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Introduction

The field of computational linguistics (CL), together with its engineering domain
of natural language processing (NLP), has exploded in recent years. It has devel-
oped rapidly from a relatively obscure adjunct of both AI and formal linguistics
into a thriving scientific discipline. It has also become an important area of indus-
trial development. The focus of research in CL and NLP has shifted over the
past three decades from the study of small prototypes and theoretical models to
robust learning and processing systems applied to large corpora. This handbook
is intended to provide an introduction to the main areas of CL and NLP, and an
overview of current work in these areas. It is designed as a reference and source
text for graduate students and researchers from computer science, linguistics,
psychology, philosophy, and mathematics who are interested in this area.

The volume is divided into four main parts. Part I contains chapters on the
formal foundations of the discipline. Part II introduces the current methods that
are employed in CL and NLP, and it divides into three subsections. The first
section describes several influential approaches to Machine Learning (ML) and
their application to NLP tasks. The second section presents work in the annotation
of corpora. The last section addresses the problem of evaluating the performance
of NLP systems. Part III of the handbook takes up the use of CL and NLP pro-
cedures within particular linguistic domains. Finally, Part IV discusses several
leading engineering tasks to which these procedures are applied.

In Chapter 1 Shuly Wintner gives a detailed introductory account of the main
concepts of formal language theory. This subdiscipline is one of the primary
formal pillars of computational linguistics, and its results continue to shape the-
oretical and applied work. Wintner offers a remarkably clear guide through the
classical language classes of the Chomsky hierarchy, and he exhibits the relations
between these classes and the automata or grammars that generate (recognize)
their members.

While formal language theory identifies classes of languages and their decid-
ability (or lack of such), complexity theory studies the computational resources

The Handbook of Computational Linguistics and Natural Language Processing, First Edition.
Edited by Alexander Clark, Chris Fox and Shalom Lappin.
c© 2013 Blackwell Publishing Ltd except for editorial material and organization.
c© 2013 Alexander Clark, Chris Fox, and Shalom Lappin. Published 2013 by Blackwell Publishing Ltd.
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in time and space required to compute the elements of these classes. Ian
Pratt-Hartmann introduces this central area of computer science in Chapter 2, and
he takes up its significance for CL and NLP. He describes a series of important
complexity results for several prominent language classes and NLP tasks. He also
extends the treatment of complexity in CL/NLP from classical problems, like syn-
tactic parsing, to the relatively unexplored area of computing sentence meaning
and logical relations among sentences.

Statistical modeling has become one of the primary tools in CL and NLP for
representing natural language properties and processes. In Chapter 3 Ciprian
Chelba offers a clear and concise account of the basic concepts involved in the
construction of statistical language models. He reviews probabilistic n-gram mod-
els and their relation to Markov systems. He defines and clarifies the notions of
perplexity and entropy in terms of which the predictive power of a language
model can be measured. Chelba compares n-gram models with structured lan-
guage models generated by probabilistic context-free grammars, and he discusses
their applications in several NLP tasks.

Part I concludes with Mark-Jan Nederhof and Giorgio Satta’s discussion of
the formal foundations of parsing in Chapter 4. They illustrate the problem of
recognizing and representing syntactic structure with an examination of (non-
lexicalized and lexicalized) context-free grammars (CFGs) and tabular (chart)
parsing. They present several CFG parsing algorithms, and they consider prob-
abilistic CFG parsing. They then extend their study to dependency grammar
parsers and tree adjoining grammars (TAGs). The latter are mildly context sen-
sitive, and so more formally powerful than CFGs. This chapter provides a solid
introduction to the central theoretical concepts and results of a core CL domain.

Robert Malouf opens the first section of Part II with an examination of max-
imum entropy models in Chapter 5. These constitute an influential machine
learning technique that involves minimizing the bias in a probability model
for a set of events to the minimal set of constraints required to accommodate
the data. Malouf gives a rigorous account of the formal properties of MaxEnt
model selection, and exhibits its role in describing natural languages. He com-
pares MaxEnt to support vector machines (SVMs), another ML technique, and
he looks at its usefulness in part of speech tagging, parsing, and machine
translation.

In Chapter 6 Walter Daelemans and Antal van den Bosch give a detailed
overview of memory-based learning (MBL), an ML classification model that is
widely used in NLP. MBL invokes a similarity measure to evaluate the distance
between the feature vectors of stored training data and those of new events or enti-
ties in order to construct classification classes. It is a highly versatile and efficient
learning framework that constitutes an alternative to statistical language modeling
methods. Daelemans and van den Bosch consider modified and extended versions
of MBL, and they review its application to a wide variety of NLP tasks. These
include phonological and morphological analysis, part of speech tagging, shal-
low parsing, word disambiguation, phrasal chunking, named entity recognition,
generation, machine translation, and dialogue-act recognition.
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Helmut Schmid surveys decision trees in Chapter 7. These provide an efficient
procedure for classifying data into descending binary branching subclasses, and
they can be quickly induced from large data samples. Schmid points out that
simple decision trees often exhibit instability because of their sensitivity to small
changes in feature patterns of the data. He considers several modifications of
decision trees that overcome this limitation, specifically bagging, boosting, and
random forests. These methods combine sets of trees induced for a data set to
achieve a more robust classifier. Schmid illustrates the application of decision trees
to natural language tasks with discussions of grapheme conversion to phonemes,
and POS tagging.

Alex Clark and Shalom Lappin characterize grammar induction as a problem in
unsupervised learning in Chapter 8. They compare supervised and unsupervised
grammar inference, from both engineering and cognitive perspectives. They con-
sider the costs and benefits of both learning approaches as a way of solving NLP
tasks. They conclude that, while supervised systems are currently more accurate
than unsupervised ones, the latter will become increasingly influential because of
the enormous investment in resources required to annotate corpora for training
supervised classifiers. By contrast, large quantities of raw text are readily avail-
able online for unsupervised learning. In modeling human language acquisition,
unsupervised grammar induction is a more appropriate framework, given that the
primary linguistic data available to children is not annotated with sample classi-
fications to be learned. Clark and Lappin discuss recent work in unsupervised
POS tagging and grammar inference, and they observe that the most successful of
these procedures are beginning to approach the performance levels achieved by
state-of-the-art supervised taggers and parsers.

Neural networks are one of the earliest and most influential paradigms of
machine learning. James B. Henderson concludes the first section of Part II with
an overview in Chapter 9 of neural networks and their application to NLP prob-
lems. He considers multi-layered perceptrons (MLPs), which contain hidden units
between their inputs and outputs, and recurrent MLPs, which have cyclic links to
hidden units. These cyclic links allow the system to process unbounded sequences
by storing copies of hidden unit states and feeding them back as input to units
when they are processing successive positions in the sequence. In effect, they pro-
vide the system with a memory for processing sequences of inputs. Henderson
shows how a neural network can be used to calculate probability values for its
outputs. He also illustrates the application of neural networks to the tasks of
generating statistical language models for a set of data, learning different sorts
of syntactic parsing, and identifying semantic roles. He compares them to other
machine learning methods and indicates certain equivalence relations that hold
between neural networks and these methods.

