn, MD University of Munich-Grosshadern Medical Center Department of Clinical Radiology Division of Neuroradiology Munich, Germany

Nina Lummel, MD University of Munich-Grosshadern Medical Center Department of Clinical Radiology Division of Neuroradiology Munich, Germany

Thomas E. Mayer, MD Jena University Hospital Center for Radiology Division of Neuroradiology Jena, Germany

Dominik Morhard, MD Munich-Harlaching Municipal Hospital Department of Diagnostic and Interventional Radiology, Neuroradiology, and Nuclear Medicine Munich, Germany Christian Riedel, MD Schleswig-Holstein University Hospital Kiel Campus Department of Neuroradiology Kiel, Germany

Axel Rohr, MD Schleswig-Holstein University Hospital Kiel Campus Department of Neuroradiology Kiel, Germany

Gernot Schulte-Altedorneburg, MD Munich-Harlaching Municipal Hospital Department of Diagnostic and Interventional Radiology, Neuroradiology, and Nuclear Medicine Munich, Germany

Tobias Struffert, MD University of Erlangen Medical Center Department of Neuroradiology Erlangen, Germany

Marc Tietke, MD, DDS. Helios Hospital Schwerin Department of Radiology and Neuroradiology Schwerin, Germany

Abbreviations

41	Al compart of the antenion conchuel antenu
A1	A1 segment of the anterior cerebral artery
ACA	Anterior cerebral artery
ACST	Asymptomatic Carotid Surgery Trial
ACT	Activated clotting time
ADC	Apparent diffusion coefficient
AICA	Anterior inferior cerebellar artery
AP	Anteroposterior
APSAC	Anisoylated plasminogen-streptokinase
	activator complex
aPTT	Activated partial thromboplastin time
ASK	Australian Streptokinase Study
ASPECT	Alberta Stroke Program Early CT Score
atm	Atmospheres
AV fistula	Arteriovenous fistula
BASICS	Basilar Artery International Cooperation Study
b.w.	Body weight
CASES	Canadian Activase for Stroke Effectiveness
CASES	Study
CCA	Common carotid artery
CE	Communauté Européenne (certification
CL	mark)
CI	Confidence interval
CNS	Central nervous system
CREST	Carotid Revascularization Endarterectomy
CILDI	vs. Stenting Trial
CSF	Cerebrospinal fluid
СТ	Computed tomography
СТА	Computed tomographic angiography
СТР	CT perfusion imaging
CVST	Cerebral venous and sinus thrombosis
DAC	Distal access catheter
DAC	Digital subtraction angiography
DSA DSC-PWI	
DSC-PVVI	Dynamic susceptibility-weighted perfusion MRI
DWI	Diffusion-weighted imaging
DW MRI	Diffusion-weighted magnetic resonance
	imaging
ECA	External carotid artery
ECASS	European Cooperative Acute Stroke Study
ECG	Electrocardiography
ECASS	European Cooperative Acute Stroke Study
ECST	European Carotid Surgery Trial
EMEA	European Medicines Evaluation Agency
EVA	Endarterectomy versus Angioplasty in
	Patients with Symptomatic Severe Carotid
	Stenosis
FII, FVII	Coagulation factor II, factor VII (etc.)
	-

