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One of the biggest dreams of medicine from the 1940s, the complete defeat of 
infectious diseases caused by bacteria, was treated to a rough awakening with 
the rise and dissemination of antibiotic resistance, toxins, and pathogenicity 
functions. In the early 1960s it was found that this dissemination was usually 
associated with the acquisition of genes that were located in extrachromosomal 
elements analogous to those that Joshua Lederberg had called “plasmids” in 
1952. The importance of the discovery led to intense research on plasmid biology, 
which in turn resulted in innumerable benefits to the development of science.  The 
list of discoveries in the fields of cell and molecular biology is far too long to detail 
in this Preface.  In addition, a monumental contribution of research on plasmids 
was instrumental in the development of molecular cloning and the biotechnology 
revolution that ensued.  Their role in virulence and antibiotic resistance, together 
with the generalization of “omics” disciplines, has recently ignited a new wave of 
interest in plasmids. As models for understanding innumerable biological mecha-
nisms of living cells, as tools for creating the most diverse therapies, and as inval-
uable helpers to understand the dissemination of microbial populations, plasmids 
continue to be at the center of research.

marcelo e. tolmasky
Juan C. alonso
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Clarence I. Kado1

1Historical Events That Spawned
the Field of Plasmid Biology

INTRODUCTION

Extrachromosomal genetic elements, now widely known
as plasmids, were recognized over 60 years ago. Histori-
cally, extrachromosomal genetic elements that trans-
ferred antibiotic resistance to recipient pathogenic
bacteria were called R factors, and those that were con-
jugative were called T factors (1). Bacteria, particularly
Shigella strains harboring R and T factors, were found
in 1951 in Japan, then in Taiwan and Israel in 1960
(2), and in the United States and Europe in 1963 to
1968 (3). The F factor (for fertility) was the genetic ele-
ment, also called the “sex factor,” that was required for
bacterial conjugation (4–8). The sex factor determined
the ability of Escherichia coli strain K12 to conjugate
and transfer genes to recipients.

All of these extrachromosomal elements that propa-
gated either autonomously in the cytoplasm or as an
integral part of the host chromosome were called epi-
somes (9). To avoid unnecessary confusion in the usage of
a number of terms related to extrachromosomal elements
such as plasmagenes, conjugons, pangenes, plastogenes,
choncriogenes, cytogenes, proviruses, etc., Lederberg (10;
Fig. 1) coined the term plasmid to represent any extra-
chromosomal genetic entity. This term has been widely
accepted and used with the understanding that these
genetic elements are not organelles, individual genes,

parasites (viruses), or symbionts (11). Henceforth, plas-
mid(s) became the conventional term used today.

Based on the established fact that plasmids can re-
side in E. coli and Shigella spp., a number of workers
began searching for plasmids in other enteric bacteria
as well as in pseudomonads and Gram-positive bacte-
ria. By 1977, over 650 plasmids were listed and classi-
fied into 29 incompatibility groups (12). Recently,
through DNA sequence comparisons of 527 plasmids,
there has appeared to be a great deal of interchange
of genes between plasmids due to horizontal gene trans-
fer events (13). Incompatibility is determined when
two plasmids introduced into a single cell can both rep-
licate and be maintained stably. If the plasmids coexist
(replicate and be maintained stably), they are consid-
ered compatible. If the plasmids cannot coexist stably,
their replication systems are incompatible (14). The in-
compatible plasmids cannot share a common replica-
tion system. Thus, a plasmid classification system was
developed that allowed researchers to make logical
comparisons of their work on similar plasmids. The
classification also provided a system that helped pre-
vent instituting a different name or number for identi-
cal plasmids worked on by separate laboratories.

From these early studies, several basic areas of re-
search on plasmids evolved. Researchers focused on

1Plant Pathology, University of California Davis, Davis, CA 95616.
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(i) analyzing the physical structure and locating genes
on plasmids; (ii) identifying the replication system and
the mechanism of replication of plasmids, including
how they partition; (iii) determining the conjugative
machinery and the mechanism and regulation of plasmid
transfer; (iv) dissecting the genetic traits conferred by
plasmids, such as metabolic TOL plasmids, bacteriocin-
producing Col plasmids, tumor-inducing Ti and viru-
lence plasmids, heavy metal resistance pMOL plasmids,
radiation resistant plasmids, etc; (v) restructuring plas-
mids for utilitarian use, e. g., gene vector development,
reporter systems, genetic engineering of mammals and
plants; and (vi) surveying the epidemiology and horizon-
tal gene transfer events and reconstructing the evolution
of plasmids.

BIRTH OF THE FIELD OF
PLASMID BIOLOGY

The term plasmid biology was conceived in 1990 at the
Fallen Leaf Lake Conference on Promiscuous Plasmids
in Lake Tahoe, California. International conferences on

plasmid biology were henceforth launched, being held
in different countries including Germany, Canada,
Spain, the United States, Austria, Mexico, the Czech
Republic, Greece, Poland, and Argentina. An example
of the proceedings of one of these conferences was
published in 2007 (15). An Asian venue is yet to be
selected. The International Society for Plasmid Biology
was established in 2004 and remains an active interna-
tionally recognized professional society (www.ISPB.org).

EARLY STRUCTURAL STUDIES AND
GENETIC MAPPING OF PLASMIDS

Knowledge gained from a novel method of separating
closed circular DNA from linear DNA in HeLa cells
using dye-buoyant CsCl density gradient centrifugation
(16) made it possible to examine plasmid DNA derived
from bacteria. Earlier studies used analytical centrifu-
gation and density gradient centrifugation on an E. coli
“episomal element” (F-lac) that was conjugatively
transferred to Serratia marcescens. The 8% difference
in guanine plus cytosine content between the episome
of E. coli (50% GC) vs. S. marcescens DNA (58% GC)
was sufficient to neatly separate the episome from
chromosomal DNA and established the fact that the
episome was indeed made of DNA (17). Further physi-
cal evidence led to the suggestion that bacteriophage
φX174 DNA was circular (18). This was confirmed
by electron microscopy by Kleinschmidt et al. (19).
Kleinschmidt carefully prepared and used the Langmuir
trough technique and examined over 1,000 electron-
micrographs to obtain a perfect photograph (A. K.
Kleinschmidt, personal communication, 1964). More-
over, phage PM2 DNAwas observed by electron micros-
copy to be a closed circular double-stranded molecule
(20). These findings prompted researchers to examine
by electron microscopy bacterial extrachromosomal
elements of their particular interest and confirmed that
plasmids are indeed circular DNA molecules (although
linear plasmids also exist).

RECOGNITION OF PLASMID REPLICATION
AND PARTITIONING SYSTEMS

Replication of plasmids requires DNA synthesis pro-
teins encoded by chromosomal genes of the hosting
bacterial cell. Between one and eight proteins can be in-
volved, depending on the plasmid (Table 1). DNA rep-
lication of plasmids is initiated by the binding of the
initiator protein to specific binding sites at the replica-
tive origin. Initiator binding promotes the localized
unwinding of a discrete region from the DNA origin.

Figure 1 Joshua Lederberg.
doi:10.1128/microbiolspec.PLAS-0019-2013.f1
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A helicase is then directed to the exposed single-strand-
ed DNA region followed by a prepriming complex to
initiate DNA synthesis (21). Initiation of DNA replica-
tion by the initiator binding to the origin sequence(s) is
a critical function in plasmid survival as an extracellu-
lar genetic element.

As part of the plasmid replication process, specific
plasmid concentrations (copy number) occur as the
host bacterial cell initiates cell division. Partitioning
and stable segregation of the plasmid are initiated.
Partition systems are categorically classified based on
ATPase proteins (22). Type I is characterized by Walker
box ATPases, while a subset, type Ia, occurs when the
nucleotide-binding P-loop is preceded by an N-terminal
regulatory domain, and in type Ib this is not the case.
The mechanisms that contribute to the stable segrega-
tion of plasmids F, P1, R1, NR1, pSC101, and ColE1
have been reviewed (23). The locus responsible for par-
titioning of pSC101 was designated “par” (24). The
par locus is able to rescue unstable pSC101-derived
replicons in the cis, but not the trans, configuration.
It is independent of copy number control, does not
specify plasmid incompatibility, and is not associated
directly with plasmid replication functions. From phy-
logenetic analysis of par loci from plasmids and bac-
terial chromosomes, two trans-acting proteins form a
nucleoprotein complex at a cis-acting centromere-like
site (22). One these proteins, identified as an ATPase,
functions to tether plasmids and chromosomal origin
regions to specific poles of the dividing cells. Therefore,
the mitotic stability of plasmids depends on a centro-
mere, a centromere-binding protein, and an ATPase. In
the case of plasmid F, two genes, sopA and sopB, and a
centromeric target site, sopC, function to ensure that
both daughter cells receive a daughter plasmid during
cell division. The products of sopA and sopB stabilize

the plasmid bearing a centromere-like sequence in sopC
(25). SopA hydrolyzes ATP by binding DNA (26). The
centromere-like region contains a 43-bp sequence that
is repeated 12 times in the same orientation (27), and
each element contains a 7-bp inverted repeat targeted
by SopB (28). Like sopA, sopB, and sopC of plasmid F,
plasmid P1 has counterpart partition genes (parA,
parB) and a target site (pars) (29).

Some plasmids such as ColE1 are partitioned ran-
domly at cell division, and their inheritance is propor-
tional to the number of plasmids present in the cell
(30). High-copy-number plasmids usually do not re-
quire an active par system for stable maintenance be-
cause random distribution ensures plasmid segregation
to the two daughter cells at the time of cell division,
while larger, low-copy plasmids such as F, R100, and
P1 possess genes that encode inhibitors of host cell
growth. In the case of plasmid F, the ccdA and ccdB
(for coupled cell division) genes encode an 8.7-kDa and
an 11.7-kDa protein, respectively, the latter of which
inhibits cell growth (31). This inhibitor functions in
cells that have lost their plasmid due to errors in repli-
cation or cell division. The action of the inhibitor is
prevented by the CcdA protein, which loses stability in
the absence of the plasmid and therefore no longer
functions to inhibit the action of the CcdB protein.
Plasmid biologists have referred to this interesting
mechanism of controlling plasmid copy number as a
“killing” function that specifically kills cells lacking a
plasmid (or postsegregational killing).

LANDMARKS LEADING TO PLASMID-
MEDIATED CONJUGATIVE TRANSFER

The historical experiments on plating together two
different triple auxotrophic mutants leading to proto-
trophic bacterial colonies that propagated indefinitely
on minimal medium was the classical laboratory event
that led Lederberg and Tatum (6, 7) to conclude that
there was sex in bacteria (32). Examination of single
cell isolates of these prototrophic strains showed
that they were indeed heterozygotes. Hayes (4) showed
the heterothallic nature of conjugation whereby re-
combination is mediated by the one-way transfer of
genetic material from donor to recipient bacteria. Self-
transmissible plasmids such as F, R1, R100, and R6K
encode the capacity to promote conjugation. They all
possess related transfer (tra) genes. Plasmid F (called
sex factor)-mediated conjugation has received the most
attention. E. coli harboring this sex factor produce a
filamentous organelle called the F pilus (Fig. 2) that
was needed for conjugation between sex factor-bearing

Table 1 Plasmid initiator proteins

Initiator
Replication

mode Plasmid
Molecular

mass References

RepA Theta type R1, R100 33 kDa 74, 75

RepA1 Theta type EntP307 40 kDa 76

RepA Theta type pSC101 37.5 kDa 77, 78

RepC Theta type RSF1010 31 kDa 79

RepE Theta type F 29 kDa 80

TrfA Theta type RK2 33 kDa 81

π (pir) Theta type R6K 35 kDa 82

RepA Rolling circle pA1 5.6 kDa 83

RepB Rolling circle pLS1 24.2 kDa 84

RepC Rolling circle pT181 38 kDa 85

RepD Rolling circle pC221 38 kDa 86
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donors (known as F+ donors) and F− recipients. Histor-
ically, the F pilus (or “sex pilus,” coined by Harden and
Meynell [33] and reviewed by Tomoeda et al. [34]) was
suggested by Brinton (35) to serve as a conduit through
which DNA passes. Somewhat similar to bacteriophage
(T phage) tail retraction, the F pilus was proposed to
retract and bring together conjugating cells into wall-
to-wall contact (36, 37). Although the F pilus is needed
for initial contact between F+ and F− cells, it is not nec-
essary for DNA transfer after the contacts have stabi-
lized (38). The formation of mating pairs involves a
complex apparatus bridging the donor cell envelope
that assembles the conjugative pilus. The pilus inter-
acts with the recipient cell and apparently retracts by
depolymerization into the donor cell, culminating in in-
timate wall-to-wall contact during mating-pair stabili-
zation (38, 39).

This type of intimate contact, termed the conjuga-
tional junction, between stabilized mating pairs was

examined by electron microscopy of thin sections of the
junction (40). No specific substructure such as a plas-
ma bridge was observed. Interestingly, the F pilus of
E. coli was claimed to support stable DNA transfer
in the absence of wall-to-wall contact between cells
(41). In earlier work using micromanipulation, Ou and
Anderson (42) showed DNA transfer in the absence
of direct cell-to-cell contact. More recently, the F
pilus was observed in real-time visualization to mediate
DNA transfer at considerable cell-to-cell distances (43).
Most (96%) of the transferred DNA integrated by re-
combination in the distal recipient cells.

Genetic and sequence analyses have provided further
insights to the mechanism of plasmid DNA transfer.
With conjugative plasmids, the genes required for mat-
ing pair formation and DNA transfer are located in one
or two clusters identified as the transfer (tra) regions
(44). The proteins involved in the unidirectional trans-
fer of single-stranded DNA from donor to recipient are
encoded by the tra operon of the F plasmid. These pro-
teins form the relaxosome, which processes plasmid
DNA at the origin of transfer (oriT). Sequence similari-
ties were recognized between pilin-encoding genes of
F-like plasmids (45). Studies of the promiscuous DNA
transfer system encoded by the Ti (for tumor-inducing)
plasmid of Agrobacterium tumefaciens revealed that
the virB operon encodes a sex pilus involved in T-DNA
transfer to plants (46). Moreover, the virB operon of
the Ti plasmid exhibits close homologies to genes
that are known to encode the pilin subunits and pilin
assembly proteins of other conjugative plasmids such as
F, R388, RP4, and even the ptl operon of Bordetella
pertussis (46, 47). The components of these plasmid
transfer apparatuses became classified as members of
the type IV secretion family (48). The F plasmid trans-
fer apparatus has homologs to VirB proteins encoded
by the virB operon of the type IV secretion system (49).
In fact, the VirB2 propilin protein is similar to the TraA
propilin of F and is processed into their respective
pilin subunit of a size (50–53) similar to the T-pilus
(51, 54). Posttranslational processing also occurs with
VirB1, a pilin-associated protein (55). Interestingly,
the type IV DNA-protein transfer system of the Ti plas-
mid is highly promiscuous by promoting transfer be-
tween the domain Bacteria to members of the domain
Eukarya (56).

Based on the intensive and excellent studies on plas-
mid DNA transfer systems of narrow and broad-
host-range conjugative plasmids by a large number of
excellent researchers past and present (reviewed in 57,
58), it appears that the transmission or transfer of plas-
mids is essential to their survival (see below).

Figure 2 Purified F pili bearing spherical RNA MS2 phages.
Electron micrograph courtesy of Professor Manabu Inuzuka,
Fukui Medical University, Fukui, Japan. Bar = 2000 Å.
doi:10.1128/microbiolspec.PLAS-0019-2013.f2

6 INTRODUCTION

http://dx.doi.org/10.1128/microbiolspec.PLAS-0019-2013.f2


FUNCTIONAL ATTRIBUTES REQUIRED FOR
PLASMID PERSISTENCE AND SURVIVAL

Conjugative transfer of plasmids reflects an indispens-
able trait required for their ensured survival as selfish
DNA molecules (56, 59). Traits such as conferring anti-
biotic resistance were first recognized as being plasmid-
borne in Shigella and Salmonella spp. as described in
the introduction above. Antibiotic resistance conferred
by plasmid genes provided survival value to pathogens
that would otherwise be killed by the antibiotic(s). This
in turn offered survival and maintenance of the plasmid
itself in the antibiotic-resistant pathogenic bacterial
host. Likewise, metabolic/catabolic plasmids confer on
host bacteria the ability to survive in harsh environ-
ments such as in sediments from industrial waste and
from mining exudates of silver, copper, cadmium,
tellurite, etc. Unusual environments such as sites con-
taining an abundance of substrates such as aromatic
hydrocarbons, toluene, xylene, pesticides, herbicides,
and organic waste products all provided specialized
niches for bacteria that live under the auspices of spe-
cialized enzymes that degrade or modify one or more of
these compounds. These bacteria harbor plasmids that
confer on their host cell the ability to metabolize, de-
grade, or modify substances that otherwise would be
toxic or lethal to the host bacterial cell. The catabolic
TOL plasmid pWWO, first described by Williams and
Murray (60), is one of the best studied for its catabolic
enzymes and genetic structure (61).