In the second section (Chapter 10), Martha Palmer and Nianwen Xue address
the central issue of corpus annotation. They compare alternative systems for
marking corpora and propose clear criteria for achieving adequate results across
distinct annotation tasks. They look at a number of important types of linguistic
information that annotation encodes including, inter alia, POS tagging, deep and
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shallow syntactic parsing, coreference and anaphora relations, lexical meanings,
semantic roles, temporal connections among propositions, logical entailments
among propositions, and discourse structure. Palmer and Xue discuss the prob-
lems of securing reasonable levels of annotator agreement. They show how a
sound and well-motivated annotation scheme is crucial for the success of super-
vised machine learning procedures in NLP, as well as for the rigorous evaluation
of their performance.

Philip Resnik and Jimmy Lin conclude Part II with a discussion in the last
section (Chapter 11) of methods for evaluating NLP systems. They consider both
intrinsic evaluation of a procedure’s performance for a specified task, and exter-
nal assessment of its contribution to the quality of a larger engineering system in
which it is a component. They present several ways to formulate precise quan-
titative metrics for grading the output of an NLP device, and they review testing
sequences through which these metrics can be applied. They illustrate the issues of
evaluation by considering in some detail what is involved in assessing systems for
word-sense disambiguation and for question answering. This chapter extends and
develops some of the concerns raised in the previous chapter on annotation. It also
factors out and addresses evaluation problems that emerged in earlier chapters on
the application of machine learning methods to NLP tasks.

Part III opens with Steve Renals and Thomas Hain’s comprehensive account in
chapter 12 of current work in automatic speech recognition (ASR). They observe
that ASR plays a central role in NLP applications involving spoken language,
including speech-to-speech translation, dictation, and spoken dialogue systems.
Renals and Hain focus on the general task of transcribing natural conversational
speech to text, and present the problem in terms of a statistical framework in which
the problem of the speech recogniser is to find the most likely word sequence given
the observed acoustics. The focus of the chapter is acoustic modeling based on hid-
den Markov models (HMMs) and Gaussian mixture models. In the first part of the
chapter they develop the basic acoustic modeling framework that underlies cur-
rent speech recognition systems, including refinements to include discriminative
training and the adaptation to particular speakers using only small amounts of
data. These components are drawn together in the description of a state-of-the-art
system for the automatic transcription of multiparty meetings. The final part of the
chapter discusses approaches that enable robustness for noisier or less constrained
acoustic environments, the incorporation of multiple sources of knowledge, the
development of sequence models that are richer than HMMs, and issues that arise
when developing large-scale ASR systems.

In Chapter 13 Stephen Clark discusses statistical parsing as the probabilistic
syntactic analysis of sentences in a corpus, through supervised learning. He traces
the development of this area from generative parsing models to discriminative
frameworks. Clark studies Collins’ lexicalized probabilistic context-free gram-
mars (PCFGs) as a particularly successful instance of these models. He examines
the parsing algorithms, procedures for parse ranking, and methods for parse
optimization that are commonly used in generative parse models like PCFG.
Discriminative parsing does not model sentences, but provides a way of modeling
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parses directly. It discards some of the independence assumptions encoded in
generative parsing, and it allows for complex dependencies among syntactic fea-
tures. Clark examines log-linear (maximum entropy) models as instantiations of
this approach. He applies them to parsers driven by combinatory categorial gram-
mar (CCG). He gives a detailed description of recent work on statistical CCG
parsing, focusing on the efficiency with which such grammars can be learned,
and the impressive accuracy which CCG parsing has recently achieved.

John A. Goldsmith offers a detailed overview in Chapter 14 of computational
approaches to morphology. He looks at unsupervised learning of word segmen-
tation for a corpus in which word boundaries have been eliminated, and he
identifies two main problems in connection with this task. The first involves iden-
tifying the correct word boundaries for a stripped corpus on the basis of prior
knowledge of the lexicon of the language. The second, and significantly more diffi-
cult, problem is to devise a procedure for constructing the lexicon of the language
from the stripped corpus. Goldsmith describes a variety of approaches to word
segmentation, highlighting probabilistic modeling techniques, such as minimum
description length and hierarchical Bayesian models. He reviews distributional
methods for unsupervised morphological learning which have their origins in
Zellig Harris’ work, and gives a very clear account of finite state transducers and
their central role in morphological induction.

In Chapter 15 Chris Fox discusses the major questions driving work in logic-
based computational semantics. He focuses on formalized theories of meaning,
and examines what properties a semantic representation language must possess
in order to be sufficiently expressive while sustaining computational viability. Fox
proposes that implementability and tractability be taken as conditions of adequacy
on semantic theories. Specifically, these theories must permit efficient computation
of the major semantic properties of sentences, phrases, and discourse sequences.
He surveys work on type theory, intensionality, the relation between proof the-
ory and model theory, and the dynamic representation of scope and anaphora in
leading semantic frameworks. Fox also summarizes current research on corpus-
based semantics, specifically the use of latent semantic analysis to identify lexical
semantic clusters, methods for word-sense disambiguation, and current work
on textual entailment. He reflects on possible connections between the corpus-
based approach to semantics and logic-based formal theories of meaning, and he
concludes with several interesting suggestions for pursuing these connections.

Jonathan Ginzburg and Raquel Fernández present a comprehensive account in
Chapter 16 of recent developments in the computational modeling of dialogue.
They first examine a range of central phenomena that an adequate formal theory
of dialogue must handle. These include non-sentential fragments, which play an
important role in conversation; meta-communicative expressions, which serve as
crucial feedback and clarification devices to speakers and hearers; procedures for
updating shared information and common ground; and mechanisms for adapt-
ing a dialogue to a particular conversational domain. Ginzburg and Fernández
propose a formal model of dialogue, KoS, which they formulate in the type
theoretic framework of type theory with records. This type theory has the full
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power of functional application and abstraction, but it permits the specification of
recursively dependent type structures that correspond to re-entrant typed feature
structures. They compare their dialogue model to other approaches current in the
literature. They conclude by examining some of the issues involved in construct-
ing a robust, wide-coverage dialogue management system, and they consider the
application of machine learning methods to facilitate certain aspects of this task.

In Chapter 17 Matthew W. Crocker characterizes the major questions and the-
oretical developments shaping contemporary work in computational psycholin-
guistics. He observes that this domain of inquiry shares important objectives
with both theoretical linguistics and psycholinguistics. In common with the for-
mer, it seeks to explain the way in which humans recognize sentence structure
and meaning. Together with the latter, it is concerned to describe the cogni-
tive processing mechanisms through which they achieve these tasks. However,
in contrast to both theoretical linguistics and psycholinguistics, computational
psycholinguistics models language understanding by constructing systems that
can be implemented and rigorously tested. Crocker focuses on syntactic process-
ing, and he discusses the central problem of resolving structural ambiguity. He
observes that a general consensus has emerged on the view that sentence process-
ing is incremental, and a variety of constraints (syntactic, semantic, pragmatic,
etc.) are available at each point in the processing sequence to resolve or reduce
different sources of ambiguity. Crocker considers three main approaches.
Symbolic methods use grammars to represent syntactic structure and parsing
algorithms to exhibit the way in which humans apply a grammar to sentence
recognition. Connectionists employ neural nets as non-symbolic systems of induc-
tion and processing. Probabilistic approaches model language interpretation as a
stochastic procedure, where this involves generating a probability distribution for
the strings produced by an automaton or a grammar of some formal class. Crocker
concludes with the observation that computational psycholinguistics (like theo-
retical linguistics) still tends to view sentence processing in isolation from other
cognitive activities. He makes the important suggestion that integrating language
understanding into the wider range of human functions in which it figures is likely
to yield more accurate accounts of processing and acquisition.