FDA	Food and Drug Administration
FLAIR	Fluid-attenuated inversion recovery
FOV	Field of view
GESICA	Grupo de Estudio de la Sobrevida en la
	Insuficiencia Cardiac en Argentina
h	Hour
HMCAS	Hyperdense middle cerebral artery sign
i.a.	Intra-arterial
IAT	Intra-arterial thrombolysis
ICA	Internal carotid artery
ICSS	International Carotid Stenting Study
ICU	Intensive care unit
INR	International normalized ratio
IU	International units
i.v.	Intravenous
IVT	Intravenous thrombolysis
lys-plas	Human-derived Lys-plasminogen
M1	M1 segment of the middle cerebral artery
MAST-E	Multicenter Acute Stroke Trial–Europe
	Study Group 1996
MAST-I	Multicenter Acute Stroke Trial–Italy 1995
mbar	Millibars
MCA	Middle cerebral artery
MIP	Maximum intensity projection
MPR	Multiplanar reconstruction
MPRAGE	Magnetization-prepared rapid acquisition
	gradient echo
MRA	Magnetic resonance angiography
MRI mRS	Magnetic resonance imaging
mks	Modified Rankin Scale, Modified Rankin
МТ	Score Mechanical thrombectomy
MTT	Mean transit time
NASCET	North American Symptomatic Carotid
NASCET	Endarterectomy Trial
NIHSS	National Institutes of Health Stroke Scale
NINDS	National Institutes of Neurological Disorders
NINDO	and Stroke
NMDA	N-methyl-d-aspartate
PA	Posteroanterior
PAI-1	Plasminogen activator inhibitor-1
PCA	Posterior cerebral artery
PI	Platelet inhibitor
PICA	Posterior inferior cerebellar artery
PSV	Peak systolic velocity
PTA	Peripheral transluminal angioplasty
PTT	Partial thromboplastin time
PWI	Perfusion-weighted imaging

RSAR rtPA s	Removable stent-assistant revascularization Recombinant tissue plasminogen activator Seconds	TIA TOF MRA	Transient ischemic attack Time-of-flight magnetic resonance angiography
SITS-MOST	Safe Implementation of Thrombolysis in	tPA	Tissue-type plasminogen activator
	Stroke–Monitoring Study	TTD	Time to drain
SK	Streptokinase	ТТР	Time to peak
SWAN	Susceptibility-weighted angiography	U	Units
SWI	Susceptibility-weighted imaging	UK	Urokinase
SPACE	Stent-Protected Angioplasty versus Carotid Endarterectomy	WASID	Warfarin-Aspirin for Symptomatic Intracranial Disease

Contents

Preface	 •	•	•	•	• •	 •	•	•	•	 •	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	V
Contributors	 •	•	•	•					•	 •				•	•		•	•	•	 •			•	•		•	•		•	VI
Abbreviations	•	•	•	•			•		•	 •			•	•	•	•	•		•	 •				•	•	•	•	•	V	111

I	Neuroimaging of Stroke 1
1	Internal Carotid Artery Occlusion
	Introduction
	Carotid Artery
	Frequency of Carotid Artery Occlusion
	Imaging Studies2Computed Tomography2
	CT Angiography
	Angiography 4 Pseudo-occlusion of the Internal Carotid Artery 5
	References
2	Middle Cerebral Artery Occlusion
	Introduction
	Cerebral Artery 8 Etiology and Clinical Manifestations
	of Middle Cerebral Artery Occlusion
	Noncontrast Computed Tomography
	CT Perfusion Imaging 13 CT Angiography and Digital Subtraction
	Angiography 14
	References
3	Vertebrobasilar Occlusion
	Introduction
	Definition, Etiology, and Incidence
	Syndromes 19

Types of Infarction	
Imaging Studies	21
Computed Tomography and CT Angiography	21
CT Angiography	23
CT Perfusion Imaging	24
Magnetic Resonance Imaging and	
MR Angiography	25
Extracranial and Transcranial Doppler and	20
Color Duplex Sonography	26
Digital Subtraction Angiography and Patient	20
Selection for Interventional Treatment	20
References	29
Dissections · · · 30	
T. Boeckh-Behrens	
1. BOECKII-BEILTEIIS	
Introduction	30
Imaging Studies	31
Digital Subtraction Angiography	32
CT Angiography	
Ultrasound	
Magnetic Resonance Imaging and	52
MR Angiography	22
Summary	
References	37
Cerebral Venous and Sinus Thrombosis	38
- Introduction	28
Epidemiology	
Risk Factors	
Subtypes	
Clinical Signs and Symptoms	
Laboratory Findings	
	41
·····j···j - ·····	41
Direct and Indirect Signs of Cerebral Venous	
and Sinus Thrombosis	
Digital Subtraction Angiography	42
Magnetic Resonance Imaging	42
Computed Tomography	
References	4/

Neuroimaging of Stroke:

