FISHERY PRODUCTS Quality, safety and authenticity

Edited by

Hartmut Rehbein Jörg Oehlenschläger

A John Wiley & Sons, Ltd., Publication

FISHERY PRODUCTS

FISHERY PRODUCTS Quality, safety and authenticity

Edited by

Hartmut Rehbein Jörg Oehlenschläger

A John Wiley & Sons, Ltd., Publication

This edition first published 2009

© 2009 Blackwell Publishing Ltd

Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell's publishing programme has been merged with Wiley's global Scientific, Technical, and Medical business to form Wiley-Blackwell.

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

Editorial offices

9600 Garsington Road, Oxford, OX4 2DQ, United Kingdom 2121 State Avenue, Ames, Iowa 50014-8300, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data Fishery products : quality, safety and authenticity / edited by Hartmut Rehbein, Jörg Oehlenschläger.

p. cm. Includes bibliographical references and index. ISBN 978-1-4051-4162-8 (hardback: alk. paper)

1. Fishery products–Quality control. 2. Fishery processing–Quality control. I. Rehbein, Hartmut. II. Oehlenschläger, Jörg.

SH335.5.Q35F58 2009 664'.94-dc22

2008039852

A catalogue record for this book is available from the British Library.

Set in 10 on 12 pt Times by SNP Best-set Typesetter Ltd., Hong Kong Printed in Singapore

1 2009

Contents

List of cont	vibutors		xi
Preface			xiii
Introductio			XV
Chapter 1	Basic facts and figures		1
	Jorg Oenienschutger	una Harimai Kendein	
	1.1 Introduction		1
	1.2 World fishery	production	1
	1.3 Categories of	fish species	3
	1.4 Fish muscle		4
	1.5 Nutritional co	mposition	4
	1.6 Vitamins		10
	1./ Minerals		15
	1.8 Post mortem (changes in fish muscle	15
	1.9 References an	d further reading	17
Chapter 2	Traditional methods		19
	Peter Howgate		
	2.1 Introduction		19
	2.2 TVB-N		20
	2.3 Methylamines	3	23
	2.4 Volatile acids		29
	2.5 Volatile reduc	ing substances	30
	2.6 Indole	-	31
	2.7 Proteolysis an	d amino acids	32
	2.8 pH		33
	2.9 Refractive ind	lex of eye fluids	33
	2.10 Discussion an	d summary	34
	2.11 References		35
Chapter 3	Biogenic amines		42
<u>F</u>	Rogério Mendes		
	3.1 Introduction		42
	3.2 Factors affect	ing amine decarboxylase activity	44
	3.3 Safety aspects	3	47
	3.4 Quality assess	sment	49

v

	3.5 3.6 3.7	Regulatory issues Methods of biogenic amine quantification References	54 55 59
Chapter 4	ATP-derived products and K-value determination Margarita Tejada		68
	4.1 4.2 4.3 4.4 4.5	<i>In vivo</i> role of nucleotides <i>Post mortem</i> changes Methodology for evaluating the K-value or related compounds Conclusions References	68 69 79 81 81
Chapter 5	VIS/N Heidi	VIS/NIR spectroscopy Heidi Anita Nilsen and Karsten Heia	
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Introduction Analytical principles and measurements Constituents: assessment of chemical composition Freshness and storage time Authentication Safety Other quality parameters Summary and future perspectives References	89 89 92 96 98 98 99 100 101
Chapter 6	Electronic nose and electronic tongue Corrado Di Natale and Gudrun Ólafsdóttir		
	6.1 6.2 6.3 6.4	Introduction to the electronic nose and olfaction Application of the electronic nose and electronic tongue Colorimetric techniques, optical equipment and consumer electronics Classification of fish odours	105 106 108 109
	6.56.66.76.86.9	Quality indicators in fish during chilled storage: gas chromatography analysis of volatile compounds Application of the electronic nose for evaluation of fish freshness Combined electronic noses for estimating fish freshness Conclusions and future outlook References	111 114 116 119 120
Chapter 7	Colour measurement Reinhard Schubring		127
	7.1 7.2 7.3	Introduction Instrumentation Novel methods of colour evaluation	127 128 130