Ralph Grishman starts off Part IV of the handbook with a review, in Chapter 18,
of information extraction (IE) from documents. He highlights name, entity, rela-
tion, and event extraction as primary IE tasks, and he addresses each in turn.
Name extraction consists in identifying names in text and classifying them accord-
ing to semantic (ontological) type. Entity extraction selects referring phrases,
assigns them to semantic classes, and specifies coreference links among them.
Relation extraction recognizes pairs of related entities and the semantic type of
the relation that holds between them. Event extraction picks out cases of events
described in a text, according to semantic type, and it locates the entities that
appear in the event. For each of these tasks Grishman traces the development
of IE approaches from manually crafted rule-based systems, through supervised
machine learning, to semi- and unsupervised methods. He concludes the chapter
with some reflections on the challenges and opportunities that the web, with its
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enormous resources of online text in a variety of languages and formats, poses for
future research in IE.

In Chapter 19 Andy Way presents a systematic overview of the current state
of machine translation (MT). He discusses the evolution of statistical machine
translation (SMT) from word-based n-gram language models specified for aligned
multi-lingual corpora (originally developed by the IBM speech and language
group in the 1990s) to the phrase-based SMT (PB-SMT) language models that
currently dominate the field. He also looks at the use of both generative and dis-
criminative language models in SMT, and he considers results achieved with both
supervised and unsupervised learning methods. Way offers a systematic compar-
ison of PB-SMT with other paradigms of MT, including hierarchical, tree-based,
and example-based approaches, as well as traditional rule-based systems, that
continue to figure prominently in commercial MT products. He concludes with a
detailed discussion of the MT work that his research group is doing. This work
applies a hybrid view in which syntactic, morphological, and lexical semantic
information is combined with statistical language modeling techniques to maxi-
mize the accuracy and efficiency of the distinct components of an MT system. He
also discusses the role of MT in contemporary online and spoken applications.

Ehud Reiter describes natural language generation (NLG) in Chapter 20. He
characterizes the generation problem as mapping representations in one format
(or language) into text in a given language. As he observes, NLG is distinguished
from most other areas of NLP by the pervasive complexity of making choices from
a large set of alternatives at each point in the generation process. The mapping
of representations to text involves resolving numerous one-to-many selections.
Reiter identifies three main subtasks for NLG. Document planning determines the
content of the representation to be realized in NL text, and the general structure
of the content. Microplanning specifies the organization and linguistic structure
of the text. Realization produces the text itself. In the course of implementing
this sequence of tasks, an NLG procedure must decide on the general format of
the message to be realized, the nature of the syntactic units in which it will be
encoded, the internal structure of these sentences, and a variety of lexical and
stylistic choices. Reiter reviews a number of current NLG systems, and he dis-
cusses the central role of NLG in a variety of NLP applications. He concludes with
some thoughtful proposals for future research directions in this domain.

Ruslan Mitkov reviews computational analysis of discourse structure in
Chapter 21. He begins with algorithms for segmenting text into discourse ele-
ments. He then describes three major computational treatments of discourse
coherence relations: Hobbs’ coherence account, rhetorical structure theory, and
centering. He follows this with an extended discussion of anaphora resolution. He
points out that accurate anaphora resolution is a necessary condition for success
in many tasks, such as MT, text summarization, NLG, and IE. He concludes by
surveying some of the significant contributions that discourse modeling has made
to a wide variety of NLP applications.

Bonnie Webber and Nick Webb conclude Part IV, and the volume, with a
presentation of current work on question answering (QA) in Chapter 22. They
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trace the development of QA from early procedures that mapped NL questions
into queries in a standard database language for a closed data set, to contempo-
rary open systems that seek answers to questions across a large set of documents,
often the entire web. As with other NLP applications, this development has also
involved a move from manually crafted rules to machine learning classifiers, and
hybrid systems combining rule-based and probabilistic methods. They discuss the
relation between QA and text retrieval. While the latter provides documents in
response to user queries, the former seeks information expressed as natural lan-
guage replies. They survey the design and performance of current QA procedures,
focusing on the challenges involved in improving their coverage and extending
their functionality. An important method for achieving such extension is to incor-
porate methods for identifying text entailments in order to move beyond simple
word pattern matching. These entailments enrich the domain of possible answers
that a QA system can consider by adding a set of semantic implications to a ques-
tion and its range of possible answers. Webber and Webb also take up alternative
ways of evaluating QA systems, and they consider issues for future research.

While we have tried to provide as broad and comprehensive a view of CL and
NLP as possible, this handbook is, inevitably, not exhaustive. Many more chapters
could have been added on a host of important issues, and the field would still not
have been fully covered. Considerations of space and manageability have forced
us to limit the volume to a subset of central research themes. One might take issue
with our selection, or with the way that we have chosen to organize the chapters.
We suspect that this would be true for any handbook of this size. In many cases,
topics to which one might plausibly devote a separate chapter are treated from dif-
ferent perspectives in a number of chapters. So, for example, finite state methods
are discussed in the chapters on formal language theory, complexity, morphology,
and speech recognition. Therefore, we were able to forego a distinct chapter on
this area. In other instances, important new research, like work on text entailment,
is touched on lightly (see the brief discussions of text entailment in the chapters
on semantics and QA), but pressures of space and timely production prevented us
from including fuller treatments.

The survey of work provided here indicates that both symbolic and informa-
tion theoretic methods continue to play a major role across a large variety of tasks
and domains. Moreover, rather than these approaches being in conflict, there is
a strong movement towards hybrid models that integrate different approaches. It
seems likely that this trend will continue, as each method carries strengths and
weaknesses that complement the other. Symbolic techniques offer compact repre-
sentations of high level information that generally eludes statistical models, while
information theoretic procedures achieve a level of robustness and wide coverage
that symbolic systems rarely, if ever, achieve on their own.

Above all the chapters of this volume give a clear view of the remarkable diver-
sity and vitality of research being done in CL and NLP, and the enormous progress
that has been made in these areas over the past several decades. We hope that the
handbook communicates some of the excitement and the satisfaction that we and
our colleagues experience from our work in this amazing field.
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1 Formal Language Theory

SHULY WINTNER

1 Introduction

This chapter provides a gentle introduction to formal language theory, aimed at
readers with little background in formal systems. The motivation is natural lan-
guage processing (NLP), and the presentation is geared towards NLP applications,
with linguistically motivated examples, but without compromising mathematical
rigor.

The text covers elementary formal language theory, including: regular lan-
guages and regular expressions; languages vs. computational machinery; finite
state automata; regular relations and finite state transducers; context-free gram-
mars and languages; the Chomsky hierarchy; weak and strong generative
capacity; and mildly context-sensitive languages.

2 Basic Notions

Formal languages are defined with respect to a given alphabet, which is a finite
set of symbols, each of which is called a letter. This notation does not mean, how-
ever, that elements of the alphabet must be “ordinary” letters; they can be any
symbol, such as numbers, or digits, or words. It is customary to use ‘Σ’ to denote
the alphabet. A finite sequence of letters is called a string, or a word. For sim-
plicity, we usually forsake the traditional sequence notation in favor of a more
straightforward representation of strings.