4

5

Summary	/ and Recommend	ations	. 49
---------	-----------------	--------	------

II	Treatment of Acute Ischemic Stroke 51
6	Thrombolysis
	Intravenous Thrombolysis
	Introduction
	Basic Principles of Coagulation Physiology 52 Experimental Studies of Thrombolysis in
	Acute Stroke
	Acute Stroke
	Everyday Practice of Intravenous Thrombolysis in Acute Stroke 60
	Guidelines
	Practical Recommendations
	Special Cases62Side Effects and Hemorrhages65
	Best Practice
	Outlook
	Intra-arterial Thrombolysis
	Introduction
	Technique
	Pharmacology 67
	Indication
	Efficacy
	Bridging Therapy 76 Complications 78
	Complications
	Summary
	References 79
7	Mechanical Recanalization Materials
	Aspiration Thrombectomy
	A. Kreusch and M. Knauth
	Introduction
	Penumbra System
	Indications and Contraindications
	Technique
	Complications
	Combination Therapies
	Case Report
	Summary

	Temporary Stenting in Stroke Patients	92
	Introduction	92
	Patient Preparation	
	Access	
	Crossing and Extracting the Thrombus	
	Retrievers and Other Thrombectomy Systems	
	T. Struffert and A. Doerfler	
	Introduction	96
	Technique	
	Classification of Systems	
	Summary	
	References	100
8	Treatment Concepts and Results	103
	Carotid-T Occlusion	103
	Introduction	103
	Treatment	103
	Study Results	108
	Conclusion	109
	Occlusion of the Middle Cerebral Artery	109
	T. Liebig Introduction	109
		109
	Anatomy	110
	Imaging Tests	110
	Concepts: Intravenous or Intra-arterial	111
	Thrombolysis or Mechanical Extraction?	115
	Is General Anesthesia Necessary?	
	Summary	115
	Basilar Artery Thrombosis G. Schulte-Altedorneburg and H. Brueckmann	116
	Introduction	116
	Indications for Endovascular Therapy	116
	Treatment Concepts and Results	117
	Cervical Artery Dissections	124
	A. Rohr and H. Goerike	124
	Introduction	124
	Study Results and Guidelines	124
	Treatment	124
	Interventional Therapy	126
	References	134
Tre	atment of Acute Ischemic Stroke:	

Summary and Recommendations 139

111	Treatment of Acute Cerebral Venous Occlusions	141
9	Treatment of Acute Cerebral VenousOcclusionsT. E. Mayer	142
	Epidemiology	142
	Etiology, Pathogenesis, and Symptoms	142
	Imaging Studies	142
	Treatment	142
	Endovascular Procedures	142
	Pharmacologic Thrombectomy	143

Mechanical Thrombectomy	143					
AngioJet	143					
Penumbra System	143					
Retrievers	143					
Angioplasty	144					
References	145					
Treatment of Acute Cerebral Venous Occlusions:						

Summary and	Recommendations	 146

10	Equipment: Stents, Filters, and BalloonSystems148M. Holtmannspoetter
	Introduction
	Materials for the Treatment of Extracranial
	Stenoses
	Stents 149
	Dilatation Catheters 151
	Protection Systems 151
	Materials for the Treatment of Intracranial
	Stenoses
	Stents 153
	Dilatation Catheters 153
	References 154
11	Extracranial Carotid Stenoses
	Introduction
	Indications
	Study Results 155
	Clear Indications for Stenting 157
	Materials
	Protection Systems 158
	Carotid Stents 158
	Technical Approach
	and Medication

	Patient Preparations and Technique Postprocedure Care Special Case of an ICA Pseudo-occlusion Authors' Results Summary References	159 161 162 164 165 165
12	Intracranial Stenoses W. Kurre	167
	Introduction	167 168 168 169 169 170 171 171 172 174 175 175 175
	References	176

13	Subclavian Steal Syndrome A. Berlis	178
	Introduction	178
	Etiology and Clinical Presentation	178
	Indications	179
	Treatment	179
	Operative Treatment	179
	Endovascular Treatment	179
	Follow-up Care	182
	References	182
14	Proximal Vertebral Artery Stenosis N. Lummel and H. Brueckmann	183
	Anatomy	183
	Etiology of Stenosis	183
	Diagnosis	184
	Invasive Studies	184
	Noninvasive Studies	184