The selfishness of plasmids is exemplified by plas-
mids encoding bacteriocins that kill susceptible bacteri-
al cells not harboring the same or like plasmids. The
lethal action of these antibacterial proteins occurs
through puncturing plasma membranes, degrading nu-
cleic acids, or cleaving peptidoglycans. Examples of
bacteriocins are colicin encoded by plasmid ColE1 (62),
cloacin encoded by plasmid CloDF13 (63), and nisin F
encoded by plasmid pF10 (64).

Of medical and veterinary relevance are plasmids
that confer virulence traits on their bacterial hosts. Var-
ious pathogenic E. coli strains harbor plasmids that
confer interesting virulence traits (65). Loss of the viru-
lence-conferring plasmid results in the loss of its patho-
genic trait unless the pathogenicity island transposes
into the chromosome of the bacterial host. Another
member of the Enterobacteriaceae are Shigella spp. All
invasive Shigella flexneri strains, regardless of serotype,
harbor a large virulence plasmid, pWR110 (66). Muta-
genesis or curing of the plasmid results in the loss of
pathogenicity. Plasmid-conferred virulence is not re-
stricted to Gram-negative bacteria. Indeed, the patho-
genicity of Staphylococcus aureus is highly dependent

on its resident plasmid (67). The genes conferring the
pathogenic trait and antibiotic resistance are highly
conserved, and their spread among S. aureus strains is
restrained. A number of plant pathogens also harbor
virulence plasmids, a number of which encode secretion
machinery for injection into their host plants (reviewed
in Kado [68]).

RECONSTRUCTION OF PLASMIDS FOR
BIOTECHNOLOGYAND
BIOMEDICAL APPLICATIONS

The development of recombinant DNA techniques (69)
has led to a multitude of possibilities of designing plas-
mid vector systems useful in fundamental research and
industrial, agricultural, and medical applications. Early
vector systems were based on ColE1 derivatives that
were primarily restricted to E. coli owing to their repli-
cation machinery. The introduction of broad-host-range
plasmids such as RK2 and RSF1010 made it possible to
introduce recombinant DNA technologies into bacteria
other than members of the Enterobacteriaceae. In re-
cent times, a number of plasmid shuttle vector systems
have become commercially available, too numerous to
list in this paper. Plasmids constructed as vectors for
various purposes are reviewed elsewhere (70). Some
examples of useful vector systems are listed in Table 2.
Vectors designed for pharmaceutical and genetic engi-
neering of mammalian and plant cells have been re-
cently reviewed (71–73).

CONCLUSION AND FUTURE
OF PLASMID BIOLOGY

Plasmids have provided the basic foundation for re-
combinant DNA technologies. Significant insights are
being gained from genome sequencing and reconstruc-
tion by computer modeling of prospective enzymes
(proteins) encoded by sequenced plasmid genes. The
commercially available kits for plasmid isolation, DNA
amplification, sequencing, and a large number of puri-
fied enzymes have made earlier laborious procedures
part of history. However, at the same time, there is
the loss of insightful knowledge due to the absence of
on-hand experiences for isolating nucleic acids and pro-
teins and seeing exactly what they do in reconstruction
experiments.

In-depth studies of how plasmids are maintained and
dispersed, and how they acquire or lose encoded traits,
and of why they persist in the natural and even in man-
made environments all are important questions that re-
main in the field of plasmid biology. Plasmid biologists
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who, “outside of the box” (e.g., replication, partition-
ing, conjugation) have far-sighted visions of the future
prospects of the field of plasmid biology will be the key
contributors to the science.

Acknowledgment. Conflicts of interest: I disclose no conflicts.

Citation. Kado CI. 2014. Historical events that spawned the
field of plasmid biology. Microbiol Spectrum 2(5):PLAS-
0019-2013.

References
1. Mitsuhashi S, Kameda M, Harada K, Suzuki M. 1969.

Formation of recombinants between non-transmissible
drug-resistance determinants and transfer factors. J
Bacteriol 97:1520–1521.

2. Nakaya R, Nakamura A, Murata Y. 1960. Resistance
transfer agents in Shigella. Biochem Biophys Res
Commun 3:654–659.

3. Mitsuhashi S. 1977. Epidemiology of R factors, p 25–
43. In Mitsuhashi S (ed), R Factor, Drug Resistance
Plasmid. University Park Press, Baltimore, MD.

4. Hayes W. 1952. Recombination in Bact. coli K12: uni-
directional transfer of genetic material. Nature (London)
169:118–119.

5. Hayes W. 1953. Observations on a transmissible agent
determining sexual differentiation in Bact. coli. J Gen
Microbiol 8:72–88.

6. Lederberg J, Tatum EL. 1946. Novel genotypes in
mixed cultures of biochemical mutants of bacteria. Cold
Spring Harbor Symp Quant Biol 11:113–114.

7. Lederberg J, Tatum EL. 1946. Gene recombination in
Escherichia coli. Nature (London) 158:558.

8. Lederberg J, Cavalli LL, Lederberg EM. 1952. Sex com-
patibility in Escherichia coli. Genetics 37:720–730.

9. Jacob F, Wollman EL. 1958. Les épisomes, elements
génétiques ajoutés. C R Hebd. Seances Acad Sci 247:
154–156.

10. Lederberg J. 1952. Cell genetics and hereditary symbio-
sis. Physiol Rev 32:403–430.

11. Lederberg J. 1998. Plasmid (1952–1997). Plasmid 39:
1–9.

12. Bukhari AI, Shapiro JA, Adhya SL (ed). 1977. DNA In-
sertion Elements, Plasmids, and Episomes. Cold Spring
Harbor Laboratory, Cold Spring Harbor, NY.

13. Zhou Y, Call DR, Broschat SL. 2012. Genetic relation-
ships among 527 Gram-negative bacterial plasmids.
Plasmid 68:133–141.

14. Novick RP. 1987. Plasmid incompatibility. Microbiol
Rev 51:381–395.

15. Kado CI, Helinski DR. 2007. Proceedings of the inter-
national symposium on plasmid biology. Plasmid 57:
182–243.

16. Radloff R, Bauer W, Vinograd J. 1967. A dye-buoyant-
density method for the detection and isolation of closed

Table 2 Examples of plasmid vector systems and their uses

Vector Application References

pBR322 General cloning, provided basis for ColE1 cloning vector derivatives 87

pUC Multiple cloning sites, open reading frame DNA as lacZ fusions controlled by lac regulatory elements 88–90

pHG175 Multiple cloning sites, promoter probe for tetracycline resistance 91

pKUN9 A pUC9 derivative modified whereby both strands of a cloned DNA fragment can be obtained in a

single-stranded form for expeditious sequencing

92

pUCD2335 Mini-T DNA vector bearing a high-copy vir region for genetic engineering of plants 93

pBIN19 Binary vector system for genetic engineering of plants 72

pUCD607 Luciferase reporter of real-time infection by bacteria in higher cells 94

pUCD800 Vector for positive selection of transposons and insertion elements via sucrose sensitivity conferred by the

sacB gene that encodes levan sucraseLethal to enteric bacteria

95

pUCD2715 Vibrio luciferase vector for genetic engineering of plants to make them glow in the dark 96

pWS233 sacRB bearing vector bearing gentamicin and tetracycline resistance genes and Mob functions of RP4 97

pUCD4121 Vector that generates unmarked deletions in bacterial chromosomes; bears a sacB lethality and neomycin

resistance gene

98

pGKA10CAT A Bluescript pKS(+) derivative for functional analysis of enhancer domains of a transcriptional

regulatory region

99

pXL1635 Derived from pRK290, contains RP4 par fragment and deleted oriT of RK2; for industrial use 100

pJQ200 &

pJQ210

Suicide vectors bearing sacB, ori of pACYC184, and oriT and mob of RP4 101

pUCD5140 Light sensitivity-producing vector derived from pUCD2335 containing a rbcS3A promoter-gus fusion

and CaMV35S promoter driving a phytochrome A gene of Avena sativa

102

pJAZZ Linear vector for E. coli cloning, contains phage N15 ori, minimizes formation of nonrecombinants 103

pHP45Ω A pBR322 derivative for insertional mutagenesis, bearing Ω, and streptomycin/spectinomycin resistance genes

flanked by inverted repeats with transcription/translation termination signals and synthetic polylinkers

104

8 INTRODUCTION



circular duplex DNA: the closed circular DNA in HeLa
cells. Proc Natl Acad Sci USA 57:1514–1521.

17. Marmur J, Rownd R, Falkow S, Baron LS, Schildkraut
C, Doty P. 1961. The nature of intergeneric episomal
infection. Proc Natl Acad Sci USA 47:972–979.

18. Fiers W, Sinsheimer RL. 1962. The structure of the
DNA of bacteriophage X174 III. Ultracentrifugal evi-
dence for a ring structure. J Mol Biol 5:424–434.

19. Kleinschmidt AK, Burton A, Sinsheimer RL. 1963. Elec-
tron microscopy of the replicative form of the DNA of
the bacteriophage phi-X174. Science 142:961.

20. Espejo RT, Canelo ES, Sinsheimer RL. 1969. DNA of
bacteriophage PM2: a closed circular double-stranded
molecule. Proc Natl Acad Sci USA 63:1164–1168.

21. Bramhill D, Kornberg A. 1988. Duplex opening by
dnaA protein at novel sequences in initiation of replica-
tion at the origin of the E. coli chromosome. Cell 52:
743–755.

22. Gerdes K, Møller-Jensen J, Bugge Jensen R. 2000. Plas-
mid and chromosome partitioning: surprises from phy-
logeny. Mol Microbiol 37:455–466.

23. Nordström K, Austin SJ. 1989. Mechanisms that con-
tribute to the stable segregation of plasmids. Annu Rev
Genet 23:37–69.

24. Meacock PA, Cohen SN. 1980. Partitioning of bacterial
plasmids during cell division: a cis-acting locus that
accomplishes stable plasmid inheritance. Cell 20:529–
542.

25. Ogura T, Hiraga S. 1983. Partition mechanism of F
plasmid: two plasmid gene-encoded products and a
cis-acting region are involved in partition. Cell 32:
351–360.

26. Ah-Seng Y, Lopez F, Pasta F, Lane D, Bouet J-Y. 2009.
Dual role of DNA in regulating ATP hydrolysis by the
SopA partition protein. J Biol Chem 284:30067–30075.

27. Mori H, Kondo A, Ohshima A, Ogura T, Hiraga S.
1986. Structure and function of F plasmid genes essen-
tial for partitioning. J Mol Biol 192:1–15.

28. Hayakawa Y, Murotsu T, Matsubara K. 1985. Mini-F
protein that binds to a unique region for partition of
mini-F plasmid DNA. J Bacteriol 163:349–354.

29. Abeles AL, Snyder KM, Chattoraj DK. 1984. P1 plas-
mid replication: replicon structure. J Mol Biol 173:307–
324.

30. Summers DK, Sherratt DJ. 1984. Multimerization of
high copy number plasmids causes instability: ColE1 en-
codes a determinant essential for plasmid monomeriza-
tion and stability. Cell 36:1097–1103.
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INTRODUCTION

Iteron plasmids are extrachromosomal genetic elements
that can be found in all Gram-negative bacteria. De-
spite the fact that these plasmids bring antibiotic re-
sistance to host bacterium, they can also bring other
features, for example, genes for degradation of specific
compounds or toxin production. Iteron plasmids pos-
sess characteristic directed repeats located within the
origin of replication initiation that are called iterons.
These plasmids became model systems for investigation
of the molecular mechanisms for DNA replication initi-
ation and for the analysis of mechanisms of control of
plasmid copy number in bacterial cells. This research
has provided our basic understanding of plasmid biol-
ogy and the relationship between plasmid DNA and
host cells. The control mechanisms utilized by iteron
plasmids are based on the nucleoprotein complexes
formed by the plasmid-encoded replication initiation
protein (Rep). The Rep proteins interact with iterons,
which initiates the process of plasmid DNA synthesis,
but Rep proteins are also able to form complexes with
iterons, which inhibits the replication initiation pro-
cess. This inhibition is called “handcuffing.” Also, Rep
protein can interact with inverted repeated sequences,
causing transcriptional auto-repression. Finally, various
chaperone protein systems and proteases affect the Rep
activity and, therefore, overall plasmid DNA metabolism.

STRUCTURE OF THE ORIGIN OF
REPLICATION INITIATION

The origin region is one of the most important se-
quences within plasmid DNA; it ensures plasmid au-
tonomous replication, independent of replication of the
bacterial chromosome. As in other replicons, plasmid
origins consist of characteristic motifs recognized by
replication initiation proteins. In iteron-containing plas-
mids (Fig. 1), iterons that are directly repeated se-
quences play a crucial role during DNA replication
initiation and are critical for plasmid copy number
control (see also text below). They are quite short se-
quences, whose lengths vary from 17 bp in plasmid
RK2 (1), 19 bp in plasmids F (2) and P1 (3), to 22 bp in
R6K (4), pPS10 (5), and plasmids from the IncQ in-
compatibility group (6). Sometimes, such as in plasmid
pXV2 from the IncW incompatibility group, direct re-
peats within the origin can vary in length. In pXV2
there are two 18-bp and two 19-bp repeats (7). The
iteron number and spacing between iterons also can dif-
fer among iteron-containing plasmids. From the best-
characterized plasmids the smallest iterons were identi-
fied in plasmid pSC101 (8), in which there are three
iterons. In plasmids pPS10 (5) and F (2) there are four
iterons; in RK2, 5 (1); and up to seven have been identi-
fied in R6K (4). In plasmids from the IncQ group there
are three or four identical direct repeats, but sometimes
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the functional origin contains more iterons that are
partly deleted, contain point mutations, or are incor-
rectly spaced (6). Plasmid R478 from the IncHI2 in-
compatibility group even contains several iterons that
differ in length (eight 18-bp and nine 76-bp iterons)
and are separated by a sequence of rep genes (9).
Iterons are recognized by a plasmid-encoded Rep pro-
tein, and they are bound by a Rep monomeric form
(10–13) in a cooperative manner (14, 15). Mutations
within an iteron sequence can abolish the binding of
Rep protein and, in consequence, plasmid replication.
This was shown for plasmid R6K, in which changes in
a sequence of iterons made impossible the binding
of the π protein in vitro and replication of plasmids
with mutated origins in vivo (16). Similarly, mutations
within an iteron sequence in the origin of plasmid P1
reduced or completely prevented origin activity (17).
Negative effects on plasmid replication are also exerted
by changes in spacers between iterons. The importance

of sequences adjacent to iterons was shown for plas-
mids P1 (17), RK2 (14), and pSC101 (18). Also, dis-
turbances in the position of iterons in relation to other
motifs present in the origin region, especially changes
in proper helical phasing, have a negative influence on
plasmid replication activity (19).