Example 1 (Strings). Let Σ ={0, 1} be an alphabet. Then all binary numbers
are strings over Σ . Instead of 〈0, 1, 1, 0, 1〉 we usually write 01101. If Σ =
{a, b, c, d, . . . , y, z} is an alphabet, then cat, incredulous, and supercalifragilisticexp-
ialidocious are strings, as are tac, qqq, and kjshdflkwjehr.

The length of a string w is the number of letters in the sequence, and is denoted
|w|. The unique string of length 0 is called the empty string and is usually denoted ε

(but sometimes λ).

The Handbook of Computational Linguistics and Natural Language Processing, First Edition.
Edited by Alexander Clark, Chris Fox and Shalom Lappin.
c© 2013 Blackwell Publishing Ltd except for editorial material and organization.
c© 2013 Alexander Clark, Chris Fox, and Shalom Lappin. Published 2013 by Blackwell Publishing Ltd.
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Let w1 = 〈x1, . . . , xn〉 and w2 = 〈y1, . . . , ym〉 be two strings over the same
alphabet Σ . The concatenation of w1 and w2, denoted w1 · w2, is the string
〈x1, . . . , xn, y1, . . . , ym〉. Note that the length of w1 · w2 is the sum of the lengths of
w1 and w2: |w1 ·w2| = |w1| + |w2|. When it is clear from the context, we sometimes
omit the ‘·’ symbol when depicting concatenation.

Example 2 (Concatenation). Let Σ ={a, b, c, d, . . . , y, z} be an alphabet. Then master ·
mind=mastermind, mind · master=mindmaster, and master · master=
mastermaster. Similarly, learn · s= learns, learn · ed= learned, and learn ·
ing= learning.

Notice that when the empty string ε is concatenated with any string w, the
resulting string is w. Formally, for every string w, w · ε = ε · w = w.

We define an exponent operator over strings in the following way: for every
string w, w0 (read: w raised to the power of zero) is defined as ε. Then, for n > 0,
wn is defined as wn−1 ·w. Informally, wn is obtained by concatenating w with itself
n times. In particular, w1 = w.

Example 3 (Exponent). If w = go, then w0 = ε, w1 = w = go, w2 = w1 · w = w · w =
gogo, w3 = gogogo, and so on.

A few other notions that will be useful in the sequel: the reversal of a string w
is denoted wR and is obtained by writing w in the reverse order. Thus, if w =
〈x1, x2, . . . , xn〉, wR = 〈xn, xn−1, . . . , x1〉.
Example 4 (Reversal). Let Σ = {a, b, c, d, . . . , y, z} be an alphabet. If w is the string
saw, then wR is the string was. If w = madam, then wR = madam = w. In this case
we say that w is a palindrome.

Given a string w, a substring of w is a sequence formed by taking contiguous
symbols of w in the order in which they occur in w: wc is a substring of w if and
only if there exist (possibly empty) strings wl and wr such that w = wl ·wc ·wr. Two
special cases of substrings are prefix and suffix: if w = wl ·wc ·wr then wl is a prefix
of w and wr is a suffix of w. Note that every prefix and every suffix is a substring,
but not every substring is a prefix or a suffix.

Example 5 (Substrings). Let Σ ={a, b, c, d, . . . , y, z} be an alphabet and w=
indistinguishable a string over Σ . Then ε, in, indis, indistinguish, and indistin-
guishable are prefixes of w, while ε, e, able, distinguishable and indistinguish-
able are suffixes of w. Substrings that are neither prefixes nor suffixes include
distinguish, gui, and is.

Given an alphabet Σ , the set of all strings over Σ is denoted by Σ∗ (the reason
for this notation will become clear presently). Notice that no matter what the Σ is,
as long as it includes at least one symbol, Σ∗ is always infinite. A formal language
over an alphabet Σ is any subset of Σ∗. Since Σ∗ is always infinite, the number of
formal languages over Σ is also infinite.

As the following example demonstrates, formal languages are quite unlike
what one usually means when one uses the term “language” informally. They
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are essentially sets of strings of characters. Still, all natural languages are, at least
superficially, such string sets. Higher-level notions, relating the strings to objects
and actions in the world, are completely ignored by this view. While this is a rather
radical idealization, it is a useful one.

Example 6 (Languages). Let Σ = {a, b, c, . . . , y, z}. Then Σ∗ is the set of all strings
over the Latin alphabet. Any subset of this set is a language. In particular, the
following are formal languages:

• Σ∗;
• the set of strings consisting of consonants only;
• the set of strings consisting of vowels only;
• the set of strings each of which contains at least one vowel and at least one

consonant;
• the set of palindromes: strings that read the same from right to left and from

left to right;
• the set of strings whose length is less than 17 letters;
• the set of single-letter strings;
• the set {i, you, he, she, it, we, they};
• the set of words occurring in Joyce’s Ulysses (ignoring punctuation etc.);
• the empty set.

Note that the first five languages are infinite while the last five are finite.

We can now lift some of the string operations defined above to languages. If
L is a language then the reversal of L, denoted LR, is the language {w | wR ∈ L},
that is, the set of reversed L-strings. Concatenation can also be lifted to lan-
guages: if L1 and L2 are languages, then L1 · L2 is the language defined as
{w1 ·w2 | w1 ∈ L1 and w2 ∈ L2}: the concatenation of two languages is the set of
strings obtained by concatenating some word of the first language with some word
of the second.

Example 7 (Language operations). Let L1={i, you, he, she, it, we, they} and L2=
{smile, sleep}. Then LR

1 ={i, uoy, eh, ehs, ti, ew, yeht} and L1 · L2={ismile, yous-
mile, hesmile, shesmile, itsmile, wesmile, theysmile, isleep, yousleep, hesleep,
shesleep, itsleep, wesleep, theysleep}.

In the same way we can define the exponent of a language: if L is a language
then L0 is the language containing the empty string only, {ε}. Then, for i > 0,
Li = L · Li−1, that is, Li is obtained by concatenating L with itself i times.

Example 8 (Language exponentiation). Let L be the set of words {bau, haus, hof,
frau}. Then L0 = {ε}, L1 = L and L2 = {baubau, bauhaus, bauhof, baufrau,
hausbau, haushaus, haushof, hausfrau, hofbau, hofhaus, hofhof, hoffrau, fraubau,
frauhaus, frauhof, fraufrau}.

The language obtained by considering any number of concatenations of words
from L is called the Kleene closure of L and is denoted L∗. Formally, L∗ = ⋃∞

i=0 Li,
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which is a terse notation for the union of L0 with L1, then with L2, L3 and so on
ad infinitum. When one wants to leave L0 out, one writes L+ =⋃∞i=1 Li.

Example 9 (Kleene closure). Let L={dog, cat}. Observe that L0={ε}, L1={dog,
cat}, L2 = {catcat, catdog, dogcat, dogdog}, etc. Thus L∗ contains, among its infi-
nite set of strings, the strings ε, cat, dog, catcat, catdog, dogcat, dogdog, catcatcat,
catdogcat, dogcatcat, dogdogcat, etc.

As another example, consider the alphabet Σ = {a, b} and the language L =
{a, b} defined over Σ . L∗ is the set of all strings over a and b, which is exactly
the definition of Σ∗. The notation for Σ∗ should now become clear: it is simply a
special case of L∗, where L = Σ .