	Treatment	185		
	Indications	185		
	Endovascular Therapy	185		
	Complications	187		
	References	188		
15	Proximal Stenosis of Supra-aortic Vessels J. Berkefeld	189		
	Epidemiology and Risk of Stroke	189		
	Clinical Presentation and Diagnosis	189		
	Interventional Treatment Options	191		
	Results of Interventional Therapy	192		
	Indications for Interventional Treatment	193		
	Summary	193		
	References	193		
Treatment of Supra-aortic Extra- and Intracranial				
	noses: Summary and Recommendations	195		
Ind	ex	197		

Neuroimaging of Stroke

- 1 Internal Carotid Artery Occlusion
- 2 Middle Cerebral Artery Occlusion
- 3 Vertebrobasilar Occlusion
- 4 Dissections
- 5 Cerebral Venous and Sinus Thrombosis

1 Internal Carotid Artery Occlusion

O. Jansen

Introduction

Segmental Anatomy of the Internal Carotid Artery

The intradural portion of the internal carotid artery (ICA) is divided into four segments that are named and numbered as (from distal to proximal):

- *C1 segment:* the segment below the division of the carotid artery into the middle and anterior cerebral arteries (the "carotid T")
- *C2 segment:* the distal horizontal segment of the cavernous part of the ICA
- C3 segment: the vertical segment of the cavernous part
- *C4 segment:* the proximal horizontal segment of the cavernous part

The more proximal portions of the ICA are referred to in clinical parlance (from distal to proximal) as the petrous part; the subpetrous, cervical, or suprabulbar ICA; and finally the carotid bulb and origin of the ICA.

Definition of Carotid Artery Occlusion

Note

Every occlusion site correlates with an underlying cause that is typical for that location.

For example, occlusions of the ICA at its origin or at the carotid bulb are almost always caused by atherosclerotic stenosis. Most occlusions of the cervical ICA are caused by an acute carotid dissection, which always terminates at the entrance to the petrous part of the vessel. An acute occlusion of the petrous part is rare but may be caused by atherosclerosis at that level. The same applies to acute occlusions of the cavernous part (C2–C4), which are generally caused by the occlusion of a local, preexisting atherosclerotic stenosis.

On the other hand, acute occlusions of the C1 segment or the carotid T are almost always due to embolism from a cardiac source or, less commonly, a carotid source. The carotid T is the first site of relative narrowing in the carotid circulation where an embolus of substantial size may become lodged at the arterial junction, causing an acute vascular occlusion, and may subsequently grow due to proximal and/or distal thrombosis. As a result, these carotid T or C1 occlusions typically present with a large thrombus burden.

Traumatic or spontaneous intracranial carotid dissections are a very rare cause of acute carotid occlusions. Spontaneous intracranial carotid dissections, which are even rarer than traumatic dissections, may occur in patients with fibromuscular dysplasia or may be secondary to vasculitis.

Frequency of Carotid Artery Occlusions

Acute occlusions of the ICA, whether intra- or extracranial, have been recognized as the cause of \sim 5% of all strokes. Like acute basilar artery thrombosis, they are quite rare but may have severe manifestations due to the potential magnitude of the acute cerebral perfusion deficit, especially with a carotid-T occlusion, as well as the severity of acute neurologic deficits and the potential size of the resulting brain infarction.

In patients with a well-formed circle of Willis that would allow for the development of a collateral circulation, acute carotid occlusions proximal to the C1 segment may be asymptomatic or may produce fluctuating clinical symptoms. The latter presentation reflects a deficiency of collateral flow that is blood pressure-dependent and may lead to a hemodynamic infarction pattern.