	7.4 7.5 7.6	Colour measurement on fish and fishery products Summary References	131 159 159
Chapter 8	Differential scanning calorimetry Reinhard Schubring		173
	 8.1 8.2 8.3 8.4 8.5 8.6 	Introduction Principle of function of the instruments First applications of DSC on fish muscle and other seafood Recent applications of DSC for investigating quality and safety Summary References	173 174 178 181 204 204
Chapter 9	Instrumental texture measurement Mercedes Careche and Marta Barroso		214
	9.1 9.2 9.3 9.4 9.5	Introduction Instrumental texture Texture measurement for quality classification or prediction Conclusions References	214 216 229 231 231
Chapter 10	Image processing Michael Kroeger		
	$10.1 \\ 10.2 \\ 10.3 \\ 10.4 \\ 10.5 \\ 10.6 \\ 10.7 \\ 10.8 \\ 10.9 \\ 10.10 \\$	Introduction Quality characteristics from images Spectral signature of images Elastic properties from images Analysis of image data Results and discussion Freshness determination from images Firmness information from images Conclusions References	240 241 243 244 245 246 246 246 249 249
Chapter 11	Nuclear magnetic resonance Marit Aursand, Emil Veliyulin, Inger B. Standal, Eva Falch, Ida G. Aursand and Ulf Erikson		252
	11.1 11.2 11.3 11.4 11.5 11.6	Introduction Magnetic resonance imaging Low-field NMR High-resolution NMR The future of NMR in seafood References	252 253 257 259 265 266

Chapter 12	Time domain spectroscopy Michael Kent and Frank Daschner		273
	12.1	Introduction	273
	12.2	Measurement system	275
	12.3	Time domain reflectometry measurements	278
	12.4	Conclusions	283
	12.5	References	285
Chapter 13	Measuring electrical properties Michael Kent and Jörg Oehlenschläger		286
	13.1	Introduction	286
	13.2	Fischtester	286
	13.3	Torrymeter	287
	13.4	Use of the Fischtester	294
	13.5	Summary	296
	13.6	References	297
Chapter 14	Two-dimensional gel electrophoresis Flemming Jessen		301
	14.1	Introduction	301
	14.2	Two-dimensional gel electrophoresis (2DE)	302
	14.3	2DE applications in seafood science	305
	14.4	2DE-based seafood science in the future	310
	14.5	References	312
Chapter 15	Microbiological methods Ulrike Lyhs		318
	15.1	Microorganisms in fish and fish products	318
	15.2	General aspects of microbiological methods	320
	15.3	Most probable number method	336
	15.4	Molecular methods	336
	15.5	References	338
Chapter 16	Protein-based methods Hartmut Rehbein		349
	16.1	Introduction	349
	16.2	Fish muscle proteins	349
	16.3	Electrophoretic methods for fish species identification	351
	16.4	High-performance liquid chromatography	356
	16.5	Immunological methods and detection of allergenic proteins	357
	16.6	Determination of heating temperature	357
	16.7	Differentiation of fresh and frozen/thawed fish fillets	359
	16.8	References	359

Chapter 17	DNA-based methods Hartmut Rehbein		
	17.1 Introduction	363	
	17.2 DNA in fishery products	364	
	17.3 Genes used for species identification	366	
	17.4 Methods	368	
	17.5 Conclusions and outlook	379	
	17.6 References	380	
Chapter 18	Other principles: analysis of lipids, stable isotopes and trace elements <i>Iciar Martinez</i>		
	18.1 Introduction	388	
	18.2 Species and breeding stock identification by linid	500	
	analysis	389	
	18.3 Verification of the production method	394	
	18.4 Identification of the geographic origin	398	
	18.5 Future prospects	403	
	18.6 References	404	
Chapter 19	Sensory evaluation of seafood: general principles and guidelines Emilia Martinsdóttir, Rian Schelvis, Grethe Hyldig and Kolbrun Sveinsdóttir		
	19.1 General principles for sensory analysis	411	
	19.2 Application of sensory evaluation to fish and other		
	seafood	417	
	19.3 References	422	
Chapter 20	Sensory evaluation of seafood: methods	425	
	Emilia Martinsdóttir, Rian Schelvis, Grethe Hyldig and Kolbrun Sveinsdóttir		
	20.1 Introduction	425	
	20.2 Difference tests	425	
	20.3 Grading schemes	427	
	20.4 Quality index method	430	
	20.5 Descriptive sensory analysis	438	
	20.6 Consumer tests (hedonic)	440	
	20.7 References	440	
Chapter 21	Data handling by multivariate data analysis Bo M. Jørgensen		
	21.1 Introduction	444	
	21.2 What is multivariate data analysis?	444	
	21.3 Arrangement of data for bi-linear modelling	446	
	21.4 The outcome of bi-linear modelling	447	