3 Language Classes and Linguistic Formalisms

Formal languages are sets of strings, subsets of Σ∗, and they can be specified
using any of the specification methods for sets (of course, since languages may
be infinite, stipulation of their members is in the general case infeasible). When
languages are fairly simple (not arbitrarily complex), they can be characterized by
means of rules. In the following sections we define several mechanisms for defin-
ing languages, and focus on the classes of languages that can be defined with these
mechanisms. A formal mechanism with which formal languages can be defined is
a linguistic formalism. We use L (with or without subscripts) to denote languages,
and L to denote classes of languages.

Example 10 (Language class). Let Σ = {a, b, c, . . . , y, z}. Let L be the set of all the
finite subsets of Σ∗. Then L is a language class.

When classes of languages are discussed, some of the interesting properties to
be investigated are closures with respect to certain operators. The previous section
defined several operators, such as concatenation, union, Kleene closure, etc., on
languages. Given a particular (binary) operation, say union, it is interesting to
know whether a class of languages is closed under this operation. A class of lan-
guages L is said to be closed under some operation ‘•’ if and only if, whenever
two languages L1 and L2 are in the class (L1, L2 ∈ L), the result of performing the
operation on the two languages is also in this class: L1 • L2 ∈ L.

Closure properties have a theoretical interest in and by themselves, but they
are especially important when one is interested in processing languages. Given an
efficient computational implementation for a class of languages (for example, an
algorithm that determines membership: whether a given string indeed belongs to a
given language), one can use the operators that the class is closed under, and still
preserve computational efficiency in processing. We will see such examples in the
following sections.

The membership problem is one of the fundamental questions of interest con-
cerned with language classes. As we shall see, the more expressive the class,
the harder it is to determine membership in languages of this class. Algorithms
that determine membership are called recognition algorithms; when a recognition
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algorithm additionally provides the structure that the formalism induces on the
string in question, it is called a parsing algorithm.

4 Regular Languages

4.1 Regular expressions
The first linguistic formalism we discuss is regular expressions. These are expres-
sions over some alphabet Σ , augmented by some special characters. We define a
mapping, called denotation, from regular expressions to sets of strings over Σ , such
that every well-formed regular expression denotes a set of strings, or a language.

DEFINITION 1. Given an alphabet Σ , the set of regular expressions over Σ is defined
as follows:

• ∅ is a regular expression;
• ε is a regular expression;
• if a ∈ Σ is a letter, then a is a regular expression;
• if r1 and r2 are regular expressions, then so are (r1 + r2) and (r1 · r2);
• if r is a regular expression, then so is (r)∗;
• nothing else is a regular expression over Σ .

Example 11 (Regular expressions). Let Σ be the alphabet {a, b, c, . . . , y, z}. Some
regular expressions over this alphabet are ∅, a, ((c · a) · t), (((m · e) · (o)∗) · w),
(a+ (e+ (i+ (o+ u)))), ((a+ (e+ (i+ (o+ u)))))∗, etc.

DEFINITION 2. Given a regular expression r, its denotation, [[r]], is a set of strings
defined as follows:

• [[∅]] = {}, the empty set;
• [[ε]] = {ε}, the singleton set containing the empty string;
• if a ∈ Σ is a letter, then [[a]] = {a}, the singleton set containing a only;
• if r1 and r2 are two regular expressions whose denotations are [[r1]] and [[r2]],

respectively, then [[(r1 + r2)]] = [[r1]] ∪ [[r2]] and [[(r1 · r2)]] = [[r1]] · [[r2]];
• if r is a regular expression whose denotation is [[r]] then [[(r)∗]] = [[r]]∗.

Example 12 (Regular expressions). Following are the denotations of the regular
expressions of the previous example:

∅ ∅
ε {ε}
a {a}
((c · a) · t) {c · a · t}
(((m · e) · (o)∗) ·w) {mew, meow, meoow, meooow, meoooow, . . .}
(a+ (e+ (i+ (o+ u)))) {a, e, i, o, u}
((a+ (e+ (i+ (o+ u)))))∗ the set containing all strings of 0 or more vowels
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Regular expressions are useful because they facilitate specification of complex
languages in a formal, concise way. Of course, finite languages can still be specified
by enumerating their members; but infinite languages are much easier to specify
with a regular expression, as the last instance of the above example shows.

For simplicity, we omit the parentheses around regular expressions when no
confusion can be caused. Thus, the expression ((a+ (e+ (i+ (o+ u)))))∗ is written
as (a + e + i + o + u)∗. Also, if Σ = {a1, a2, . . . , an}, we use Σ as a shorthand
notation for a1 + a2 + · · · + an. As in the case of string concatenation and language
concatenation, we sometimes omit the ‘·’ operator in regular expressions, so that
the expression c · a · t can be written cat.

Example 13 (Regular expressions). Given the alphabet of all English letters, Σ =
{a, b, c, . . . , y, z}, the language Σ∗ is denoted by the regular expression Σ∗. The set
of all strings which contain a vowel is denoted by Σ∗ · (a+ e+ i+ o+ u) ·Σ∗. The
set of all strings that begin in “un” is denoted by (un)Σ∗. The set of strings that
end in either “tion” or “sion” is denoted by Σ∗ · (s + t) · (ion). Note that all these
languages are infinite.

The class of languages which can be expressed as the denotation of regular
expressions is called the class of regular languages.

DEFINITION 3. A language L is regular iff there exists a regular expression r such that
L = [[r]].

It is a mathematical fact that some languages, subsets of Σ∗, are not regular. We
will encounter such languages in the sequel.

4.2 Properties of regular languages
The class of regular languages is interesting because of its “nice” properties, which
we review here. It should be fairly easy to see that regular languages are closed
under union, concatenation, and Kleene closure. Given two regular languages, L1
and L2, there must exist two regular expressions, r1 and r2, such that [[r1]] = L1 and
[[r2]] = L2. It is therefore possible to form new regular expressions based on r1 and
r2, such as r1 · r2, r1 + r2 and r∗1. Now, by the definition of regular expressions and
their denotations, it follows that the denotation of r1 · r2 is L1 ·L2: [[r1 · r2]] = L1 ·L2.
Since r1 · r2 is a regular expression, its denotation is a regular language, and hence
L1 ·L2 is a regular language. Hence the regular languages are closed under concate-
nation. In exactly the same way we can prove that the class of regular languages
is closed under union and Kleene closure.

One of the reasons for the attractiveness of regular languages is that they are
known to be closed under a wealth of useful operations: intersection, complemen-
tation, exponentiation, substitution, homomorphism, etc. These properties come
in handy both in practical applications that use regular languages and in mathe-
matical proofs that concern them. For example, several formalisms extend regular
expressions by allowing one to express regular languages using not only the three
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basic operations, but also a wealth of other operations (that the class of regular
languages is closed under). It is worth noting that such “good behavior” is not
exhibited by more complex classes of languages.

4.3 Finite state automata
Regular expressions are a declarative formalism for specifying (regular) lan-
guages. We now present languages as entities generated by a computation. This
is a very common situation in formal language theory: many language classes
are associated with computing machinery that generates them. The dual view of
languages (as the denotation of some specifying formalism and as the output of a
computational process) is central in formal language theory.

The computational device we define in this section is finite state automata (FSA).
Informally, they consist of a finite set of states (sometimes called nodes or vertices),
connected by a finite number of transitions (also called edges or links). Each of the
transitions is labeled by a letter, taken from some finite alphabet Σ . A computation
starts at a designated state, the start state or initial state, and it moves from one
state to another along the labeled transitions. As it moves, it prints the letter which
labels the transition. Thus, during a computation, a string of letters is printed out.
Some of the states of the machine are designated final states, or accepting states.
Whenever the computation reaches a final state, the string that was printed so
far is said to be accepted by the machine. Since each computation defines a string,
the set of all possible computations defines a set of strings or, in other words, a
language. We say that this language is accepted or generated by the machine.