The binding of the plasmid initiator to double-
stranded DNA (dsDNA) containing iterons results in
local destabilization of the DNA duplex. Plasmid Rep
protein is very often accompanied in its action by host
initiator DnaA protein. DnaA protein binds a specific
motif called DnaA-box, also localized within the plas-
mid origin. DnaA-boxes are 9-bp-long sequences with
consensus sequences that are varied depending on the
host bacteria (20). DnaA-boxes can be localized up-
stream from iterons (e.g., plasmids RK2 and pPS10),
downstream from the region rich in adenine and thy-
mine residues (AT-rich), where local destabilization of
the duplex occurs (e.g., plasmids F and pSC101), or in

Figure 1 Scheme of the iteron-containing plasmid origin structure. The direct repeats—
iterons—and inverted repeats (IR) are depicted as red arrows. The DUE region of each origin
is marked, and repeated sequences within the region are depicted as green triangles. DnaA-
box sequences are marked in blue. The region rich in guanidine and cytidine residues (GC-
rich) is marked within the origins, if identified. The origins are not drawn to scale.
doi:10.1128/microbiolspec.PLAS-0026-2014.f1
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both these positions (e.g., plasmids R6K and P1) (21).
In exceptional situations, such as in plasmid pXV2,
DnaA-box overlaps with the first iteron (7). In some
plasmid origins there is just one DnaA-box (e.g., plas-
mids pSC101, pPS10, and pXV2), and in others there
are two (e.g., oriγ of plasmid R6K and plasmid F), four
(e.g., plasmid RK2), or even five (e.g., plasmid P1) such
motifs. Their length and sequence usually correspond
to the consensus sequence of DnaA-boxes present in
the origin of the Escherichia coli chromosome (oriC).
If there are some deviations from consensus, they usu-
ally do not exceed point mutations. Examples include
DnaA-boxes from plasmids P1 and RK2, which contain
one or two mismatches. The position of DnaA-boxes
is as important as their sequence. Insertions of more
or less than a helical turn between DnaA-boxes and
iterons within the plasmid RK2 origin resulted in in-
activation of the origin’s replication activity (19). The
binding of DnaA protein to DnaA-boxes in the origin
of broad-host-range iteron-containing plasmids can
vary in different host bacteria. For instance, in the plas-
mid RK2 origin, DnaA-boxes 3 and 4 should be present
when replication takes place in E. coli and Pseudomo-
nas putida cells. However, they can be missed during
plasmid replication in Pseudomonas aeruginosa (22).
For E. coli chromosome oriC it was shown that beside
DnaA-boxes, DnaA protein bound with ATP can inter-
act with ATP-DnaA-boxes localized within AT-rich re-
peats (23). However, in iteron-containing plasmid origin
regions, motifs for ATP-DnaA binding, similar to those
observed in oriC, have not been identified to date.

The third motif, in addition to iterons and DnaA-
boxes, that can be distinguished within the iteron-
containing plasmid origin is the AT-rich region. This is
the sequence, usually located near iterons, where local
destabilization of the double-stranded helix occurs dur-
ing the process of replication initiation. This region is
therefore considered a DNA unwinding element (DUE)
where single-stranded DNA (ssDNA) is created. Al-
though the thermodynamic stability of the AT-rich re-
gion can differ in different origins, usually it has much
lower free energy (ΔG) than the overall profile of adja-
cent sequences (21). In the AT-rich region, it is possible
to discern short repeated sequences, usually oriented
directly. The exception can be the origin of plasmid
RK2, where one of the repeated sequences is inverted in
relation to the other ones (24). Repeated sequences
within the AT-rich region are located tandemly one
after the other (e.g., origin of plasmids RK2 [24] and
pSC101 [25]), or they are separated with spacers of
different length (e.g., 7-, 1-, and 6-bp spacers between
AT-rich repeats of plasmid F [25] and 29- and 9-bp

spacers in oriγ of plasmid R6K [26]). The length of
those repeated sequences can preserve 13 nucleotides
(13-mers), as are present in the AT-rich region of E. coli
oriC (e.g., plasmid RK2 [1] and pSC101 [25]). But
more often they are shorter, such as in plasmids R6K
(10 nucleotides [26, 27]), F (8 nucleotides [25]), and P1
(7 nucleotides [28, 29]). Also, the number of repeats
can be different, and there can be two repeats in the
AT-rich region of plasmid pSC101, four in plasmids
RK2 and F, and up to five in plasmid P1 (21).

Although the consensus sequences for AT-rich re-
peats in different origins are difficult to identify, the con-
sensus can be established for particular plasmid origins.
The presence of all repeats within the AT-rich region, as
well as their sequence, is very important for the proper
replication activity of the origin. Even point mutations
within these sequences can completely abolish plasmid
replication (17, 30, 31). Also, substitution of one AT-
rich repeat in a plasmid origin into a repeat from a bac-
terial chromosome origin results in a lack of replication
activity in vitro and a decrease of activity in vivo (30).
Although the presence and sequence of AT-rich repeats
is critical for plasmid replication, the exact role of these
motifs is still ambiguous.

The presence of binding sites for replication initia-
tion proteins, iterons, and DnaA-boxes, as well as the
region where duplex opening occurs, is very important
for the replication initiation process. However, these
motifs are not the only ones that can be distinguished
within the origin of iteron-containing plasmids. In
some plasmid origins the binding site for integration
host factor (IHF) can be identified. Such a situation
occurs, for instance, in the plasmid P1 origin, where the
IHF binding site is located downstream from the cluster
of three DnaA-boxes (32). The binding of IHF protein
results in the bending of the DNA molecule; however,
not only the bend but also its proper phasing for the
downstream DNA is required for the activity of the ori-
gin (32). Insertions of less than a helical turn between
IHF binding sites and DnaA-boxes in the P1 origin had
a negative effect on origin activity. The IHF binding
sites were also present in plasmids pSC101 (33) and
R6K (34). This motif was identified as well in the plas-
mid RK2 origin, but the IHF deficiency in E. coli
seemed not to alter plasmid replication efficiency or
plasmid copy number control (35).

Other motifs that can be identified within some plas-
mid origins but are not directly involved during the
replication process are sites, GATC motifs recognized
by Dam methylotransferase. They are usually over-
lapped AT-rich repeated sequences (e.g., in plasmids
P1 [36] and pSC101 [31]) or are located adjacent to
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these repeats (e.g., in plasmid P1 [36]). The methylated
GATC sequence becomes hemimethylated during repli-
cation and in this form is recognized by the SeqA pro-
tein (37, 38), which sequestrates newly synthesized
DNA (39). SeqA negatively regulates DNA replication
by blocking the GATC sites and preventing replication
proteins from binding. Apart from the GATC motif, a
region rich in guanidine and cytidine residues (GC-rich)
can be identified in some plasmids’ origins (e.g., plas-
mids RK2, P1, pPS10, and IncQ). Its exact role is un-
known, and in plasmid RK2 it can be deleted without
any effects on origin activity (19). In plasmid P1, in
which a GT-rich sequence plays the role of a spacer be-
tween iterons and AT-rich repeats, the sequence of this
region can vary considerably, but its length must be
preserved (36).

In a few plasmids identification of motifs other than
those described here was reported. For example, in
plasmids F and R1 the binding site for the IciA protein
was detected (25). The IciA protein, which binds the
site located in the AT-rich region of plasmid origins,
probably, like in E. coli oriC (40), inhibits the unwind-
ing process at the AT-rich region. In the origin of plas-
mid R6K, binding sites for other regulatory proteins,
Fis (factor for inversion stimulation) were found (41).
It was shown that plasmid replication depends on the
Fis protein when the gene for the copy-up mutant of
the π protein and the penicillin resistance gene were
present on plasmid DNA (41).

It could be concluded that for the proper activity
of the origin of iteron-containing plasmids, not only
the presence and the sequence of essential motifs, such
iterons, DnaA-boxes, and AT-rich repeats, is important.
The appropriate location of these motifs in relation
to each other also has a great impact on replication
activity. In particular, changes in proper helical phasing
have a negative influence on plasmid replication.

Rep PROTEIN STRUCTURE

Although many plasmid Rep proteins have been iden-
tified, the crystallographic data are limited to a few
replicons. This is due to a high instability of the Rep
proteins, so understanding the initiators’ role in the
structural context is a challenge. Plasmid replication
initiators such as the RepA initiator of plasmid pPS10,
RepE of plasmid F, and the π protein of plasmid R6K
are best characterized in terms of structure. The RepA
initiator of pPS10 was the first Rep protein whose struc-
ture was predicted to consist of two winged helix (WH)
domains (42). These findings have been confirmed by
the crystal structure of the monomer of a homologous

RepE initiator of plasmid F, bound to iteron DNA (43).
The other crystal structure of a plasmid Rep protein
was determined for the monomeric form of the π initia-
tor protein of plasmid R6K as a complex with a single
copy of its cognate DNA-binding site (iteron) (44). The
crystal structures of both RepE and π proteins are de-
picted in Fig. 2. Although the crystal structures of RepE
and π proteins shed new light on the Rep monomers’
interaction with DNA, the molecular nature of Rep ac-
tivation remained unknown until the crystal structure
of the dimeric N-terminal domain of the plasmid pPS10
initiator (dRepA) was resolved (45). Nonetheless, the
crystallographic data obtained for plasmid Rep pro-
teins are limited to theWHdomain description. Rep pro-
teins are composed of two WH domains—N-terminal
WH1 and C-terminal WH2—that are responsible for
interaction with DNA (42) (Fig. 2). The WH2 domain
contains a putative helix-turn-helix motif, which is the
main determinant of Rep binding to both the iteron se-
quences and the inverted repeats (partially homologous
to the iteron sequence), which was shown for the RepE
initiation protein of the mini-F plasmid and RepA of
plasmid pPS10 (46, 47). A formation of nucleoprotein
complex by Rep protein results in the bending of the
DNA molecule. Iteron interaction with the WH1 and
WH2 domains of the Rep monomer, or interaction of
inverted repeats with both WH2 domains of Rep dimer,
induce DNA bending (42, 48). In Rep monomers, the
WH2 domain binds to the 3´-half of the iteron, while
the WH1 domain changes structure and contacts the
5´-iteron end, through both the phosphodiester back-
bone and the minor grove (42).

In contrast to initiation proteins of replicons F, R6K,
and pPS10, the crystal structures of the TrfA protein
of RK2 as well as P1 RepA have not been determined.
The structure prediction using fold-recognition ho-
mology modeling was carried out in both cases. The
N-terminal part of TrfA does not show a unique three-
dimensional structure with the absence of stabilizing
factors; it seems to be disordered in solution as opposed
to the C-terminal part of the protein, which is expected
as two copies of WH domains. Helices of both WH
structures interact with major grooves of the DNA phos-
phate backbone (49). A series of mutations located
within the WH1WH2 domains have been found to
affect the TrfA-DNA interaction (50, 51). The structure
predicted for P1 RepA, similar to TrfA, contains WH
domains. By means of fold-recognition programs, it
was shown that despite the lack of sequence similarity,
RepA shares structural homology with plasmid F RepE.
The model predicted that RepA binds one half of the
binding site through interactions with the N-terminal
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DNA binding domain (WH1) and the second half
through interactions with the C-terminal domain
(WH2) (52). Interestingly, the residues involved in
Rep-DNA interactions located outside the WH do-
mains have been determined with the use of RK2 ini-
tiator TrfA mutants (50, 51). These results assume the
existence of an additional DNA binding motif, apart
from WH1WH2 domains.

Like in plasmid-encoded Rep proteins, WH domains
responsible for DNA binding were found in Archaea
and Eukaryota initiators. However, the AAA+ domain
(ATPases associated with various cellular activities)
commonly present in Archaea and Eukaryota initiation
proteins was not found in plasmid Reps (53) (Fig. 2).
Thus, with regard to the DNA binding mechanism,
the plasmid Rep proteins are similar to eukaryotic rep-
lication initiators. The results of biochemical and spec-
troscopic experiments revealed functional similarities
between pPS10 RepA and archaeal/eukaryal initiators
(53). The crystal structure determined for the archaeal
initiator Cdc6 confirmed these findings (54). Interest-
ingly, it was reported that similar to the mammalian
proteins PrP and α-synuclein, the WH1 domain of the
pPS10 RepA can assemble into amyloid fibers upon
binding to DNA in vitro and in E. coli cells (55–58). It
opens a direct means to untangle the general pathway
(s) for protein amyloidosis in a host with reduced ge-
nome and proteome (59).

Plasmid Rep proteins exist in cells mostly as dimers
(12, 60). The dissociation of dimers by the action of
chaperones or interaction with iteron-containing DNA
(see also text below) results in conformational changes
in the Rep structure (61). A compact arrangement of
the two WH domains, competent for binding to the in-
versely repeated sequences, becomes a more elongated
form, which is suited for iteron binding (42). These
conformational changes consist of a significant increase
of the overall β-sheet at the expense of the α-helical one
(61). The situation is different for the Rep dimers that
interact with inversely repeated sequences. Binding of
Rep dimers to the inverted repeats does not result in
dissociation to monomeric forms or change in the di-
mers’ conformation (61). Although only the monomeric

Figure 2 Structure of replication initiators. DnaA of
A. aeolicus, RepE54 from E. coli mini-F plasmid, π from
R6K, and the C-terminal part of the TrfA protein (190-382
aa) of plasmid RK2 are depicted. Structure of the DnaA,
RepE54, and π are derived from crystallographic data (PDB

entry 1L8Q, 1REP, and 2NRA, respectively). The TrfA model
was developed based on homology modeling. The AAA+
domain is colored in blue, the DNA binding domain (DBD) is
shown in red, and Winged-Helix domains (WH1 and WH2)
are colored in yellow and green, respectively. References and
detailed information for crystallographic data of the DnaA,
RepE54, π, and TrfA model are given in the text.
doi:10.1128/microbiolspec.PLAS-0026-2014.f2
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form of Rep proteins is replication-active, dimers of
Rep can bind to an inversely repeated sequence local-
ized close to the promoter region of the rep gene, which
results in transcription auto-repression (see text below).
This was shown for the RepA initiator of the pSC101
(62) F RepE initiation protein (43) and the π initia-
tor of the plasmid R6K (63). In the dimeric form of
Rep, the WH2 domain binds to inverted repeats via the
major groove, whereas the WH1 domain acts as the di-
merization interface (61). Dimerization of pPS10 RepA
is determined by interactions between β-sheets of the
monomers that are originated due to a conformational
change in the protein that involves a leucine zipper
(LZ)-like motif (42). The LZ-like motif, present in sev-
eral eukaryotic regulatory proteins (64), has also been
found in the WH1 domain of RepA of pSC101(65),
RepE of F (43), and π of R6K (66). The dimerization
interface is also localized in the WH1 of the model pre-
dicted for plasmid RK2 TrfA replication initiation pro-
tein (Fig. 2). Similar to the proposal for pPS10 RepA
(42), this interface is located on an extended antiparal-
lel β-sheet forming two hairpins (49).

Besides the indirect effect of the LZ motif in Rep
protein dimerization, the LZ-like motif was charac-
terized as responsible for Rep interaction with host
replication factors. The mutations, described either in
pPS10 or in the E. coli chromosome, have revealed evi-
dence of a WH1-mediated interaction between RepA
and the chromosomal initiator DnaA (67). Nonethe-
less, protein-protein interaction of Reps are not re-
stricted to the LZ-like region. The best evidence for this
statement is a TrfA initiator of plasmid RK2 existing in
two replicationally active forms of different molecular
mass. The smaller, 33-kDa protein, TrfA-33, is the re-
sult of an independent in-frame translational start in
the open reading frame used for the larger, 44-kDa pro-
tein, TrfA-44 (68–70). The mutation at the N-terminal
end of the trfA gene (resulting in the availability of the
TrfA-33 version only) changes the host range of plas-
mid RK2, but the binding of DNA remains unaffected.
These results demonstrate that the N-terminal end of
TrfA is involved in interaction with host replication
factors (71). With the use of the evolution experiment,
IncP1 plasmids were shown to specialize to a novel host
due to the single mutations reported at the N-terminal
region of replication initiation protein TrfA (72, 73). In
P. aeruginosa the TrfA-44 residues between 20 and 30
are responsible for DnaB recruiting (71), and in E. coli
TrfA-33 interacts in vitro with DnaB helicase (74). It
also acts with the E. coli Hda regulator, which inacti-
vates DnaA and this way prevents overinitiation of
RK2 (75). In addition, the specific motif characteristic

of proteins interacting with the β clamp of E. coli DNA
polymerase III was reported in TrfA and TrfA/RepA
orthologues from plasmids related to RK2 and pMLb
(76), but the relevance of this interaction needs to be
elucidated.