	21.5	Validation and prediction	451
	21.6	Real examples and further reading	453
	21.7	References	453
Chapter 22	Tracea	ability as a tool	458
	Erling P. Larsen and Begoña Pérez Villarreal		
	22.1	Introduction	458
	22.2	Traceability from older times to the present	460
	22.3	Traceability research in the seafood sector and	
		other EU-funded food traceability projects	465
	22.4	Validation of traceability data	466
	22.5	Traceability in a global perspective	468
	22.6	References	470
Index			472

List of Contributors

Ida G. Aursand, SINTEF Fisheries and Aquaculture, N-7465 Trondheim, Norway; and Department of Biotechnology, NTNU, N-7491, Trondheim, Norway

Marit Aursand, SINTEF Fisheries and Aquaculture, N-7465 Trondheim, Norway

Marta Barroso, Instituto del Frío CSIC, c/José Antonio Novais 10, 28040 Madrid, Spain

Mercedes Careche, Instituto del Frío CSIC, c/José Antonio Novais 10, 28040 Madrid, Spain

Frank Daschner, Technische Fakultät der Christian-Albrecht-Universität, Institut für Elektrotechnik und Informationstechnik, Kaiserstrasse 2, D-24143 Kiel, Germany

Corrado Di Natale, Department of Electronic Engineering, University of Rome 'Tor Vergata', Via del Politecnico 1; 00 133 Roma, Italy

Ulf Erikson, SINTEF Fisheries and Aquaculture, N-7465 Trondheim, Norway

Eva Falch, SINTEF Fisheries and Aquaculture, N-7465 Trondheim, Norway

Karsten Heia, Nofima, Marine, N-9291 Tromsø, Norway

Peter Howgate, 26 Lavender Row, Stedham, Midhurst, West Sussex GU29 ONS, UK

Grethe Hyldig, DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Søltofts Plads, Bygning 221, DK-2800 Kongens Lyngby, Denmark

Flemming Jessen, DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark

Bo M. Jørgensen, DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kongens Lyngby, Denmark

Michael Kent, The White House, Greystone, Carmyllie, by Arbroath, Angus DD11 2RJ, UK

Michael Kroeger, technet GmbH, Pestalozzistrasse 8, D-70563 Stuttgart, Germany

Erling P. Larsen, DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Søltofts Plads, DTU, Bygning 221, DK-2800 Kongens Lyngby, Denmark

Ulrike Lyhs, Ruralia-Institute, Seinäjoki Unit, University of Helsinki, Kampusranta 9C, 60320 Seinäjoki, Finland

Iciar Martinez, SINTEF Fisheries and Aquaculture Ltd, 7465 Trondheim, Norway

Emilia Martinsdóttir, Matís (Food research, Innovation and safety), Skulagata 4, IS-101 Reykjavík, Iceland

Rogério Mendes, Department of Technological Innovation and Upgrading of Fishery Products, INRB/IPIMAR, Av. De Brasilia, 1449-006 Lisboa, Portugal

Heidi Anita Nilsen, NOFIMA, Marine, N-9291 Tromsø, Norway

Jörg Oehlenschläger, Max Rubner Institute, Federal Research Institute for Nutrition and Food, Unit for Seafood Quality, Palmaille 9, D-22767 Hamburg, Germany