Imaging Studies

Computed Tomography

As in all patients with acute stroke, noncontrast computed tomography (CT) is the initial imaging study of choice for patients with an acute carotid artery occlusion

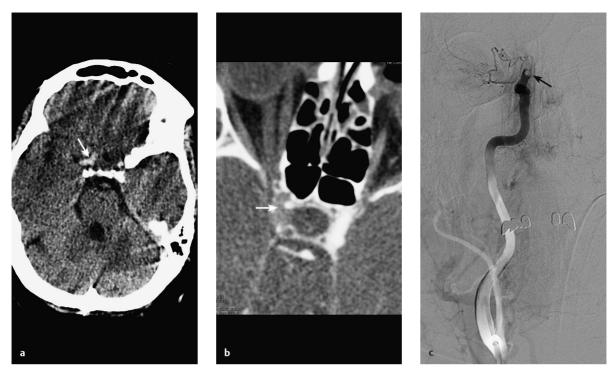


Fig. 1.1a-c Acute embolic occlusion of the carotid T. a The hyperdense embolus is clearly visualized on cranial CT (*arrow*).

b CTA (source image) documents lack of opacification of the carotid siphon (*arrow*).

c DSA demonstrates the occlusion site in the C1 segment of the ICA and defines the proximal end of the thrombus (*arrow*).

(see Chapter 2). It can exclude hemorrhagic stroke and other causes of an acute neurologic deficit.

If the acute carotid occlusion is located proximal to the C1 segment, CT scans usually show no abnormalities other than possible early infarct signs (see Chapter 2 for more details). If collateral flow is deficient and clinical symptoms have been present for some time, CT images of these proximal carotid occlusions may demonstrate a chain of small infarctions in the terminal carotid branches above the level of the ventricles (cella media).

By contrast, the intravascular thrombi causing an acute occlusion of the carotid T and/or C1 segment almost always produce a hyperdense artery sign on noncontrast CT (see Chapter 2). This is particularly true when we note that the large thrombus burden of these occlusions allows for direct visualization of the thrombus even in relatively thick CT slices (**Fig. 1.1a**).

CT Angiography

CT angiography (CTA) is the CT technique of choice for the detection of carotid occlusion in acute stroke patients. Lack of opacification of the ICA and the imaging correlate of the carotid occlusion can be demonstrated during interpretation of the CT source images as well as with 2D and 3D reconstructions (**Fig. 1.1b**). On the other hand, accurate localization of the carotid occlusion may be difficult with CTA. Ordinarily, CTA is performed in such a way that data acquisition for the CT slices takes place during the first pass of the contrast material through the arterial circulation. In patients with a distal carotid artery occlusion, the more proximal carotid segments are occupied by a blood column that admits contrast material at a very slow rate, if at all. This happens too slowly to be detected during data acquisition for CTA.

Practical Tip

Even if some small distal branch vessels from the ICA are still patent, such as the ophthalmic artery, meningohypophyseal trunk, posterior communicating artery, or anterior choroidal artery, overall blood flow in the ICA is still so diminished that the artery will show a general lack of opacification and appear occluded on CTA. It may be helpful in these cases to carefully reevaluate the noncontrast CT for hyperdense vessel signs or even view the CTA source images with a different window setting to permit a more accurate localization of the occlusion site. Based on the phenomenon of slow blood flow in the ICA described above, CTA may also yield false-positive results. This can easily cause a pseudo-occlusion to be missed. If necessary, a second CTA dataset can be acquired immediately after the first to help localize the occlusion or aid differentiation from a pseudo-occlusion.

As a rule, magnetic resonance imaging (MRI) with MR angiography (MRA) is rarely used in patients with acute stroke. The problems of imprecise localization and differentiation from pseudo-occlusion described above for CT and CTA apply with equal validity to MRI and MRA.

Angiography

The definitive diagnosis and localization of an ICA occlusion can be established by catheter angiography using digital subtraction (DSA) technique (**Fig. 1.1c**). However, the differentiation between occlusion and pseudo-occlusion relies on special techniques that require a cooperative or sedated patient or the use of general anesthesia.

Practical Tip

The diagnostic catheter should be placed just proximal to the presumed ICA occlusion site. This presents no difficulty with extracranial carotid occlusions. The contrast material is then injected at sufficiently high concentration (undiluted if necessary), and the acquisition time of the DSA series should be long enough to detect the slow trickle of contrast material into a blood column, if present, or into the collapsed poststenotic lumen of a pseudo-occlusion. An acquisition time of up to 10–15 seconds at a film rate of 1–0.5 frames/s may be necessary to avoid missing a pseudo-occlusion. Meanwhile, the development of a collateral circulation via extra- or intracranial vessels should be documented to detect, say, retrograde filling of the carotid siphon via the ophthalmic artery (**Fig. 1.2**).