The replication of iteron-containing plasmids re-
quires the plasmid-encoded replication initiator, but the
host-encoded initiation protein is also involved. The
chromosomal initiator, E. coli DnaA, is composed of
four functional domains (77–79). Crystallographic data
obtained for the DnaA conserved core domains III/IV of
the thermophilic bacterium Aquifex aeolicus revealed
that, in contrast to plasmid initiators, this protein is
composed of the AAA+ and DBD (DNA binding do-
main) domains (79) (Fig 2). These domains are in-
volved in DnaA oligomerization and DNA binding/
remodeling functions, which are the critical aspects of
origin processing. It is crucial for the interaction with
ssDNA DUE at chromosomal replication origins and
formation of filament structure (80–82). Since plasmid
Rep does not possess an AAA+ domain is responsible
for nucleotide binding, it could be considered that WH
domains, responsible for the binding of iterons within
the dsDNA origin, can also bind ssDNA arising after
dsDNA melting.

MECHANISM OF ITERON PLASMID DNA
REPLICATION INITIATION

Origin Recognition
Models presenting steps of DNA replication initiation
of iteron-containing plasmid and bacterial chromo-
somes are presented in Fig. 3. The first step of replica-
tion initiation at the plasmid origin is the formation of
an initial complex facilitated by the specific interaction
of Rep proteins with iterons. It has been demonstrated
that replication initiation of iteron plasmids usually re-
quires cooperative interaction of Rep monomers with
iterons. pPS10 RepA as well as RK2 TrfA initiators
cooperatively bind iterons at the plasmid replication
origins (14, 15). Although the pPS10 RepA dimers and
monomers both interact with iterons, only monomers
initiate DNA replication. It is noteworthy that the exis-
tence of an early transient complex between a dimeric
pPS10 RepA and an iteron half has been reported,
and based on this, a model for iteron-induced dimeric
pPS10 RepA dissociation and conformational activa-
tion has been proposed (61). Also, the TrfA protein
functionally interacts with plasmid RK2 iterons as a
monomer (12). Similar to pPS10 and RK2, the origin of
the narrow host range plasmid P1 is recognized by the
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Figure 3 Model of replication initiation: comparison of the processes occurring on the
iteron-containing plasmid origin with the replication initiation of bacterial chromosomes.
The iteron-containing plasmid origin is recognized by the plasmid-encoded initiator (Rep),
which binds cooperatively to the iterons. The interaction of Rep with iterons results in
the formation of an open complex and destabilization of the DNA unwinding element
(DUE), which creates ssDNA. In RK2, pPS10, F, R6K, P1, and pSC101 the formation of the
open complex requires cooperation of the plasmid Rep and host DnaA proteins, while at the
chromosomal origin the DnaA protein is sufficient for this process. During the chromosomal
origin opening DnaA forms filament on the ssDNA. Helicase delivery and loading requires
interaction with the replication initiators; in addition, in E. coli the DnaB helicase delivery
at the chromosomal oriC, as well as at the plasmid RK2 oriV, requires the DnaC accessory
protein. During the RK2 replication initiation in E. coli the host-encoded DnaBC helicase
complex is delivered to the DnaA-box sequence through interaction with DnaA, and sub-
sequently the plasmid initiator TrfA translocates the helicase to the opened plasmid origin.
The interactions between E. coli DnaB and the R6K π protein, F RepE, and pSC101 RepA
have also been established as essential for helicase complex formation at the plasmids’
origins. The helicase unwinds the DNA double helix, and after a short RNA fragment is
synthesized by a primase, a polymerase complex is assembled. Single-stranded DNA bind-
ing protein (SSB) is required for replication initiation of both chromosomal and iteron-
containing plasmid DNA. The HU/IHF proteins’ contribution in DNA replication initiation
was omitted in the scheme. For a detailed description see the text.
doi:10.1128/microbiolspec.PLAS-0026-2014.f3
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monomer of the P1 initiation protein RepA (83, 84).
The interaction between the Rep protein and iterons
has also been shown for RepE of plasmid F (85), RepA
of plasmid pSC101 (86), and the π initiation protein of
E. coli plasmid R6K (87). The narrow host range plas-
mid R6K contains three origins of replication, α, β, and
γ, but only two elements, the ori and pir gene product π
proteins, are required for a minimal replicon. The bind-
ing of seven iterons by the π initiator has been demon-
strated as required for proper ori activity (88–91). The
π initiator efficiently binds to ori iterons but not to the
ori or to the ori iterons (92).

Origin Opening
It was determined that Rep plasmid interaction with
iterons generates a localized strand destabilization of
DUE, leading to an open complex formation at the ori-
gin of plasmid replication. Although the involvement
of the plasmid initiator is essential, the host-encoded
DnaA and histone-like proteins are also required for
plasmid origin opening. It was demonstrated for pPS10
that mutations within the DnaA-box sequence affect
the replication in vivo (5). DnaA is mainly needed for
the enhancement or stabilization of the Rep plasmid-
induced open complex formation and histone-like pro-
tein (HU and/or IHF) interaction with the DNA-
enhanced DNA-bending process. It was determined
with KMnO4 assay that TrfA interaction with iterons
generates a localized strand destabilization, and E. coli
DnaA protein enhanced the TrfA-induced open com-
plex (24). It was shown that this reaction occurs only
in the presence of the E. coli HU protein (24). Similar
to RK2 initiator TrfA, the binding of the RepE initiator
of plasmid F to iterons induces a localized opening in
the origin region, with the assistance of HU (93). The
addition of DnaA increases the opening of the F plas-
mid origin (93) and is also required for the pSC101
origin (94) and R6K ori (88, 89). The open complex
formation by pSC101 RepA monomers in cooperation
with host DnaA also requires the presence of the IHF
protein (33, 95). The open complex at the R6K ori
is formed as a result of cooperative π monomers bind-
ing to the iterons and host DnaA interaction with its
cognate binding sites (15). KMnO4 footprinting has
shown that, in contrast to the RK2 initiator TrfA and F
RepE, the P1 RepA alone is not sufficient for oriR
opening, but in the presence of DnaA, the addition of
RepA increased the KMnO4 reactivity of the origin
(96). The replication initiation of plasmid RK2 might
occur in a DnaA-dependent or DnaA-independent way,
depending on the host bacterium. In E. coli RK2 effi-
ciently replicates and is maintained in the presence of

TrfA and a host DnaA protein, while in Pseudomonas
the longer form (44 kDa) of the replication initia-
tor is required and DnaA is indispensable (97, 98).
In Caulobacter crescentus both DnaA-dependent and
DnaA-independent models of RK2 plasmid replication
initiation are possible (99). Interestingly, the structure
of DnaA protein itself might influence the host range
of plasmids. Narrow-host-range plasmid pPS10 usually
replicates only in the phytopathogen Pseudomonas
savastanoi cells, due to the ability to bind DnaA-box in
the pPS10 origin only by DnaA protein from this bacte-
rium. It has been demonstrated that both the mutation
in the LZ motif of pPS10 RepA and mutations in the
sequence of E. coli DnaA promote the efficient estab-
lishment of plasmid pPS10 in the E. coli host (67, 100).
These results suggest that mutations in plasmid and
bacterial initiators that result in expanding the host
range of the plasmid probably favor efficient and func-
tional interactions between those proteins. Although
the chromosomal initiator, DnaA protein, alone is in-
sufficient for the efficient formation of an open com-
plex at the origin of plasmids F, RK2, pSC101, and
R6K (13, 24, 90, 93, 101), it has been shown to be
both sufficient and indispensable in opening the AT-
rich region at the origin of the bacterial chromosome
(see Fig. 3). DnaA interaction with DnaA-box se-
quences localized within the origin of chromosomal
replication (oriC) results in destabilization of the DUE,
leading to open complex formation. The histone-like
proteins HU and IHF stimulate the assembly of the
open complex at oriC (102–104). This nucleoprotein
structure formation requires ATP due to E. coli DnaA
ATP-dependent conformational changes that promote
the formation of the DnaA filament on ssDNA of DUE
that is essential for the opening of the replication origin
(81, 82, 105). The formation of an open complex at
the plasmid origin, in contrast to E. coli chromosomal
replication, is an ATP-independent process (24, 90, 93,
96, 106, 107), but the presence of ATP or its nonhydro-
lyzable analogue (ATPγS) promotes the extension of the
open region (24). It is not known if plasmid Rep pro-
teins can interact with the ssDNA and form filament
structures to promote origin opening, like the DnaA
replication initiator does.

Helicase Delivery and Loading
The origin opening generates ssDNA, which is a key
element for replication complex assembly at the repli-
cation origin. The first step in the assembly of the repli-
cation complex is delivering helicase at the replication
origin and loading it on ssDNA. While plasmids be-
longing to the IncP incompatibility group extensively
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use the replication proteins from the host cell for their
own DNA synthesis, they utilize different host-specific
mechanisms for helicase delivery and loading (71, 108,
109). Both in vivo (97, 98) and in vitro (108, 109)
analysis with the use of purified proteins from E. coli
and Pseudomonas sp. revealed different host-dependent
requirements for RK2 replication initiation. In E. coli
the DnaB helicase complex with DnaC is initially
recruited by DnaA protein interaction (110). The DnaA
bound at DnaA-boxes located at the plasmid origin
recruits host helicase (111). Then, as a result of translo-
cation into the AT-rich region of the plasmid origin
and interaction with the 33-kDa version of the plasmid
replication initiator, the helicase is activated for the
unwinding of the plasmid dsDNA template. The mech-
anism of helicase recruitment and loading during
the RK2 plasmid replication in P. aeruginosa is DnaA-
independent and relies on the 44-kDa TrfA protein,
while in P. putida cells two variants of TrfA protein can
be utilized (108, 109). The helicase complex formation
during RK2 replication in C. crescentus cells might pro-
ceed through two different modes: DnaA-independent
employing TrfA-44 and DnaA-dependent relying on the
shorter version of the replication initiator (99). In vitro
activity of C. crescentus DnaB helicase on the RK2
DNA template was observed in the presence of TrfA-
44, and C. crescentus DnaA was not required for this
process. In vivo the mini-RK2 plasmid encoding only
TrfA-33 was as stably maintained as those encoding
TrfA-44 or both. In contrast, TrfA-33 in cooperation
with C. crescentus DnaA in vitro was unable to activate
C. crescentus DnaB. The homologue of the E. coli
DnaC protein needed for proper helicase loading into
the open complex might be required for C. crescentus
DnaB helicase activation. To date, no data about this
kind of protein either in Pseudomonas or in Caulo-
bacter cells have been reported, and its identification
requires further investigation (99).

Rep-Helicase Interaction
Similar to the RK2 plasmid initiator TrfA, the inter-
actions between other iteron-containing plasmid Rep
proteins and host-encoded helicases have also been
reported. E. coli DnaB interacts with plasmid replica-
tion initiators as was shown for the R6K π protein
(112) plasmid F RepE (113) and pSC101 RepA (114).
These interactions have been established as essential for
helicase complex formation at the mentioned plasmid
origins. A DnaB mutant, which does not interact with
pSC101 RepA, was unable to activate the replication
initiation at the pSC101 origin. Nonetheless, this mutant
was able to support E. coli chromosomal replication

(114). The R6K π protein and pSC101 RepA have also
been shown to form complexes with E. coli DnaA
(90, 101). Similar to R6K and pSC101, the helicase com-
plex formation at the origins of pPS10 and P1 replicons,
in addition to the plasmid-encoded initiator, depends
on host DnaA protein and requires other host-encoded
factors such as DnaC and HU/IHF (67, 115, 116).

The lack of ability for stable complex formation
between the plasmid Rep protein and a host helicase
might be one of the reasons for plasmid host range
restrictions as was shown for E. coli plasmid F. The
helicase complex at the F origin composed of the repli-
cation proteins from the nonnative hosts (P. aeruginosa
and P. putida) might be formed in the presence of F ini-
tiator RepE. However, the interactions between RepE
and DnaB of P. aeruginosa and P. putida were un-
stable, contrary to RepE interaction with E. coli DnaB
helicase (113).

Polymerase Complex Assembly
Synthesis of iteron-containing plasmid DNA depends
on the initial activity of a plasmid replication initiator
and utilization of host replication machinery. Because
plasmids do not encode their own polymerases, the
host bacterium polymerase is utilized for the plasmid
DNA replication. The mechanism of the events leading
to the formation of the polymerase complex at the plas-
mid origin of replication still needs to be elucidated.
Even though the DNA replication of plasmids RK2
(111), R6K (117), and F (118) has been reconstituted
in vitro with purified proteins, and specific require-
ments for this reaction have been identified, the molec-
ular mechanism for the assembly of the polymerase
complex at plasmid origins is still not known. The
in vitro analysis showed that in addition to the plas-
mid Rep protein, the E. coli proteins DnaA, HU, DnaB
helicase, DnaC, SSB, DnaG primase, DNA gyrase, and
Pol III holoenzyme are required for plasmid DNA syn-
thesis. Interestingly, the specific motif (QL[S/D]LF) de-
termining interaction with the β clamp subunit of Pol
III has been identified in plasmid Rep proteins (119),
though the relevance of the interaction between the β
clamp and Rep proteins has not been determined. The
loading of the β clamp is a composite reaction involv-
ing clamp opening and then positioning around the
DNA with the use of the γ-complex (reviewed in refer-
ence 120). β clamp interaction with primed DNA is the
first of subsequent events leading to polymerase com-
plex assembly at the chromosomal origin of replication
(121). Although the direct involvement of a replication
initiation protein in the process of polymerase recruit-
ment has not been reported to date, the plasmid Rep
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protein interaction with specific Pol III holoenzyme sub-
units might determine the mechanism for an efficient
recruitment of host-encoded replication machinery to
the plasmid origin.

CONTROL MECHANISMS OF REPLICATION
IN ITERON-CONTAINING PLASMIDS

The iteron-containing plasmid replicons have evolved a
number of strategies to ensure their hereditary stability
and maintenance at the specific copy number. These
plasmids occur in a low-copy number per bacterial cell,
so their maintenance requires tight regulation of repli-
cation. The main elements involved in the regulation of
these plasmid replications are iterons.

Control by Handcuffing
“Handcuffing” is a mechanism of replication inhibition
observed in iteron-containing plasmids. The handcuff
structure formation is based on the ability of the initia-
tor protein to couple two ori regions located on sepa-
rate plasmid molecules. The ori coupling occurs via
binding of the Rep protein to iterons. This pairing of
iterons is believed to cause steric hindrance to their
function that prevents a new round of replication initi-
ation (Fig. 4) (122) by inhibiting origin melting (123).
It is considered that handcuffing is a major mechanism
that controls the plasmid copy number.

There are three alternative models of Rep-mediated
handcuffing. The first one assumes that the handcuff
structures are created by the action of Rep dimers,
which can bridge two DNA particles. This model was
proposed for the replication protein of plasmid R6K
(124, 125). Here, the major role of π dimers in the cre-
ation of R6K handcuff complexes was detected by elec-
tron microscopy (124) and ligation enhancement assays
(66, 126, 127). Both of these techniques enable detec-
tion of handcuff structures in reaction to the dimeric
form of the π protein. In the ligation assay, the mono-
meric variant of Rep was less efficient in forming
ligated products (125). In contrast, the mutant of the π
initiator, which binds iterons exclusively as a dimer
(13), handcuffed DNA more efficiently than the wild
type of the π protein. To summarize, the π dimers have
a greater affinity to participate in handcuff structure
creation than π monomers. The indirect evidence sup-
porting this model is the fact of handcuffing being
counteracted by molecular chaperones (DnaK-J/GrpE
triad), which mediate the dissociation of dimers to
monomers (123, 128).

The handcuff structure creation in the second
model assumes the participation of Rep monomers in

the creation of such structures by direct interactions be-
tween two arrays of Rep monomers bound to iterons in
two plasmid molecules (56). This model is based on
the fact that monomers of Rep initiators have a higher
affinity for the iteron repeats than the dimeric forms
(42, 124). Moreover, it has been reported for plasmid
pPS10 that the dimeric Rep mutant is unable to create
handcuff structures (56), and iterons of this plasmid
play an active role in displacing the equilibrium be-
tween Rep dimers and monomers (61).