Gudrun Ólafsdóttir, Department of Food Science and Nutrition, Faculty of Science, University of Iceland, Hjardarhagi 2-6, 107 Reykjavík, Iceland; and Syni Laboratory Service, Lyngháls 3, 110 Reykjavík, Iceland

Begoña Pérez Villarreal, Food Research Division, Txatxarramendi Ugartea z/g, 48395 Sukarrieta (Bizkaia), Spain

Hartmut Rehbein, Max Rubner Institute, Federal Research Institute for Nutrition and Food, Unit for Seafood Quality, Palmaille 9, D-22767 Hamburg, Germany

Rian Schelvis, Wageningen IMARES, P.O. Box 68, NL-1970 AB IJmuiden, The Netherlands

Reinhard Schubring, Max Rubner Institute, Federal Research Institute for Nutrition and Food, Unit for Seafood Quality, Palmaille 9, D-22767 Hamburg, Germany

Inger B. Standal, SINTEF Fisheries and Aquaculture, N-7465 Trondheim, Norway; and Department of Biotechnology, NTNU, N-7491, Trondheim, Norway

Kolbrun Sveinsdóttir, Matís (Food research, Innovation and safety), Skulagata 4, IS-101 Reykjavík, Iceland

Margarita Tejada, Instituto del Frío (CSIC), José Antonio Novais, 10, 28040 Madrid, Spain

Emil Veliyulin, SINTEF Fisheries and Aquaculture, N-7465 Trondheim, Norway

Preface

The contribution of fisheries and aquaculture to the human food supply has increased very significantly in recent decades. What is remarkable for this part of the food sector is the large share of fish that enters international trade, with some 37% of all fish caught and cultured being traded across national borders. So it can be argued that fish and fishery products are in the forefront of globalization, as products from all corners of the world can be found on the international market. There are many interesting facets to how this came about, in particular how well developing countries have adapted to the strict trading regimes of the modern marketplace for fish and fishery products.

As food retailers consolidate in ever-larger units, the competition for customers intensifies. This has direct effects through the whole supply chain, not least primary producers. Besides, large retailers now have so much reputation at stake that they spend large sums of money to minimize the risk of 'food scandals' ever being attributable to the products they sell. This translates into ever more and stricter food safety and quality criteria with which all the actors in the food chain have to comply. This is one of the reasons for a rise in private standards of various sorts that are stricter than the standards set by governments. This rise in private standards is seen by many as a potential new form of protectionism. The objective of the World Trade Organization (WTO) is to facilitate free trade between nations to 'improve the welfare of the peoples of the Member Countries'. The WTO Agreements, particularly the Sanitary and Phytosanitary Agreement (SPS) and the Technical Barriers to Trade Agreement (TBT), were set as the framework within which technical standards would be operated. In 1995 it was decided that the food standards of the Codex Alimentarius would be the standards used to resolve safety and quality questions in international trade disputes.

Free trade is a very important issue on the international agenda. The international system created through the WTO is meant to create a 'level playing field' so that all can participate in international trade and to allow 'trade to flow smoothly, freely, fairly and predictably.' Thus, the importance of food standards to ascertain if they comply with agreed minimum criteria. The SPS Agreement stipulates that food standards should be based on sound science and be risk based. There is also a call for harmonization of standards and equivalence of different national standards relating to food safety management systems as long as they adhere to the same level of protection.

That is a brief description of the framework, but all food standards are linked to specific methods by which compliance with them is measured. This book deals with the methods commonly used to measure the quality of fish and fishery products. Going through it is truly a story attesting to the great progress that has been made in this area in recent decades. It is interesting to see how the science has moved forward to increasing automation and online, non-destructive methods to ascertain characteristics of the products. It is also interesting to see how sensory evaluation, which not so long ago was considered subjective and thus unscientific, has been turned into an objective scientific tool in its own right.

Competition in the food market makes it imperative for retailers not only to present products that are safe to eat and taste good, but also nutritionally balanced. Increasingly they