DEFINITION 4. A finite state automaton is a five-tuple 〈Q, q0, Σ , δ, F〉, where Σ is a
finite set of alphabet symbols, Q is a finite set of states, q0 ∈ Q is the initial state,
F ⊆ Q is a set of final states, and δ : Q × Σ × Q is a relation from states and alphabet
symbols to states.

Example 14 (Finite state automata). Finite state automata are depicted graphically,
with circles for states and arrows for the transitions. The initial state is shaded
and the final states are depicted by two concentric circles. The finite state
automaton A=〈Q, Σ , q0, δ, F〉, where Q={q0, q1, q2, q3}, Σ ={c, a, t, r}, F={q3}, and
δ={〈q0, c, q1〉, 〈q1, a, q2〉, 〈q2, t, q3〉, 〈q2, r, q3〉}, is depicted graphically as follows:

q0 q1 q2 q3
c a

t

r

To define the language generated by an FSA, we first extend the transition
relation from single edges to paths by extending the transition relation δ to its
reflexive transitive closure, δ̂. This relation assigns a string to each path (it also
assumes that an empty path, decorated by ε, leads from each state to itself). We
focus on paths that lead from the initial state to some final state. The strings that
decorate these paths are said to be accepted by the FSA, and the language of the
FSA is the set of all these strings. In other words, in order for a string to be in the
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language of the FSA, there must be a path in the FSA which leads from the initial
state to some final state decorated by the string. Paths that lead to non-final states
do not define accepted strings.

DEFINITION 5. Given an FSA A = 〈Q, q0, Σ , δ, F〉, the reflexive transitive closure of the
transition relation δ is δ̂, defined as follows:

• for every state q ∈ Q, (q, ε, q) ∈ δ̂;
• for every string w ∈ Σ∗ and letter a ∈ Σ , if (q, w, q′) ∈ δ̂ and (q′, a, q′′) ∈ δ, then

(q, w · a, q′′) ∈ δ̂.

A string w is accepted by A if and only if there exists a state qf ∈ F such that δ̂(q0, w) =
qf . The language of A is the set of all the strings accepted by it: L(A) = {w | there exists
qf ∈ F such that δ̂(q0, w) = qf }.
Example 15 (Language accepted by an FSA). For the finite state automaton of
Example 14, δ̂ is the following set of triples: 〈q0, ε, q0〉, 〈q1, ε, q1〉, 〈q2, ε, q2〉, 〈q3, ε, q3〉,
〈q0, c, q1〉, 〈q1, a, q2〉, 〈q2, t, q3〉, 〈q2, r, q3〉, 〈q0, ca, q2〉, 〈q1, at, q3〉, 〈q1, ar, q3〉, 〈q0, cat, q3〉,
〈q0, car, q3〉. The language of the FSA is thus {cat, car}.
Example 16 (Finite state automata). Following are some simple FSA and the lan-
guages they generate.

FSA, A L(A)

q0 ∅

q0 q1
a

{a}

q0 q1
a
b

{a, b}

q0 {ε}

q0 q1
a

a a+ = {a, aa, aaa, aaaa, . . .}

q0 a a∗ = {ε, a, aa, aaa, aaaa, . . .}

We now slightly amend the definition of finite state automata to include what is
called ε-moves. By our original definition, the transition relation δ is a relation from
states and alphabet symbols to states. We extend δ such that its second coordinate
is now Σ ∪ {ε}, that is, any edge in an automaton can be labeled either by some
alphabet symbol or by the special symbol ε, which as usual denotes the empty
word. The implication is that a computation can move from one state to another
over an ε-transition without printing out any symbol.

Example 17 (Automata with ε-moves). The language accepted by the following
automaton is {do, undo, done, undone}:

q0 q1 q2 q3 q4 q5 q6
u n d o n e

ε ε
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Finite state automata, just like regular expressions, are devices for defining for-
mal languages. The major theorem of regular languages states that the class of
languages which can be generated by FSA is exactly the class of regular languages.
Furthermore, there are simple and efficient algorithms for “translating” a regular
expression to an equivalent automaton and vice versa.

THEOREM 1. A language L is regular iff there exists an FSA A such that L = L(A).

Example 18 (Equivalence of finite state automata and regular expressions). For each of
the regular expressions of Example 12 we depict an equivalent automaton below:

∅ q0

a q0 q1
a

((c · a) · t) q0 q1 q2 q3
c a t

(((m · e) · (o)∗) · w) q0 q1 q2 q3
m e

o

w

(a+ (e+ (i+ (o+ u)))) q0 q1
a, e, i, o, u

((a+ (e+ (i+ (o+ u)))))∗ q0 a, e, i, o, u

4.4 Minimization and determinization
The finite state automata presented above are non-deterministic. By this we mean
that when the computation reaches a certain state, the next state is not uniquely
determined by the next alphabet symbol to be printed. There might very well be
more than one state that can be reached by a transition that is labeled by some sym-
bol. This is because we defined automata using a transition relation, δ, which is not
required to be functional. For some state q and alphabet symbol a, δ might include
the two pairs 〈q, a, q1〉 and 〈q, a, q2〉 with q1 �= q2. Furthermore, when we extended
δ to allow ε-transitions, we added yet another dimension of non-determinism:
when the machine is in a certain state q and an ε-arc leaves q, the computation
must “guess” whether to traverse this arc.

DEFINITION 6. An FSA A = 〈Q, q0, Σ , δ, F〉 is deterministic iff it has no ε-transitions
and δ is a function from Q×Σ to Q.

Much of the appeal of finite state automata lies in their efficiency; and their
efficiency is in great part due to the fact that, given some deterministic FSA A and
a string w, it is possible to determine whether or not w ∈ L(A) by “walking” the
path labeled w, starting with the initial state of A, and checking whether the walk
leads to a final state. Such a walk takes time that is proportional to the length of w,
and is completely independent of the number of states in A. We therefore say that
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the membership problem for FSA can be solved in linear time. But when automata
are non-deterministic, an element of guessing is introduced, which may impair
the efficiency: no longer is there a single walk along a single path labeled w, and
some control mechanism must be introduced to check that all possible paths are
taken.

Non-determinism is important because it is sometimes much easier to construct
a non-deterministic automaton for some language. Fortunately, we can rely on two
very important results: every non-deterministic finite state automaton is equiva-
lent to some deterministic one; and every finite state automaton is equivalent to
one that has a minimum number of nodes, and the minimal automaton is unique.
We now explain these results.

First, it is important to clarify what is meant by equivalent. We say that two finite
state automata are equivalent if and only if they accept the same language.

DEFINITION 7. Two FSA A1 and A2 are equivalent iff L(A1) = L(A2).

Example 19 (Equivalent automata). The following three finite state automata are
equivalent: they all accept the set {go, gone, going}.

A1

n g
i

g o n e

A2

g o i n g

g o n e

g
o

A3

g o i n g

n e ε

ε
ε

Note that A1 is deterministic: for any state and alphabet symbol there is at most
one possible transition. A2 is not deterministic: the initial state has three out-
going arcs all labeled by g. The third automaton, A3, has ε-arcs and hence is
non-deterministic. While A2 might be the most readable, A1 is the most compact
as it has the fewest nodes.