Caution

DSA findings may be misinterpreted in patients with acute distal occlusions of the ICA unless the correct protocol is followed.

Fig. 1.2a,b Old occlusion of the cervical carotid artery on DSA.

- a Survey image with contrast injection documents an apparent occlusion with pseudotapering at the top of the carotid bulb.
- **b** Selective catheterization of the carotid stump confirms a definitive occlusion in the upper cervical portion of the ICA.

An occlusion of the ICA that also occludes the distal branches (ophthalmic artery, etc.) leads to the stasis of blood throughout the ICA lumen. When the diagnostic catheter is placed into the common carotid artery (CCA) or even the proximal ICA, there will be no distal runoff of injected contrast material and even a very long angiographic series may create the impression of a proximal occlusion. Not infrequently, the injected contrast material may layer along the standing blood column in the extracranial ICA, mimicking the tapered sign or string sign of an extracranial ICA dissection (see the section on Digital Subtraction Angiography, p. 33) (Fig. 1.2a). Doubts can be resolved only by a more distal catheterization of the ICA lumen, perhaps advancing the microcatheter past the petrous part of the artery and repeating the angiographic series so that the occlusion site can be accurately located (Fig. 1.2b). Sometimes the location and length of an occlusion are clearly appreciated only when endovascular recanalization is performed. By carefully injecting contrast through the microcatheter and advancing the microcatheter and microwire across the occlusion site into the intracranial circulation, the operator can define the entire lumen of the ICA, the occlusion, and the length of the thrombus. Meanwhile the location of the occlusion and whether it can be passed with a catheter can provide clues to the etiopathogenesis of the occlusion.

Pseudo-occlusion of the Internal Carotid Artery

Note

By definition, a pseudo-occlusion of the ICA is present when noninvasive vascular imaging demonstrates a vascular occlusion but invasive catheter angiography documents a high-grade stenosis or partial occlusion.

Three grades of ICA pseudo-occlusion have been described (Kniemeyer et al. 1996):

- *Grade I:* a high-grade stenosis of the ICA in which the original lumen of the carotid artery is preserved (**Fig. 1.3**).
- *Grade II:* a segmental occlusion of the actual carotid lumen, but the distal lumen still carries antegrade flow through vasa vasorum in the carotid wall. Usually the carotid lumen is markedly reduced (**Fig. 1.4**).
- *Grade III:* an actual carotid occlusion in which the ICA stump is perfused by retrograde flow from the external carotid artery (ECA), usually as far as the occlusion site (**Fig. 1.5**).

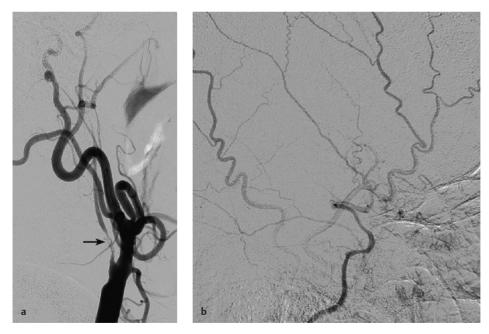


 Fig. 1.3a,b Grade I pseudo-occlusion.
 a Catheter angiography demonstrates a high-grade proximal stenosis of the ICA (*arrow*). The carotid lumen is preserved but markedly reduced in caliber.

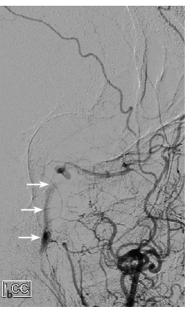

b A long DSA series can still trace the narrowed carotid lumen into the cranial cavity.

Fig. 1.4 Grade II pseudo-occlusion. Magnified DSA image of the common carotid artery demonstrates the recruitment of vasa vasorum. The original carotid lumen is occluded.

Π

- Fig. 1.5a,b Grade III pseudo-occlusion.
- a Survey angiogram shows residual filling of the proximal ICA stump through very small lumina.
- **b** The actual lumen of the cervical and petrous ICA is filled by retrograde flow from ECA collaterals (*arrows*).