The third model of handcuff structure is a combina-
tion of the other two models. In this model, two mono-
mers bound to the iterons of two separate plasmid
molecules, are bridged by the dimer of the Rep protein.
Such a model was proposed for handcuffing of plas-
mids RK2 (129) and F (123). The evidence for this
model was obtained in a purified in vitro replication
system (123). The handcuffing was found to be most
proficient only when monomeric and dimeric forms of
Rep protein were present simultaneously. Models in-
volving participation of Rep protein dimers are also
supported by the fact that handcuffing-defective mu-
tants (Rep monomers of RK2 and R6K) were found
to have abnormally high copy numbers (130). There-
fore, it can be concluded that the handcuffing has a
substantial role in iteron-mediated plasmid copy num-
ber control.

If the role of the handcuff is to block the origin and
inhibit the replication, then there must be a mechanism
that acts in an opposite way and “uncuffs” the coupled
origin structures, which enables the reinitiation of plas-
mid replication. However, the mechanism of handcuff
reversal is still unclear. There are results suggesting the
participation of the chaperones in handcuff structure
disruption (128), showing that the efficiency of hand-
cuffing decreases in the presence of chaperones. Those
results indicate that an increasing ratio of monomers
over dimers is predominantly responsible for hand-
cuffing reversal. It has also been discovered that
the efficiency of handcuff structure creation increases
with increasing Rep-bound iteron concentration and
decreases when the reaction mixture is diluted. How-
ever, the dilution did not decrease Rep binding to the
iterons (128).

Control by Auto-Repression
A high concentration of Rep protein initiator may re-
sult in more frequent, uncontrolled initiation repli-
cation events. To prevent this, the control mechanism
that limits the amount of Rep initiator in the cell
has to exist. Transcriptional auto-repression is a well-
known mechanism for maintaining levels of gene
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product within narrow limits (131, 132). In many
plasmid systems (F, R6K, pPS10, and pSC101), auto-
repression is mediated by binding of the Rep dimer to
inverted repeats located adjacent to the origin region
(Fig. 5) (11, 46, 65, 133). A sequence of inverted re-
peats overlaps with the rep gene promoter. This kind
of regulation mechanism inhibits transcription initia-
tion starting from the rep gene promoter, and this effect
is promoter-specific (63). The affinity of the Rep dimers
is higher for inverted than direct repeats, so the Reps
must have specific, dimeric conformation for binding
to these sites (133). Symmetrical motifs in the Rep di-
mer recognize the symmetry of inverted repeats (134).
The mechanism of auto-regulation appears to be one
of steric hindrance. When the promoter site is occupied
by Rep protein, the RNA polymerase cannot displace
it from the binding site. However, it has been shown
that the initiator proteins can displace RNA poly-
merase from the promoter, and the addition of the
RNA polymerase before the Rep protein does not pre-
vent binding of Rep protein to its binding site (63,
135, 136). This inhibition of RNA polymerase bind-
ing resembles typical repressor-polymerase competition
and, in this model, the Rep dimer acts as a repressor.
An explanation for this auto-regulation mechanism
is a higher affinity of the initiator protein for DNA
sequence than that of RNA polymerase for the same se-
quence (136).

Activation and Proteolysis of Rep
As mentioned above, Rep proteins exist in monomer-
dimer equilibrium, but only the monomeric form of
the proteins can bind specifically to the iterons (12).
Saturation of iterons in the replication origin by Rep
monomers allows replication initiation. To create such
a complex, conformational activation of Rep proteins
is required. Dissociation of the Rep dimers into mono-
mers simultaneously changes the conformation of the
proteins and makes them competent for the iteron bind-
ing. The dissociation may be spontaneous and could
occur just by dilution to low/sub-micromolar con-
centration. This phenomenon has been found for P1
and pSC101 plasmids (62, 83, 137). However, those
monomeric forms of Rep proteins require the chaper-
ones for refolding into the active form and for DNA
binding (62, 137). The conversion of a dimer to an
active monomer can also be mediated by dissociation
induced by interaction with iteron-containing DNA. It
has been shown that micromolar amounts of DNA,
which contain a single iteron, actively induce in vitro
the dissociation dimers into both monomers and con-
formational changes (61, 138).

Figure 4 Regulation of iteron-containing plasmid replication
initiation by the iterons. Rep protein activation occurs by the
action of chaperones that convert the Rep dimer to the active
monomeric form. Monomers bind to the iteron sequences
and perform the initial complex that leads to replication of
DNA. Rep protein may also act as a negative regulator of
DNA replication by creating “handcuff” structures. Rep pro-
teins couple origins of two separate plasmid particles in a
process termed “handcuffing.” In the literature suggestions of
chaperone proteins’ participation in the “uncuffing” process
can be found, but the mechanism of the handcuff structures’
reversal is still unclear. For details see the text.
doi:10.1128/microbiolspec.PLAS-0026-2014.f4
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The monomeric form of Rep may also arise by the
action of molecular chaperons, which actively convert
dimers to monomers (139–142). In vitro techniques
demonstrated that both the ClpX chaperone (139) and
the ClpB/DnaK/DnaJ/GrpE system (140) activate the
plasmid RK2 replication initiation protein TrfA by con-
verting inactive dimers to an active monomer form. It
has been also shown that DnaK/DnaJ/GrpE heat shock
proteins are required for the activation of Rep initiators
of F, R6K, and P1 plasmids (10, 60, 83, 138, 142, 143).
Monomerization of the P1 plasmid initiator may also
occur by the action of the ClpA protein, which alone
functions as a molecular chaperone (144, 145).

The proteases are other factors affecting iteron-
containing plasmid metabolism. They may influence
the replication process by proteolysis of the replication
initiator. In E. coli, four cytosolic proteases have been
identified to date: ClpXP, ClpAP, ClpYQ, and Lon
(146). The proteases limit the half-life of Rep initiator

proteins, which is important for replication initiation.
It has been shown that initiator proteins of bacterio-
phages lambda and Mu and of plasmid RK2 are
proteolyzed by E. coli ClpXP protease (49, 147, 148)
and that ClpAP protease degrades the Rep initiator of
plasmid P1 (144). Additionally, it has been described
for the TrfA initiator of plasmid RK2 that DNA is a
factor that stimulates TrfA proteolysis by ClpAP and
Lon proteases (149). Moreover, the Lon protease
degrades the TrfA protein only in the nucleoprotein
complex, while ClpAP-dependent degradation of TrfA
is substantially stimulated in the presence of iteron-
containing plasmid DNA (149). This specific stimu-
lation of proteolysis could be important in terms of
understanding nucleoprotein complex stability. It may
also have an effect on the iteron-containing plasmid
copy number, by interaction with the nucleoprotein
complex handcuff structure or the other complexes of
Rep protein with iteron-containing plasmid DNA.

Figure 5 Regulation of iteron-containing plasmid replication initiation by the auto-repression
mechanism. Binding of Rep dimers to inverted repeats inhibits the initiation of transcription
starting from the rep gene promoter. This phenomenon is called auto-repression. An active,
monomeric form of Rep protein arises as a result of the action of chaperones. It binds to the
iteron sequences that lead to the initiation of DNA replication. Proteases are another factor
that may influence the replication process. They limit the amount of both dimer and mono-
mer forms of the Rep protein. For details see the text.
doi:10.1128/microbiolspec.PLAS-0026-2014.f5
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CONCLUSIONS

All the described mechanisms that affect plasmid me-
tabolism are intended to control the plasmid replica-
tion frequency and thereby to control the plasmid copy
number. The iteron-containing plasmids, as described
above, predominantly use the limitation of Rep protein
concentration to control initiation of replication. The
limited amount of initiator is achieved by the auto-
repression mechanism. This kind of replication regula-
tion was initially proposed to be the sole mechanism of
replication control, but subsequent experiments showed
the marginal effect of surplus initiator. This proved
that this mechanism is insufficient (150–152). In iteron-
containing plasmids, origin inactivation by handcuffing
is an essential mechanism for effective replication regu-
lation. It assumes that the iteron concentration, rather
than the level of Rep expression, determines the rate of
replication. Another critical parameter that influences
the replication initiation is the dimer/monomer ratio
of the Rep initiator. The efficient control of plasmid
replication initiation requires a combination of all the
above-mentioned regulatory mechanisms. Furthermore,
it has been reported that all these mechanisms need to
work in concert and no single mechanism alone is able
to regulate plasmid replication effectively (130). There-
fore, it seems to be clear why there are multiple modes
of control and that all these modes appear to be coop-
erative rather than mutually exclusive, which explains
why they have been conserved.
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INTRODUCTION

Plasmids have been used as convenient models for
the study of molecular mechanisms of replication and
DNA repair due to their small size, dispensability to the
host, and easy manipulation. In addition, plasmids are
key facilitators for the evolution and dissemination
of drug resistance and for the evolution of complex in-
teractions with animal or plant hosts. Understanding
plasmid replication and maintenance therefore has
significant practical implications for the clinic and for
bioremediation.

Circular plasmids use a variety of replication strate-
gies depending on the mechanism of initiation of
DNA replication and depending on whether leading-
and lagging-strand synthesis are coupled or uncoupled.
This article focuses on replication of circular plasmids
whose lagging strand is synthesized discontinuously, a
mechanism known as theta replication because replica-
tion intermediates have the shape of the Greek letter θ
(theta). Our discussion will focus on replication initia-
tion, which informs different biological properties of
plasmids (size, host range, plasmid copy number, etc.),
and on how initiation is regulated in these plasmids. To
highlight unique aspects of theta plasmid replication,
this mode of replication will also be compared with

another mode of circular plasmid replication, strand-
displacement.

REPLICATION INITIATION

General Structure of
Plasmid Origins of Replication
Replication initiation depends on a section of sequence
known as the plasmid origin of replication (ori). Basic
replicon refers to the minimal sequence that supports
replication, preserving the regulatory circuitry. Minimal
replicon refers to the minimal portion of sequence sup-
porting plasmid replication even though replication
may not be properly regulated, as seen in alterations in
plasmid copy number or in the compatibility properties
of the plasmids. Finally, there is an even narrower defi-
nition of ori, which refers to the portion of sequence
that is targeted by replication initiation factors in trans
to initiate replication. In this article we will use the
term origin of replication, or ori, to refer to the cis-ori,
and replicon to refer to basic or minimal replicons.

Rep proteins are plasmid-encoded initiators of repli-
cation, although some theta plasmids rely exclusively on
host initiation factors for replication. Rep recognition
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sites typically consist of direct repeats or iterons, whose
specific sequence and spacing are important for initia-
tor recognition. Spacing is critically relevant so that the
distance matches the helical periodicity of the DNA
double helix, allowing recognition of specific DNA se-
quences (1). Iterons are intrinsically bent, and iteron
curvature is enhanced by Rep binding.

Rep proteins are essential and rate-limiting for plas-
mid replication initiation. Controlled expression of two
Rep proteins (π of R6K and RepA of ColE2) can pro-
duce a wide range of plasmid copy numbers per cell
(between 1 and 250 copies), providing a convenient
system for gene dosage optimization of recombinant
proteins (2).

Plasmid replicons have a modular structure. Repli-
cons often have motifs that are recognized by plasmid-
encoded Reps, A+T-rich areas, G+C-rich areas, methyl-
ation sites, and binding sites for host initiation and/or
remodeling factors. Rep loci, when present, are typi-
cally upstream of the plasmid ori, immediately adjacent
or in close proximity to it.

Replication Initiation: Duplex Melting
and Replisome Assembly
Depending on the replicon, duplex melting can be
either dependent on transcription or mediated by plas-
mid-encoded trans-acting proteins (Reps). Rep binding
of ori iterons generally leads to the formation of a nu-
cleoprotein complex that opens up the DNA duplex at
the A+T-rich segment.

Opening of the DNA duplex is necessary for repli-
some assembly, which in theta-type plasmids can be
DnaA-dependent or PriA-dependent. DnaA-dependent
assembly closely resembles replication initiation at oriC,
the site initiating chromosomal replication. By contrast,
PriA-dependent assembly parallels replication restart
following replication fork arrest, which depends on
D-loop formation, with the extra DNA strand supplied
by homologous recombination (3–5).

In theta-type plasmids, Rep-mediated duplex melting
leads to loading of DnaB on the replication fork, often
with DnaA assistance. In plasmids that instead rely on
transcription for duplex melting, the transcript itself
can be processed and becomes the primer for extension.
Continuous extension of this primer initiates leading-
strand synthesis, facilitating the formation of a displace-
ment loop, or D-loop, as the nascent single-stranded
DNA (ssDNA) strand separates the two strands of the
DNA duplex and hybridizes with one of them. In this
case, PriA (initiator of primosome assembly) can be re-
cruited to the forked structure of the D-loop; alternatively,

PriA can be recruited to a hairpin structure that forms
when the double-stranded DNA opens (6). PriA promotes
both the unwinding of the lagging-strand arm and assem-
bly of two additional proteins (PriB and DnaT) to load
DnaB onto the lagging strand template. Thus, in this case
loading of DnaB is independent of DnaA.

After loading of DnaB, both DnaA-dependent and
-independent modes of replication converge. In both
cases, replisome assembly involves the following addi-
tional players: SSB (single-stranded binding protein),
DnaB (helicase), DnaC (loading factor), the DnaG
(primase), and the DNA polymerase III (Pol III) holo-
enzyme. SSB is recruited to exposed areas of ssDNA,
stabilizing them. DnaB is loaded onto the replication
fork in the form of a complex with DnaC and recruits
DnaG (the primase), which distributively synthesizes
RNA primers for lagging-strand synthesis (7). Repli-
some assembly is completed by loading of the Pol III
holoenzyme (8). This holoenzyme contains a core (with
α, a catalytic, and ε, a 3´→5´, catalytic subunit), a β2
processivity factor, and a DnaX complex ATPase that
loads β2 onto DNA and recruits the Pol III core to
the newly loaded β2 (9). DnaB helicase activity is stimu-
lated through its interaction with Pol III and modu-
lated through its interaction with DnaG, facilitating
the coordination of leading-strand synthesis with that
of lagging-strand synthesis during slow primer synthe-
sis on the lagging strand (10).

Unlike Gram-negative bacteria, which have a single
replicative polymerase (Pol III), Gram-positive bacteria
have two replicative polymerases: PolC and DnaE.
PolC is a processive polymerase responsible for leading-
strand synthesis, while DnaE extends DnaG-synthesized
primers before handoff to PolC at the lagging strand
(11, 12).

In theta plasmids, lagging-strand synthesis is discon-
tinuous and coordinated with leading-strand synthesis.
The replicase extends a free 3´-OH of an RNA primer,
which can be generated by DnaG primase (in Gram-
negative bacteria), by the concerted action of DnaE
and DnaG primase (in Gram-positive bacteria), or by
alternative plasmid-encoded primases. Discontinuous
lagging-strand synthesis involves repeated priming and
elongation of Okazaki fragments and is comparable
in plasmids and chromosomes, although Okazaki frag-
ments were found to be smaller in a ColE1-like plas-
mid, approximately one-third the length of Okazaki
fragments in the chromosome (13).

DNA polymerase I (Pol I) contributes to plasmid
replication in several ways. In ColE1 and ColE1-like
plasmids, Pol I can extend a primer to initiate leading-
strand synthesis and open the DNA duplex; this process
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can expose a hairpin structure in the lagging strand,
known as a single-strand initiation (ssi) site or prim-
osome assembly (pas) site, and/or generate a D-loop.
Both hairpins and forked structures recruit PriA, which
is the first step in the replisome initiation complex. Fol-
lowing replisome assembly, Pol I plays a critical role in
discontinuous lagging-strand synthesis, removing RNA
primers through its 5´→3´ exonuclease activity and fill-
ing in the remaining gap through its polymerase activ-
ity (14). In addition, two lines of evidence suggest that
Pol I can functionally replace Pol III in Escherichia coli:
(i) Pol I is essential for polC (Poll III-minus) strain via-
bility, showing that both polymerases are functionally
redundant (15). (ii) Mutations generated through error-
prone Pol I replication of a ColE1-like plasmid in vivo
strongly suggest that Pol I replicates both plasmid
strands with similar frequency beyond the point where
the switch to Pol III is expected, again suggesting that
Pol I can be redundant with the Pol III replisome (16).