Given a non-deterministic FSA A, it is always possible to construct an equiv-
alent deterministic automaton, one whose next state is fully determined by the
current state and the alphabet symbol, and which contains no ε-moves. Some-
times this construction yields an automaton with more states than the original,
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non-deterministic one (in the worst case, the number of states in the deterministic
automaton can be exponential in the size of the non-deterministic one). However,
the deterministic automaton can then be minimized such that it is guaranteed that
no deterministic finite state automaton generating the same language is smaller.
Thus, it is always possible to determinize and then minimize a given automaton
without affecting the language it generates.

THEOREM 2. For every FSA A (with n states) there exists a deterministic FSA A′ (with
at most 2n states) such that L(A) = L(A′).

THEOREM 3. For every regular language L there exists a minimal FSA A such that
no other FSA A′ such that L(A) = L(A′) has fewer states than A. A is unique (up to
isomorphism).

4.5 Operations on finite state automata
We know from Section 4.3 that finite state automata are equivalent to regular
expressions; we also know from Section 4.2 that the regular languages are closed
under several operations, including union, concatenation, and Kleene closure. So,
for example, if L1 and L2 are two regular languages, there exist automata A1 and
A2 which accept them, respectively. Since we know that L1 ∪ L2 is also a regu-
lar language, there must be an automaton which accepts it as well. The question
is, can this automaton be constructed using the automata A1 and A2? In this
section we show how simple operations on finite state automata correspond to
some operators on languages.

We start with concatenation. Suppose that A1 is a finite state automaton such
that L(A1) = L1, and similarly that A2 is an automaton such that L(A2) = L2. We
describe an automaton A such that L(A) = L1 ·L2. A word w is in L1 ·L2 if and only
if it can be broken into two parts, w1 and w2, such that w = w1 · w2, and w1 ∈ L1,
w2 ∈ L2. In terms of automata, this means that there is an accepting path for w1 in
A1 and an accepting path for w2 in A2; so if we allow an ε-transition from all the
final states of A1 to the initial state of A2, we will have accepting paths for words
of L1 · L2. The finite state automaton A is constructed by combining A1 and A2 in
the following way: its set of states, Q, is the union of Q1 and Q2; its alphabet is the
union of the two alphabets; its initial state is the initial state of A1; its final states
are the final states of A2; and its transition relation is obtained by adding to δ1 ∪ δ2
the set of ε-moves described above: {〈qf , ε, q02〉 | qf ∈ F1} where q02 is the initial
state of A2.

In a very similar way, an automaton A can be constructed whose languages
is L1 ∪ L2 by combining A1 and A2. Here, one should notice that for a word to be
accepted by A it must be accepted either by A1 or by A2 (or by both). The combined
automaton will have an accepting path for every accepting path in A1 and in A2.
The idea is to add a new initial state to A, from which two ε-arcs lead to the initial
states of A1 and A2. The states of A are the union of the states of A1 and A2, plus
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the new initial state. The transition relation is the union of δ1 with δ2, plus the new
ε-arcs. The final states are the union of F1 and F2.

An extension of the same technique to construct the Kleene closure of an
automaton is rather straightforward. However, all these results are not surprising,
as we have already seen in Section 4.2 that the regular languages are closed under
these operations. Thinking of languages in terms of the automata that accept them
comes in handy when one wants to show that the regular languages are closed
under other operations, where the regular expression notation is not very sugges-
tive of how to approach the problem. Consider the operation of complementation:
if L is a regular language over an alphabet Σ , we say that the complement of L is
the set of all the words (in Σ∗) that are not in L, and write L for this set. Formally,
L = Σ∗ \ L. Given a regular expression r, it is not clear what regular expression r′
is such that [[r′]] = [[r]]. However, with automata this becomes much easier.

Assume that a finite state automaton A is such that L(A) = L. Assume also that
A is deterministic. To construct an automaton for the complemented language,
all one has to do is change all final states to non-final, and all non-final states to
final. In other words, if A = 〈Q, Σ , q0, δ, F〉, then A = 〈Q, Σ , q0, δ, Q \ F〉 is such that
L(A) = L. This is because every accepting path in A is not accepting in A, and vice
versa.

Now that we know that the regular languages are closed under complementa-
tion, it is easy to show that they are closed under intersection: if L1 and L2 are
regular languages, then L1 ∩ L2 is also regular. This follows directly from funda-
mental theorems of set theory, since L1 ∩ L2 can actually be written as L1 ∪ L2, and
we already know that the regular languages are closed under union and comple-
mentation. In fact, construction of an automaton for the intersection language is
not very difficult, although it is less straightforward than the previous examples.

4.6 Applications of finite state automata in natural
language processing

Finite state automata are computational devices that generate regular languages,
but they can also be viewed as recognizing devices: given some automaton A and a
word w, it is easy to determine whether w ∈ L(A). Observe that such a task can be
performed in time linear in the length of w, hence the efficiency of the represen-
tation is optimal. This reversed view of automata motivates their use for a simple
yet necessary application of natural language processing: dictionary lookup.

Example 20 (Dictionaries as finite state automata). Many NLP applications require
the use of lexicons or dictionaries, sometimes storing hundreds of thousands of
entries. Finite state automata provide an efficient means for storing dictionar-
ies, accessing them, and modifying their contents. Assume that an alphabet is
fixed (say, Σ ={a, b, . . ., z}) and consider how a single word, say go, can be repre-
sented. As we have seen above, a naïve representation would be to construct an
automaton with a single path whose arcs are labeled by the letters of the word go:
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go :
g o

To represent more than one word, add paths to the FSA, one path for each
additional word. For example, after adding the words gone and going, we obtain:

go, gone, going :

g o i n g

g o n e

g
o

This automaton can then be determinized and minimized, yielding:

go, gone, going :

n g
i

g o n e

The organization of the lexicon as outlined above is extremely simplistic. A
possible extension attaches to the final states of the FSA additional information
pertaining to the words that decorate the paths to those states. Such informa-
tion can include definitions, morphological information, translations, etc. FSA are
thus suitable for representing various kinds of dictionaries, in addition to simple
lexicons.

Regular languages are particularly appealing for natural language processing
for two main reasons. First, it turns out that most phonological and morphologi-
cal processes can be straightforwardly described using the operations that regular
languages are closed under, in particular concatenation. With very few excep-
tions (such as the interdigitation word-formation processes of Semitic languages
or the duplication phenomena of some Asian languages), the morphology of most
natural languages is limited to simple concatenation of affixes, with some morpho-
phonological alternations, usually on a morpheme boundary. Such phenomena are
easy to model with regular languages, and hence are easy to implement with finite
state automata. Second, many of the algorithms one would want to apply to finite
state automata take time proportional to the length of the word being processed,
independently of the size of the automaton. Finally, the various closure properties
facilitate modular development of FSA for natural languages.

4.7 Regular relations
While finite state automata, which define (regular) languages, are sufficient for
some natural language applications, it is often useful to have a mechanism for
relating two (formal) languages. For example, a part-of-speech tagger can be
viewed as an application that relates a set of natural language strings (the source
language) to a set of part-of-speech tags (the target language). A morphological
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analyzer can be viewed as a relation between natural language strings (the surface
forms of words) and their internal structure (say, as sequences of morphemes).
In this section we discuss a computational device, very similar to finite state
automata, which defines a relation over two regular languages.