THETA PLASMID REPLICATION

Three modes of replication can be distinguished for cir-
cular plasmid replication: theta, strand-displacement,
and rolling circle. This review focuses on theta. This
mode of replication is similar to chromosomal replica-
tion in that the leading and lagging strands are replicat-
ed coordinately, with discontinuous lagging-strand
synthesis. No DNA breaks are required for this mode
of replication. Coordinated replication of both strands
leads to the formation of bubbles in the early stages of

replication, seen as the Greek letter θ under electron
microscopy. Four classes of theta-type plasmids can be
distinguished based on their mode of replication initia-
tion, although the last two categories show hybrid
features of the first two and will be discussed together
(see theta replication section in Table 1).

Class A Theta Replication
Class A theta plasmids include R1, RK2, R6K,
pSC101, pPS10, F, and P. All these plasmids depend on
Rep proteins for replication initiation: RepA for R1,
pSC101, pPS10, and P1; Trf1 for RK1; and π for R6K.
Note that the name of these Reps is incidental, so shar-
ing a name is not an indication of related structure or
mode of action. Rep proteins bind direct repeats
(iterons) in the plasmid ori. In class A, these iterons are
rarely identical, although they frequently conform to a
consensus motif. In plasmid P1, RepA monomers con-
tact each iteron through two consecutive turns of the
helix, leading to in-phase bending of the DNA, which
wraps around RepA (17). Similarly, in R6K plasmids, π
binding of its cognate iterons bends the DNA and
generates a wrapped nucleoprotein structure (18).

There are two prominent exceptions to the presence
of multiple iterons in class A theta plasmid oris:
(i) Plasmid R1, which features two partial palindromic
sequences instead of iterons; however, similar to other
plasmids of this class, R1 palindromic sequences are
recognized by RepA. (ii) The R6K plasmid, which has
three oris, only one of which has multiple iterons: γ
(with seven iterons), a second origin (α) with a single

TABLE 1 Comparison of the three basic modes of plasmid replication initiation in circular plasmids

Type of
replication

Leading-strand synthesis Lagging-strand synthesis

Plasmid initiation factors Host factors
Coupling with
leading strand Plasmid factors Host factors

Theta class A Rep (duplex melting) DnaA-replisome Yes No Replisome

Theta class B None RNAP

Pol I

RNase H

PriA-replisome

Yes No Replisome

Theta class C Rep

(duplex melting, primase)

Replisome Yes No Replisome

Theta class D Rep

(duplex melting,

RNA processing?)

RNAP

PriA-replisome

Yes No Replisome

Strand-

displacement

Rep A

(helicase)

Rep B

(primase)

Rep C

(initiator)

Replisome

(recruited by RepA)

No

(simultaneous)

Rep A

(helicase)

Rep B

(primase)

Rep C

(initiator)

None
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iteron, and a third origin (β) with only half an iteron.
It appears that the γ ori is an establishment origin,
allowing replication initiation immediately following
mobilization, when levels of π protein are low, whereas
α and β oris would be maintenance origins in cells
inheriting the plasmid by vertical transmission (19). In
any case, γ ori acts as an enhancer, favoring the long-
range activation of α and β oris by transfer of π. Thus,
α and β oris are still dependent on the multiple iterons
present in ori γ.

Rep binding of a cognate sequence in the plasmid
ori mediates the earliest step in replication initiation:
duplex DNA melting. A Rep-DnaA interaction is fre-
quently involved, although the importance of this in-
teraction varies between individual oris. In plasmid
pSC101, RepA serves to stabilize DnaA binding to dis-
tant dnaA boxes, leading to strand melting (20). Plas-
mid P1’s ori has two sets of tandem dnaA boxes at each
end; DnaA binding loops up the DNA, leading to pref-
erential loading of DnaB to one of the strands (21). By
contrast, RK2’s TrfA was shown to mediate open com-
plex formation and DnaB helicase loading in the ab-
sence of dnaA boxes, although the presence of DnaA
protein was still required (22).

As mentioned above, the double strand melts in re-
sponse to iteron binding by Rep protein. Melting occurs
at an AT-rich region. Similar to chromosomal oriC, AT-
rich segments of sequence frequently have sites for host
factors playing an architectural role such as histone-like
protein, integration host factor, and factor for inversion
stimulation. These host factors help with DNA melting
and with the structural organization of the initiation
complex (1, 23, 24).

Class B Theta Replication
Class B theta plasmids include ColE1 and ColE1-like
plasmids, which are frequently used for recombinant
gene expression. Unlike class A, class B plasmids rely
exclusively on host factors for both double-strand melt-
ing and primer synthesis. The DNA duplex is opened
in this case by transcription of a long (∼600 bp)
preprimer called RNA II, which is transcribed from
a constitutive promoter P2. Constitutive expression
from this promoter is enhanced by a 9-bp motif 5´-
AAGATCTTC, which is located immediately upstream
of the -35 box (25). The 3´ end of the preprimer RNA
forms a stable hybrid with the 5´ end of the lagging-
strand DNA template of ori. This stable RNA-DNA
hybridization (R-loop formation) is facilitated by the
pairing of a stretch of G-rich sequence on the transcript
with a C-rich stretch on the lagging-strand DNA tem-
plate and by a hairpin structure located between the G-

and C-rich stretches (26). Following R-loop formation,
the RNA preprimer is processed by RNase H (which
recognizes the AAAAA motif in RNAII), producing a
free 3´-OH end. Extension of this RNA primer by Pol I
initiates leading-strand synthesis. The point where the
RNA primer is extended (known as RNA/DNA switch)
is considered the replication start point (reviewed in
references 27–29).

As mentioned above, the nascent leading strand
separates the two strands of the DNA duplex and can
hybridize with the leading-strand template, forming a
D-loop. PriA is recruited to the forked structure of the
D-loop; alternatively, PriA can be recruited to hairpin
structures forming on the lagging-strand template when
the duplex opens. Indeed, priA strains do not support
ColE1 plasmid replication, and hypomorphic muta-
tions in priA priB result in a reduced ColE1 plasmid
copy number (30–32).

When the Pol III holoenzyme is loaded (27, 28)
this polymerase continues leading-strand synthesis and
initiates lagging-strand synthesis. Pol III replication of
the lagging strand toward the RNA II sequence is
arrested 17 bp upstream of the DNA/RNA switch, at a
site known at terH, ensuring unidirectional replication
(33). Lagging-strand replication by Pol III appears to
end a few hundred nucleotides upstream of the terH
site (33), leaving a gap that is filled by Pol I (16).

The only step that is essential in this process of repli-
cation initiation is R-loop formation; deficits in RNase
H and/or Pol I do not prevent initiation, although they
have a substantial impact on the efficiency of replica-
tion initiation. In the absence of RNase H, unprocessed
transcripts can still be extended with some frequency,
and in the absence of Pol I, the Pol III replisome can
still be loaded on an R-loop formed by the transcript
and lagging-strand template (28).

R-loop formation can happen as a result of local
supercoiling in the trail of the advancing RNA poly-
merase during transcription and is highly deleterious
because R-loops block transcription and the elongation
step during translation (34). Therefore, cells have mech-
anisms to suppress unscheduled R-loop formation. The
most important ones are relaxation of the DNA tem-
plate by type I topoisomerase activity, RNA degrada-
tion by RNase H, RecG dissociation of R-loops by
branch migration, factor-dependent transcriptional ter-
mination, and coupling transcription to translation
(reviewed in reference 35). Accordingly, titration of
R-loop-suppressing factors through uncoupling tran-
scription from translation (by starvation, tempera-
ture shift, or chloramphenicol treatment) results in
increased ColE1 plasmid copy number (36), whereas
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RecG overexpression dramatically suppresses replica-
tion initiation (37). However, loss of topoisomerase I
and RNase H activity do not increase plasmid copy
number despite inducing increased R-loop formation
because these activities are also required for plasmid
replication initiation (particularly RNase H).

Hybrid Classes of Theta Replication
(Classes C and D)
Classes C and D have specialized priming mechanisms
combined with elements of class A and class B replica-
tion. Like class A plasmids, class C and D plasmids
have Rep proteins, located immediately upstream of
ori. Like class B plasmids, however, both initiate lead-
ing-strand synthesis by Pol I extension of a free 3´-OH.
Class C and D plasmids both have termination signals
in the 3´ direction of lagging-strand synthesis, making
replication of these plasmids unidirectional.

Class C and D theta plasmid replication is based on
the evolution of more efficient ways to prime replication
initiation. The evolution of plasmid-specific primases
exploits the specificity provided by Rep interaction with
ori to minimize the size of the cis-ori sequence. Such
specificity is not possible when multiple primers are
needed, as in the case of lagging-strand synthesis in the
chromosome. Also, the evolution of specialized priming
mechanisms broadens the host range of these plasmids
by reducing dependence on host factors (38).

Class C includes ColE2 and ColE3 plasmids. The
oris for these two plasmids are the smallest described
so far (32 bp for ColE2 and 33 bp for ColE3); these
two oris differ only at two positions, one of which
determines plasmid specificity (39). ColE2 and ColE3
oris have two iterons and show two discrete functional
subregions: one specializing in stable binding of the
Rep protein (region I) and the other specializing in ini-
tiation of DNA replication (region III), with an area of
overlap in between (region II) (40). Unlike class A initi-
ator Rep proteins, the Rep protein in class C plasmids
has primase activity, synthesizing a unique primer RNA
(ppApGpA) that is extended by Pol I at a fixed site in
the origin region (41). Class C replication is unidirec-
tional, as the 3´ end of the lagging-strand DNA frag-
ment was mapped to a specific site at the end of the ori
region. The Rep protein may stay bound to the ori after
initiation of replication, blocking progression of the
replisome synthesizing the lagging strand (42).

Class D includes large, low-copy streptococcal plas-
mids that replicate in a broad range of Gram-positive
bacteria. Examples include pAMβ1 from Enterococcus
faecalis, pIP501 from Streptococcus agalactiae, and

pSM19035 from Streptococcus pyogenes. In these plas-
mids, replication shares some features with class B
theta replication, specifically a requirement for tran-
scription across the ori sequence, Pol I extension and
PriA-dependent replisome assembly (43). In this case,
the transcript is generated from a promoter controlling
expression of rep, which is immediately upstream of
the ori (43). The replication process has been studied in
detail for pAMβ1, although the Rep proteins (RepE for
pAMβ1, RepF for pIP501, and RepS for pSM19035)
are 97% identical for all three plasmids, and the three
plasmids share a replisome structure, suggesting that
they share mechanisms for replication initiation and ter-
mination. Replication depends on transcription through
the origin. Rep binds specifically and rapidly to a unique
site immediately upstream of the replication initiation
site. This binding denatures an AT-rich sequence imme-
diately downstream of the binding site to form an open
complex (44). Compared to class A, this open complex
is atypical on several counts: (i) the cognate sequence
does not have multiple iterons, (ii) binding does not in-
duce strong bending of the origin, and (iii) melting does
not require additional host factors. In addition to open-
ing of the double strand, RepE appears to have an active
role in primer processing, as melting increases RepE
binding and RepE can cleave transcripts from the repE
operon in close proximity to the RNA/DNA switch (45).

Class D replisome assembly is PriA-dependent. A
primosome assembly signal can be found 150 nucleo-
tides (nt) downstream from the ori on the lagging-
strand template. There is a site for replication arrest
induced by Topb, a plasmid-encoded topoisomerase re-
lated to topo III, 190 nt downstream for the ori (46). A
second replication arrest site can be found 230 nt
downstream from the plasmid ori; in this case arrest is
caused by collision with a site-specific resolvase, Resb,
which is a plasmid-borne gene responsible for plasmid
segregation stability (47). The presence of two indepen-
dent checkpoints for Pol I progression in pAMβ1 is in-
triguing; this may be a mechanism that ensures Pol I
availability for chromosomal replication and/or that
facilitates recruitment of PriA, as PriA is known to be
recruited to sites of replication fork arrest. In any case
the two replication blocks appear to be largely redundant,
as Topb is dispensable for pAMBβ1 replication (46).

COMPARISON OF THE THETA AND
STRAND-DISPLACEMENT MODES OF
PLASMID REPLICATION

Plasmids that replicate using the strand-displacement
mode of replication include E. coli incompatibility

3. MECHANISMS OF THETA PLASMID REPLICATION 37



group Q (IncQ) plasmids of γ-proteobacteria such as
RSF1010. Strand-displacement replication depends on
a specialized primase: RepB. In this case, the function
of replication initiator function is provided by a differ-
ent Rep (RepC). Similar to initiator Rep proteins in
class A theta plasmids, Rep C binds cognate iteron se-
quences, bending the DNA and melting duplex DNA
at an adjacent A+T-rich region. An additional plasmid-
encoded protein (a helicase, RepA) helps melt the
DNA, recruit Pol III, and support continuous replica-
tion of one strand. This single-stranded replication pro-
duces a daughter ssDNA strand, which separates the
two strands of the DNA duplex and allows hybridiza-
tion with one of them, creating a D-loop (hence the
name of this mode of replication).

A model for strand-displacement replication is
presented in Fig. 1. After RepC-induced melting of the
duplex, RepA monomers assemble around the exposed
ssDNA and catalyze bidirectional unwinding of the
DNA. This exposes the two different ssi sites, which
are adjacent and are both palindromic, resulting in
inverted repeats on the two DNA strands. When these
two sites are exposed in single-stranded configuration,
base-pair complementarity favors the formation of two
hairpins, one for each strand, (Fig. 1, panel II) (48).
Hairpin formation is assisted by a slowdown in RepA
progression at a G+C-rich region (reviewed in reference
49). The base of each hairpin contains the start point
for DNA synthesis, which is recognized by Rep B, and
primer synthesis ensues (50, 51). The Pol III holoen-
zyme extends off of the synthesized primer (Fig. 1,
panels III to V). Initiation can occur at either site inde-
pendently and is continuous. As replication progresses,
facilitated by the RepA helicase, a theta-type intermedi-
ate forms (Fig. 1, panels III and IV). Ligation of the
two daughter strands produces two double-stranded
circles (Fig. 1, panel VI).

Unlike theta-type replication, strand-displacement
replication initiation is independent of host factors.
This autonomous replication initiation gives these plas-
mids a very broad range of operation (52). As men-
tioned above, strand-displacement replication initiation
has some similarities to class C theta plasmid replica-
tion (with a specialized, plasmid-encoded primase) and
similarities to class A theta plasmid replication (with a
Rep initiator involved in melting the duplex), but
strand displacement presents three major differences
relative to theta plasmid replication: (i) no involvement
of DnaBC, as RepA is loaded on ssi sites exposed in the
ssDNA configuration, recruiting the replicase; (ii) prim-
ing is carried out by RepB, functionally replacing the
host primase DnaG; and (iii) Pol III replicates each

strand continuously, initiating at two single-stranded
motifs located on opposite strands (ssiA and ssiB).
Note that continuous replication includes the lagging
strand, which in this case does not involve synthesis of
Okazaki primers (53).

REGULATION OF
REPLICATION INITIATION

The frequency of replication initiation is regulated by
negative feedback loop mechanisms. These regulatory
mechanisms allow for rapid expansion when plasmids
colonize a new permissive cell (establishment phase)
and later tune the frequency of replication so that, on
average, there is one replicative event per plasmid copy
number per cell cycle (steady state phase), minimizing
fluctuations in copy number (54).

Types of Feedback Regulatory Mechanisms
Plasmid copy number regulation needs mechanisms to
monitor the plasmid copy number through a “sensor”
and mechanisms to modulate replication initiation in
response to feedback through an “effector” (55). The
sensor mechanism depends on molecules whose con-
centration in the cytoplasm is proportional to plasmid
copy number. In theta plasmids, inhibition of replica-
tion occurs at the initiation step and depends on three
types of mechanisms: (i) antisense RNAs that hybrid-
ize to a complementary region of an essential RNA
(countertranscribed RNAs, or ctRNAs) – dual mecha-
nisms involving ctRNA and an additional protein re-
pressor also occur –; (ii) Rep binding of iterons located
in the Rep promoter, suppressing transcription; and
(iii) steric hindrance between plasmids by interaction
between Rep initiator proteins bound to different plas-
mids, which “handcuffs” them. Note that in all three
cases sensor and effector functions are performed by
the same molecule.

Countertranscribed RNA Inhibition
These feedback mechanisms share the following ele-
ments: two promoters in opposite orientations, one
directing the synthesis of an RNA essential for replica-
tion and the other directing the synthesis of an inhibi-
tor ctRNA. The ctRNA is complementary to a region
near the 5´ end of the essential RNA, is typically
strongly expressed, and has a short half-life, whereas
its target RNA is expressed at constitutive but low
levels. Examples of targets include maturation of a
primer required for replication initiation (ColE1 plas-
mids), inhibition of repA translation (R1), and prema-
ture termination of translation of a rep mRNA (class D
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plasmids). Antisense RNA regulation of plasmid replica-
tion has been extensively reviewed elsewhere (55–57).

RNAI (ColE1, ColE2) and CopA (R1) ctRNA
molecules are highly structured. Given that the target
preprimer and ctRNA sequence are complementary,
higher-order structures for both RNAs are mirror
images of each other. The first contact between sense
and antisense RNAs occurs by pairing between comple-
mentary sequences at the loop portion of stem-loops, a

rate-limiting step known as the “kissing complex for-
mation” (58). Point mutations at the loop portion of
stem-loops are frequently tolerated, as mutations in the
template DNA introduce complementary changes in
sense and ctRNA at the same time, preserving base-
pairing. These mutations modulate the affinity of sense
RNA–ctRNA interaction, with A-U pairs generally
decreasing affinity relative to G-C pairs (for ColE1
plasmids reviewed in reference 27).

Figure 1 Model of plasmid replication by the strand-displacement mechanism. (I) Parental
DNA duplex (solid black lines) depicting the two single-stranded replication initiation sites,
ssiA (light gray box) and ssiB (dark gray box). Vertical lines show hybridization between
DNA strands. (II) The DNA duplex is melted through binding of RepC (possibly in concert
with the RepA helicase), allowing the two ssi sites to form hairpins (ball and stick). (III) The
base of the hairpin is recognized by RepB´, which initiates the synthesis of an RNA primer
(light gray dashed line). Extension of the free 3´-OH of the primer by Pol III (assisted by
the RepA helicase) is shown as dashed black arrows. Two D-loops are formed, one for each
direction of synthesis, as parental strands are displaced and dissociate from each other, leav-
ing ssDNA intermediates. This is shown as areas where one of the strands has no hydrogen
bonding. (IV) Synthesis continues in both directions, extending the area of D-loop forma-
tion. (V) Elongation is completed and termination of replication occurs on both strands at
the ssi sites in which replication began. At this point, the ssi sites on the newly synthesized
daughter strands are restored. (VI) Segregation: the two daughter strands are ligated, result-
ing in two DNA duplexes, each containing a parental strand (solid black line) and daughter
strand (dashed black line). doi:10.1128/microbiolspec.PLAS-0029-2014.f1
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Several ctRNAs (ColE1 and ColE2 RNAI and R1
copA) have a short half-life due to the presence of an
RNase E cleavage site, which consists of the U-rich se-
quence and a hairpin structure at the 3´ end. Condi-
tional expression of a hyperactive variant of RNase E
has been used for controlled overproduction of ColE1
plasmid DNA (59). RNase E cleavage produces mono-
phosphorylated decay intermediates lacking short por-
tions of the 5´ end. In the case of ColE1 and ColE2,
these pRNAI cleavage intermediates are polyadenyla-
ted by PAPI, facilitating exonucleotidic digestion by
PNPase (60, 61). Deletion of pcnB, the gene encoding
PAPI, leads to increased cytoplasmic levels of pRNAI
cleavage intermediates and to a 5- to 10-fold (ColE1)
and 2-fold (ColE2) decrease in plasmid copy number
(61, 62). RNase III has also been reported to degrade
ColE1 RNAI upstream of RNase E (63). In ColE2, the
differential stability between RNAI and its target rep-
mRNA is partially due to differential exonuclease re-
cruitment by RNase E (64).

Single Mechanisms Involving
ctRNA Inhibition
In ColE1, the ctRNA (RNAI) is transcribed from P1, a
promoter located 108 bp downstream from the sense
promoter P2. Both preprimer and ctRNA form three
stem-loops (SL1-3); the loop portion consists of six to
seven unpaired residues. These residues are critical, as
their pairing with their complementary counterparts
initiates hybridization. Next, the 5´ end of RNAI
(antitail) nucleates the hybridization between the two
RNAs to form a duplex.

Hybridization between the preprimer and ctRNA
leads to conformational changes in the preprimer,
blocking R-loop formation further downstream, a phe-
nomenon known as “action at a distance” (reviewed in
references 27 and 65). This conformational change is me-
diated by the interaction of a sequence domain (β) in the
preprimer with another sequence domain further down-
stream (γ), making the preprimer incompetent for R-loop
formation. In addition to being short-lived, ColE1 RNA I
has a short window of action, because as soon as RNAII
is transcribed past position 200 downstream of the RNA/
DNA switch, hybridization of the β domain with another
sequence domain (α) forms a new loop (SL4), which
makes RNAII refractory to RNAI inhibition.

SL1 to SL3 bear a structural resemblance to the clo-
verleaf structure of tRNAs and even have homology
to the anticodon loops of 11 tRNAs (66). Competitive
hybridization between tRNA and RNAI or RNAII ap-
pears to interfere with RNAI/RNAII hybrid formation
(66). In addition, uncharged tRNAala cleaves RNAI

both in vitro and in vivo (67), and there is evidence
suggesting that the 3´-CAA terminus of uncharged
tRNAs hybridizes stably with RNAI (68). This func-
tional cross-talk between RNAI and tRNAs may con-
tribute to plasmid copy number deregulation associated
with amino-acid starvation in relA strains used for re-
combinant gene expression; one of the key factors is
the limiting yield of large-scale recombinant expression
(69). Cross-talk between ctRNA and tRNAs may also
explain the conservation of the 5´-UUGGCG-3´ se-
quence at the loop region of many of the antisense
RNAs and their targets involved in regulation of repli-
cation, suggesting that this sequence is under common
and strong selective pressure (70).

In ColE2 plasmids the ctRNA is also known as RNAI
and has a complex secondary structure. In this case,
RNAI is complementary to the 5´ end of rep mRNA
containing an untranslated sequence. Given that the 5´
end portion of RNAI does not cover the initiation codon
of Rep or its immediate vicinity, inhibition in this case
appears to be caused by structural disruption of second-
ary or tertiary structures required for translation (70).

Dual Mechanisms Involving ctRNA
These mechanisms are plasmid copy number regulatory
systems that include two elements: a ctRNA and a tran-
scriptional repressor protein. In these systems, Rep ex-
pression is controlled by a strong, repressor-regulated
promoter so that there is a high rate of Rep transcrip-
tion when the repressor does not operate. The two
best-studied examples are the R1 plasmid, where the
ctRNA is CopA and the repressor is CopB, and pIP501,
where the ctRNA is RNAIII and the repressor is CopR.
These dual mechanisms may represent an advantage
during the establishment phase, particularly for mobi-
lizable plasmids such as class D plasmids.

In R1, repA can be transcribed from an upstream
promoter P1 or from an alternative promoter further
downstream, P2. Expression of repA is translationally
coupled to that of tap, a small leader peptide. CopA in-
hibits repA expression by inhibiting translation of tap.
The second element is a transcriptional repressor of P2,
CopB. CopB expression is under the control of P1 but
not P2. When levels of CopB are high, tap+repA are
transcribed as polycystron copB-tap-RepA RNA from
P1 (as P2 is silenced by CopB), but when they are low,
the P2 promoter becomes derepressed and tap+repA can
also be expressed from that alternative promoter, lead-
ing to a transient increase in tap+repA expression (71).

Class D plasmids have a cop-ctRNA-rep modular
structure. In this case the two regulatory elements are
RNAIII and a Cop protein. RNAIII is transcribed in the
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opposite orientation relative to its target DNA (5´ end
of rep) from promoter pIII, whereas pI and pII control
CopR and Rep expression, respectively, in the sense ori-
entation. In pIP501 plasmids, RNAIII hybridization to
its complementary sequence induces folding of RNA in-
to a transcriptional terminator structure that prevents
transcription of repR. This mechanism only operates
on nascent (<260-nt-long) RNAs, as longer rep trans-
cripts form an alternative secondary structure that is re-
fractory to repR-induced transcriptional attenuation
(72). CopR (whose levels reflect plasmid copy number
in the cell) inhibits the sense promoter pII. A decreased
plasmid copy number leads to pII derepression, result-
ing in increased RepR expression. In addition, induc-
tion of pII (repR) transcription results in a substantial
decrease in pIII transcription because pIII is supercoiling-
sensitive. In pAMBβ1, CopF (the equivalent of CopR),
in addition to suppressing RepF transcription, decreases
primer formation since CopF transcription generates the
primer for replication initiation (see class D in the “Hy-
brid Classes of Theta Replication” section above).

Transcriptional Regulation by Rep Binding
In some class A theta plasmids, a different mechanism
of regulation involves inhibiting Rep transcription by
Rep itself. In these plasmids, iterons are located in the
promoter of the Rep operon, outside the plasmid ori.
Rep binding to these cognate sequences inhibits Rep ex-
pression and thus acts as an autoregulatory mechanism.

Rep binding of two alternative binding sites (Rep
promoter and plasmid ori) involves changes in the con-
formation and oligomerization status of the Rep pro-
tein. These changes have been studied in detail in the
RepA protein of pPS10 (73). This protein has two
winged-helix domains (WH1 and WH2). When Rep A
is in dimeric form, it acts as a transcriptional repressor,
with the WH1 domain functioning as a dimerization
interface. Low concentrations of RepA favor dissocia-
tion of Rep dimers into monomers, which are the only
form that is active as an initiator. Monomerization in-
volves conversion of the dimerization domain into a
second origin-binding sequence and remodeling of the
WH1 sequence to bind the opposite iteron end (73). In
some cases, monomerization can be assisted by chaper-
ones or by the allosteric effect of binding iterons at the
ori (74–77).

Steric Hindrance
A different feedback mechanism, known as steric hin-
drance or handcuffing, was initially proposed for P1
and R6K plasmids (78, 79) but could operate in more
iteron-containing plasmids. According to this model, as

the number of plasmids in the cell increases, Rep mole-
cules bound to iterons of one origin begin to interact
with similar complexes generated in other origins. This
pairing (known as handcuffing) produces plasmid pairs
linked through Rep-Rep interactions, causing a steric
hindrance to both origins that interferes with origin
melting (80). Rep molecules are paired through zip-
ping-up DNA-bound RepA monomers (78). A differ-
ence between this model and the autoregulation model
is that the rate of replication depends on iteron concen-
tration, not Rep expression level. Both mechanisms of
autoregulation could be working together for initiators
that are limiting (81).

CONCLUDING REMARKS

Plasmids contribute to the adaptation of bacterial hosts
to an ever-changing environment through mobilization
and amplification of selected genes. Different circular
plasmids show differences in duplex melting, leading-
strand priming, and lagging-strand synthesis. Learning
more about the diversity of the replication mechanisms
present in plasmids can help us understand the mecha-
nisms that cells have available to replicate and repair
their DNA. Organellar replication and restoration of
replication after replication fork arrest are two examples
of processes that occur in cells that are mechanistically
closely related to plasmid replication. Also, learning
more about these mechanisms will improve our under-
standing of plasmid biology, as mechanisms of replica-
tion limit plasmid size, host range, and mobilization
capacity. Finally, maintaining a stable plasmid copy num-
ber is critical for the host, as loss of the plasmid entails
losing the adaptive functions carried in the plasmid se-
quence, and runaway plasmid replication is lethal. Thus,
mechanisms of plasmid replication regulation represent
potential targets for antimicrobial intervention.
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4Plasmid Rolling-
Circle Replication

GENERAL ASPECTS OF PLASMID
ROLLING-CIRCLE REPLICATION

The main features that characterize rolling-circle repli-
cation (RCR) (see Fig. 1A) derive from its singular initi-
ation mechanism, which relies on the sequence-specific
cleavage, at the nick site of the double-strand origin
(dso), of one of the parental DNA strands by an initia-
tor Rep protein. This cleavage generates a 3´-OH end
that allows the host DNA polymerases to initiate the
leading strand replication. Therefore, the RCR initia-
tion circumvents the synthesis of a primer RNA that is
required in all other modes of replication of circular
double-stranded DNA (dsDNA). Elongation of the
leading strand takes place as the parental double helix
is unwound by a host DNA helicase and the cleaved
nontemplate strand is covered with the single-stranded
DNA binding protein. Since the nascent DNA is cova-
lently attached to the parental DNA, termination of a
round of leading-strand replication implies a new cleav-
age event at the reconstituted nick site. This reaction is
assumed to be catalyzed by the same Rep molecule
that carried out the initiation cleavage and remained
bound to the 5´ end of the parental strand while travel-

ing along with the replication fork. A trans-esterification
then occurs that joins this 5´ end to the 3´ end gener-
ated in the termination cleavage, releasing the displaced
parental strand as a circular single-stranded DNA (ssDNA).
This replicative intermediate serves as the template for
the synthesis of the lagging strand, which depends solely
on host-encoded enzymes and is initiated from a highly
structured region of the ssDNA, termed the single-strand
origin (sso).

Thus, the entire process of asymmetric RCR yields,
in two separate steps (this is what asymmetric refers
to), two circular dsDNAs containing either the newly
synthesized leading or lagging strand and the comple-
mentary parental template strand. The DNA ligase and
gyrase of the host cell next convert the new daughter
DNA molecules in supercoiled forms indistinguishable
from the rest of the plasmid pool. Generation of the
ssDNA replicative intermediates is the hallmark of RCR,
and detection of intracellular strand-specific plasmid
ssDNA provides valuable clues about whether a given
plasmid replicates by the rolling-circle mechanism (1, 2).

The basic catalytic mechanism operating in initiation
and termination of RCR, i.e., the cleavage and rejoining
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(IRB-Barcelona), Baldiri Reixac 10-12, 08028 Barcelona, Spain; 3Institut de Biologia Molecular de Barcelona (CSIC), Baldiri Reixac 10-12,
08028 Barcelona, Spain.

Plasmids—Biology and Impact in Biotechnology and Discovery
Edited by Marcelo E. Tolmasky and Juan C. Alonso

© 2015 American Society for Microbiology, Washington, DC
doi:10.1128/microbiolspec.PLAS-0035-2014

45



Figure 1 (A) A model for plasmid RCR based on pMV158 and pT181 replicons. Detailed
information about the RCR process is given in the text. In the pMV158 replication model,
a possible mechanism is shown in which, upon assembly and cleavage at the nick site, the
hexameric ring of RepB encircles one of the plasmid strands within the central channel. As
discussed in the text, the strand enclosure may confer high processivity to the replisome
complex. The RepB-mediated mechanism that, at the termination step, yields the dsDNA
replication product and the ssDNA intermediate, as well as the mechanism of RepB inactiva-
tion, remain undisclosed (dotted arrow with ? symbol). (B) Scheme of the dsos and of the
adjacent regions of the pMV158 and pT181 RCR plasmids. The symbols used are as
follows: direct repeats in the replication region are indicated by solid boxed arrows; the
inverted arrows represent the two arms of the inverted repeat elements; promoters are indi-
cated by open arrowheads. The AT- and GC-rich sequences (A+T and G+C, respectively) are
also indicated. The dotted line above the pMV158 map indicates that the direct repeats of
the bind locus are separated by 84 bp from the nick site. SSB, single-stranded DNA binding
protein. doi:10.1128/microbiolspec.PLAS-0035-2014.f1
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of ssDNA using an active-site Tyr that forms a transient
5´-phosphotyrosine bond with the cleaved DNA, is
involved in a range of processes that take place in mo-
bile genetic elements in all three domains of life. The
enzymes that exhibit this catalytic mechanism are main-
ly included in the widespread His-bulky hydrophobic
residue-His (HUH) endonuclease superfamily and have
key roles in the replication of plasmids, bacteriophages,
and plant and animal viruses; in plasmid conjugative
transfer; and in transposition (3). RCR was discovered
in ssDNA coliphage ΦX174 some 45 years ago (4–6).
The pioneer characterization of gene A protein made the
initiator of ΦX174 RCR the first member of the HUH
endonuclease superfamily (7–10).

Plasmid RCR was first evidenced for the Staphylo-
coccus aureus plasmid pT181 based on the character-
ization of the origin-specific nicking-closing activity of
the purified pT181-encoded RepC protein (11). Shortly
afterward, several other small plasmids from staphylo-
cocci, bacilli, streptococci, and streptomyces were also
found to replicate by the RCR mechanism (12–14),
which led to the assumption that most, if not all, small
multicopy plasmids in Gram-positive bacteria use RCR.
However, this premise proved inaccurate, as some small
plasmids isolated from Gram-positive organisms were
later reported to replicate by the theta mode (1). More-
over, although RCR plasmids are particularly abundant
in Gram-positive bacteria, they have also been identi-
fied in various Gram-negative organisms, in archaea,
and in mitochondria of the higher plant Chenopodium
album (1, 2, 15).

Natural RCR plasmids range in size from as low as
the 846 bp of the Thermotoga plasmids pRQ7,
pMC24, and pRKU1 (16–18) to the almost 30 kb of
pCG4 from Corynebacterium glutamicum (19). The
nearly identical plasmids pRQ7, pMC24, and pRKU1
are the smallest found so far and consist of only the
basic replicon, i.e., the backbone regions involved in
replication and copy-number control. The basic repli-
con of RCR plasmids should include an essential mod-
ule containing the dso and the genes that encode the
initiator Rep protein and the replication control ele-
ment(s), as well as at least one host-recognized sso,
which, although not strictly essential, provides efficient
synthesis of the lagging strand and hence is present in
all natural RCR plasmids (Fig. 2). Homology in the
essential module of the basic replicon has been the
criterion used to classify RCR plasmids into replicon
families (see below).

Apart from the basic replicon, some larger RCR plas-
mids contain additional backbone genes and elements
that contribute to their maintenance or help them trans-

fer between host cells (Fig. 2). Of special relevance,
because of its frequent presence in RCR plasmids, is the
MOB module, which is involved in the conjugative
mobilization of the plasmid and consists of the transfer
origin (oriT) and the mob gene(s) that encode the
relaxase protein and, in some cases, auxiliary proteins
(20). The apparent lack of active partition systems in
RCR plasmids is consistent with the medium copy
number (10 to 30 per chromosome equivalent) that
they exhibit in their natural hosts. This feature ensures
the stable inheritance of RCR plasmids by only random
segregation to the daughter cells, providing that the
replication control system efficiently corrects fluctuations
of the plasmid copy number in single cells and that the
plasmid molecules are maintained as individual copies.
In this sense, the presence of homologs to components
of toxin-antitoxin (TA) systems in some RCR plasmids
is intriguing (21). It is noteworthy that whereas the TA
systems were first proposed to play a role in plasmid
stability through postsegregational killing of plasmid-
free cells, the more recent competition hypothesis post-
ulates that acquisition of these modules allows plasmids
to exclude competing TA-free plasmids (22–24).

Some RCR plasmids also carry accessory genes that
encode functions that can benefit the host cell under
special conditions, thus reflecting the adaptation of the
bacteria to their environment (Fig. 2). Antibiotic resis-
tance determinants are among the most frequent traits
encoded by RCR plasmids isolated from a variety of
bacteria (25). Other accessory genes have been found
to be relatively abundant in RCR plasmids from a giv-
en host. This is the case of small heat shock protein
(shsp) genes carried by Streptococcus thermophilus
plasmids belonging to the pC194 replicon family (26,
27). The presence of shsp-containing plasmids has been
reported to increase cell survival at the high temper-
atures reached during different stages of fermentation
in the dairy industry (27). Another striking example is
the presence, in some Bacillus thuringiensis plasmids,
of open reading frames encoding collagen-like proteins
that are thought to play a role in aggregation formation
or in adherence to other cells or substrates (28).

RCR plasmids are considered to contain promiscu-
ous replicons, as many of them have been shown to
replicate in species, genera, or even phyla other than
those from which they were isolated (25). The sim-
plicity of the RCR initiation, with only the plasmid-
encoded Rep protein participating in recognition of the
origin and priming of the leading strand synthesis, may
underlie the usual promiscuity of these plasmids. The
broadness of the host range of RCR plasmids would
depend on the balanced expression of their essential
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genes involved in initiation and control of replication
as well as on the formation of a functional Rep-host
helicase complex that can extensively unwind the plas-
mid DNA in a variety of bacteria (29–31). The broad
host range of RCR plasmids is best exemplified by
the pMV158-family prototype, which was initially iso-
lated from Streptococcus agalactiae and subsequently
transferred to a variety of Firmicutes (several Strep-
tococcus and Bacillus species, Listeria, S. aureus,
Lactococcus lactis, Enterococcus faecalis, Clostridium),
Actinobacteria (C. glutamicum, Brevibacterium), and
the γ-proteobacterium Escherichia coli. Moreover, the
fact that members of each replicon family have been
isolated from a variety of bacteria suggests the promis-
cuity of the ancestors from which these plasmids
derive. In turn, plasmid adaptation to a new host can
lead to the narrowing of the host range of the adapted

plasmid. This seems to be the case for two Mycoplasma
mycoides plasmids of the pMV158-replicon family,
namely pADB201 and pKMK1, whose rep genes con-
tain at least one UGA codon, which encodes trypto-
phan in this bacterium but is a stop codon in other
bacteria, so that the host range of these plasmids is
restricted to Mycoplasma species (32).

Due to their general smallness, high copy number,
and promiscuity, RCR plasmids appear to be well
suited for the construction of vectors for gene cloning
and expression, provided a functional sso is present to
minimize the generation of the recombinogenic ssDNA
intermediates, which can lead to structural and
segregational plasmid instability (33–37). Nevertheless,
it has been reported that cloning of heterologous DNA
in RCR plasmid vectors can result in the generation of
linear high-molecular-weight (HMW) plasmid multimers

Figure 2 Functional organization of the RCR plasmids. Plasmids representative of the
different families are shown. The arrows point to the direction of transcription (black) or the
direction of replication (red) from the dso (leading strand) and sso (lagging strand). Inside
the boxes, rep is the replication gene; cop represents the copy number control gene(s); dso is
the double-strand origin of replication; sso is the single-strand origin of replication; cat and
tet are chloramphenicol- and tetracycline-resistant genes, respectively; pre/mob represents
the conjugative mobilization gene; orf indicates an open reading frame with unknown
homology. The positions of the copy number control genes per and aes of pGA1, and of the
collagen-like protein gene of pTX14-2 are also indicated.
doi:10.1128/microbiolspec.PLAS-0035-2014.f2
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in relative amounts that correlate positively with the size
of the DNA insert (38, 39). The formation of HMW by
RCR plasmids has also been implicated in both structur-
al (40) and segregational (41) instability. The generation
of HMW plasmid DNA was at first related to a replica-
tion defect, as plasmids lacking sso were prone to accu-
mulate HMW DNA (42). Accumulation of HMW
plasmid DNAwas enhanced in the absence of the ExoV
enzyme (RecBCD in Gram-negative or AddAB in Gram-
positive bacteria) (41). Despite the potential instability
problems, vectors based on RCR plasmids have been
developed and successfully used in pneumococci, entero-
cocci, lactococi, and corynebacteria (43–45), for which
genetic and biotechnological tools are scarce and hence
welcome. It is worth mentioning that most of the
nonintegrative plasmid vectors available in Streptococ-
cus pneumoniae are based on pMV158 and that induc-
ible expression vector pLS1ROM and recombinant
pLS1ROM-GFP (containing the gfp gene, encoding the
Aequorea victoria green fluorescent protein, cloned
under control of the maltose-inducible PM promoter)
have proved to be structurally and segregationally
stable in pneumococcus, even under induction condi-
tions (45). Similarly, most of the autonomously repli-
cating vectors for the industrial microorganism C.
glutamicum are based on plasmids pBL1, pCG1, and
pGA1 from C. glutamicum or on the broad-host-range
plasmid pNG2 from Corynebacterium diphtheriae, all
of them replicating by the rolling circle mode (46).
These RCR plasmid vectors were found to be stably
maintained in C. glutamicum cells grown under nonse-
lective conditions (47).

An aspect of recognized relevance when pursuing the
biotechnological use of plasmid vectors is the metabolic
cost that carriage of these extrachromosomal elements
imposes on the host, since a significant burden can lead
to the overgrowth of the culture by plasmid-free cells
even though plasmid inheritance is quite stable. Little
information is available on the burden caused by
RCR plasmids, as this subject has only been analyzed
for the pMV158 replicon. Small (4.4 kb), medium-
copy-number (∼20 copies per chromosome equivalent)
pMV158 derivatives that are stably inherited in pneu-
mococcus and harbor an sso element efficiently recog-
nized in this host slightly burden the S. pneumoniae
cells, causing a 7 to 8% increase in the bacterial dou-
bling time (48). Nevertheless, fitness impairment of
pneumococcal cells harboring pMV158 derivatives has
not been found to negatively affect the segregational
stability of pLS1ROM and pLS1ROM-GFP (45).

This chapter aims to provide an updated review of
the major findings in the study of the RCR plasmids

and to highlight the pending questions and challenges
for the detailed understanding of this kind of plasmid
replication. Most of these issues have been dealt with in
previous reviews on this subject (1, 25, 32, 49, 50).

Apart from the above-referenced asymmetric RCR,
which is initiated by the Rep-mediated cleavage of one
parental strand, a different, recombination-dependent
replication mechanism that also leads to σ-shaped circu-
lar intermediates consisting of a circular DNA attached
to a growing linear DNA has been reported to play an
essential role during the replication cycle of many
dsDNA viruses. Single origin-dependent replication of
bacterial genomes and of many dsDNA viruses with cir-
cular genomes proceeds by the θ (circle to circle) mecha-
nism. The trade-off between different DNA transactions
could lead to the stall or collapse of the replication
machinery, so that origin-independent remodeling and
assembly of a new replisome at the stalled fork is
required to restart the replication process. In dsDNA
viruses (e.g., bacteriophage lambda, SPP1, etc.), replica-
tion restart becomes dependent on recombination pro-
teins with a switch from the origin-mediated θ type to
a σ type recombination-dependent replication. The rep-
lication shift from θ to σ generates the concatemeric
viral DNA substrate needed to produce mature viral
particles. This RCR-like σ mode has been reviewed by
Lo Piano et al. (51) and will not be addressed here.

THE DOUBLE-STRAND ORIGIN

Replication of the leading strand of RCR plasmids
initiates and proceeds in a unidirectional manner from
their dso, a plasmid DNA region highly specific for its
cognate initiator protein that contains the sequences
involved in the initiation and termination of the leading
strand. The dso, along with the rep gene and the con-
trol elements, is part of an essential module that
harbors the functions for plasmid replication. Based on
the homologies found in this essential module, up to
17 RCR plasmid families have been defined. Only three
of these plasmid families have been studied in depth,
their prototypes being the staphylococcal plasmids
pT181/pC221 (2 and references therein; 52) and pC194/
pUB110 (53) and the streptococcal plasmid pMV158
(1). The following plasmid families have also been
studied although less thoroughly: the staphylococcal
plasmid pSN2 family (54), the pBL1 and pCG1 plasmid
families from C. glutamicum (55 and references there-
in), the pSTK-1 and pTX14-2 plasmid families from B.
thuringiensis (28 and references therein), and the
pGRB1 (56) and pGT5 (57) plasmid families from
archaea.
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The dsos of RCR plasmids can be found located up-
stream of the rep gene (pC194, pMV158, and pSN2
families), embedded within the 5´ portion (pT181 fami-
ly) or the 3´ portion (pCG1 family) of the sequence
coding their respective Rep proteins, or even down-
stream from the rep gene stop codon (pTX14-2 family).
The dso can be physically and functionally divided into
two regions, namely bind, which contains the specific
binding sequence for the initiator protein, and nic,
where Rep specifically cleaves the DNA at the nick site.
The two loci can be either adjacent to each other
(pT181 and pC194 families) or separated by a spacer
region of up to 100 bp (pMV158 family) (Fig. 1B). The
dsos of plasmids of the same family are characterized
by a high degree of conservation in the nic region and
by the presence of a less well-conserved bind region. In
fact, Rep proteins encoded by different plasmids of the
same family can perform in vitro the nicking-closing
reaction on the dsos of all the plasmids belonging to the
same family, but there is little or no cross-interaction
with the bind region, which is indicative of the repli-
con-specificity of the bind locus. Interestingly, the
pT181-encoded RepC initiator has been shown to drive
in vitro replication of plasmid pC221, although this
was greatly reduced if a competing pT181-dso was
present (58). In spite of such in vitro recognition and
extensive homologies of the Rep proteins and the dsos
of pT181 and pC221, there is no cross-reactivity be-
tween the Rep proteins and the dsos of these plasmids
in vivo, unless the Rep proteins are overproduced (59).

In the case of the pMV158 family, the DNA se-
quence of the bind locus was reported to consist of two
or three direct repeats (DRs), whose lengths ranged
from 5 to 21 bp (35), separated from the nick sequence
by an intervening sequence of variable length (Fig. 1B).
The dso of pJB01, a member of the pE194 subfamily,
contains as the Rep-binding site three 7-bp nontandem
DRs located 77 bp downstream from the nick site (60).
Interestingly, the existence of distant DRs has not been
elucidated in some plasmids of this subfamily (unpub-
lished observation). The role of the different regions of
the pMV158-dso in the interaction with the plasmid-
encoded RepB initiator protein has been addressed in a
systematic study (35, 61–64). RepB binds with high
affinity to the bind locus, which is made up of three 11-
bp tandem DRs located 84 bp downstream from the
nick site. These repeats do not constitute an incompati-
bility determinant toward pMV158 and seem to be
essential for plasmid in vivo replication but not for
in vitro relaxation of supercoiled DNA mediated by
RepB. A second RepB binding site is located in a region
around the nick site, within the nic locus. Characteriza-

tion of the relative affinity of RepB for the bind and nic
loci revealed that the three DRs of the bind locus con-
stitute the primary binding site, whereas the weaker
binding of RepB to the nic locus could be involved in
recognition of the nick site during initiation of replica-
tion (64). In plasmids of the pT181 and pC194 fami-
lies, the DNA sequences of the bind (IRIII) and nic
(IRII) loci are located in contiguous inverted repeats
(IR) (Fig. 1B). In pT181, both the spacing and the phas-
ing of IRII to IRIII are crucial for origin functionality
(65). In addition, the proximal arm and the central part
of the IRIII are important for sequence-specific recogni-
tion (65). A similar picture is found in plasmids of the
pC194 family.

A typical feature of the nic regions is the presence of
secondary structures such as hairpins and cruciform.
The Rep nick sequence is generally located on an un-
paired region within these hairpins, as exemplified by
IRII of pT181 and IR-I of pMV158, which accounts for
the requirement of plasmid DNA supercoiling to render
the cleavage sequence a suitable ssDNA substrate for
replication (66–68). The presence of secondary struc-
tures is likely to be involved in efficient recruitment and
utilization of the initiator protein. Additionally, binding
of the initiator protein to the nic locus could promote
the melting of the substrate nick sequence. This seems
to be the case in pMV158, where the extrusion fre-
quency of the cruciform involving IR-I is very low at
the growth temperature of the plasmid host (37˚C)
(69). In vitro footprinting experiments performed with
supercoiled pMV158 DNA showed that binding of
RepB to the nic locus promotes the extrusion of the IR-
I cruciform, which in turn indicates that initiation of
replication would take place only when specific binding
of RepB occurs (64). Genetic analysis of the pC194 dso
pointed to the existence of a hairpin located down-
stream of the nick site (70) that was shown to be
important for replication of the plasmid (71). In con-
trast, RepU, the initiator protein of pUB110, does not
require the presence of hairpins for efficient recognition
of the oriU. Hairpin II, located downstream from the
nick site, seems to be dispensable for initiation of repli-
cation of pUB110, although its absence provokes the
accumulation of multimers, which is indicative of the
involvement of this structure in termination of replica-
tion (72).

Out of the three plasmid family prototypes that have
been studied in more detail (pT181, pC194, and pMV158),
available information regarding the characteristics of
the dso is limited to a few plasmids of different families.
In the dso sequences of pJV1, pIJ101, and pSN22, three
plasmids belonging to the same subfamily inside the
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