Example 21 (Relations over languages). Consider a simple part-of-speech tagger: an
application which associates with every word in some natural language a tag,
drawn from a finite set of tags. In terms of formal languages, such an applica-
tion implements a relation over two languages. Assume that the natural language
is defined over Σ1 = {a, b, . . . , z} and that the set of tags is Σ2 = {PRON, V, DET,
ADJ, N, P }. Then the part-of-speech relation might contain the following pairs
(here, a string over Σ1 is mapped to a single element of Σ2):

I PRON the DET
know V Cat N
some DET in P
new ADJ the DET
tricks N Hat N
said V

As another example, assume that Σ1 is as above, and Σ2 is a set of part-of-speech
and morphological tags, including {-PRON, -V, -DET, -ADJ, -N, -P, -1, -2, -3, -sg,
-pl, -pres, -past, -def, -indef }. A morphological analyzer is a relation between a
language over Σ1 and a language over Σ2. Some of the pairs in such a relation are:

I I-PRON-1-sg the the-DET-def
know know-V-pres Cat cat-N-sg
some some-DET-indef in in-P
new new-ADJ the the-DET-def
tricks trick-N-pl Hat hat-N-sg
said say-V-past

Finally, consider the relation that maps every English noun in singular to its plu-
ral form. While the relation is highly regular (namely, adding “s” to the singular
form), some nouns are irregular. Some instances of this relation are:

cat cats hat hats
ox oxen child children
mouse mice sheep sheep
goose geese

Summing up, a regular relation is defined over two alphabets, Σ1 and Σ2.
Of course, the two alphabets can be identical, but for many natural language
applications they differ. If a relation in Σ∗ × Σ∗ is regular, its projections on both
coordinates are regular languages (not all relations that satisfy this condition are
regular; additional constraints must hold on the underlying mapping which we
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ignore here). Informally, a regular relation is a set of pairs, each of which consists
of one string over Σ1 and one string over Σ2, such that both the set of strings
over Σ1 and that over Σ2 constitute regular languages. We provide a precise
characterization of regular relations via finite state transducers below.

4.8 Finite state transducers
Finite state automata are a computational device for defining regular languages;
in a very similar way, finite state transducers (FSTs) are a computational device for
defining regular relations. Transducers are similar to automata, the only difference
being that the edges are not labeled by single letters, but rather by pairs of sym-
bols: one symbol from Σ1 and one symbol from Σ2. The following is a preliminary
definition that we will revise presently:

DEFINITION 8. A finite state transducer is a six-tuple 〈Q, q0, Σ1, Σ2, δ, F〉, where Q is
a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, Σ1 and Σ2
are alphabets, and δ is a subset of Q×Σ1 ×Σ2 ×Q.

Example 22 (Finite state transducers). Following is a finite state transducer relating
the singular forms of two English words with their plural form. In this case,
both alphabets are identical: Σ1=Σ2={a, b, . . . , z}. The set of nodes is Q={q1,
q2, . . . , q11}, the initial state is q6 and the set of final states is F={q5, q11}. The transi-
tions from one state to another are depicted as labeled edges; each edge bears two
symbols, one from Σ1 and one from Σ2, separated by a colon (:). So, for example,
〈q1, o, e, q2〉 is an element of δ.

q1 q2 q3 q4 q5

q6 q7 q8 q9 q10 q11

g : g o : e o : e s : s e : e

s : s h : h e : e e : e p : p

Observe that each path in this device defines two strings: a concatenation of the
left-hand-side labels of the arcs, and a concatenation of the right-hand-side labels.
The upper path of the above transducer thus defines the pair goose:geese, whereas
the lower path defines the pair sheep:sheep.

What constitutes a computation with a transducer? Similarly to the case of
automata, a computation amounts to “walking” a path of the transducer, start-
ing from the initial state and ending in some final state. Along the path, edges
bear bi-symbol labels: one can view the left-hand-side symbol as an “input” sym-
bol and the right-hand-side symbol as an “output” symbol. Thus, each path of
the transducer defines a pair of strings, an input string (over Σ1) and an output
string (over Σ2). This pair of strings is a member of the relation defined by the
transducer.
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DEFINITION 9. Let T = 〈Q, q0, Σ1, Σ2, δ, F〉 be a finite state transducer. Define δ̂ ⊆
Q×Σ∗1 ×Σ∗2 ×Q as follows:

• for each q ∈ Q, δ̂(q, ε, ε, q);
• if δ̂(q1, w1, w2, q2) and δ(q2, a, b, q3), then δ̂(q1, w1 · a, w2 · b, q3).

Then a pair 〈w1, w2〉 is accepted (or generated) by T if and only if δ̂(q0, w1, w2, wf ) holds
for some final state qf ∈ F. The relation defined by the transducer is the set of all the
pairs it accepts.

As a shorthand notation, when an edge is labeled by two identical symbols, we
depict only one of them and omit the colon.

The above definition of finite state transducers is not very useful: since each arc
is labeled by exactly one symbol of Σ1 and exactly one symbol of Σ2, any rela-
tion that is implemented by such a transducer must relate only strings of exactly
the same length. This should not be the case, and to overcome this limitation we
extend the definition of δ to allow also ε-labels. In the extended definition, δ is a
relation over Q, Σ1∪{ε}, Σ2∪{ε} and Q. Thus a transition from one state to another
can involve “reading” a symbol of Σ1 without “writing” any symbol of Σ2, or the
other way round.

Example 23 (Finite state transducer with ε-labels). With the extended definition of
transducers, we depict below an expanded transducer for singular–plural noun
pairs in English.

g o : e o : e s e

s h e e p

o
x ε : e ε : n

m

o : i u : ε s : c e

Note that ε-labels can occur on the left or on the right of the ‘:’ separator. The
pairs accepted by this transducer are goose:geese, sheep:sheep, ox:oxen, and
mouse:mice.

4.9 Properties of regular relations
The extension of automata to transducers carries with it some interesting results.
First and foremost, finite state transducers define exactly the set of regular rela-
tions. Many of the closure properties of automata are valid for transducers, but
some are not. As these properties bear not only theoretical but also practical
significance, we discuss them in more detail in this section.

Given some transducer T, consider what happens when the labels on the arcs
of T are modified such that only the left-hand symbol remains. In other words,
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consider what is obtained when the transition relation δ is projected on three of its
coordinates: Q, Σ1, and Q only, ignoring the Σ2 coordinate. It is easy to see that
a finite state automaton is obtained. We call this automaton the projection of T to
Σ1. In the same way, we can define the projection of T to Σ2 by ignoring Σ1 in the
transition relation. Since both projections yield finite state automata, they induce
regular languages. Therefore the relation defined by T is a regular relation.

We can now consider certain operations on regular relations, inspired by similar
operations on regular languages. For example, union is very easy to define. Recall
that a regular relation is a subset of the Cartesian product of Σ∗1 × Σ∗2 , that is,
a set of pairs. If R1 and R2 are regular relations, then R1 ∪ R2 is well defined,
and it is straightforward to show that it is a regular relation. To define the union
operation directly over transducers, extend the construction of FSA delineated in
Section 4.5, namely add a new initial state with two edges labeled ε : ε leading
from it to the initial states of the given transducers. In a similar way, concatenation
can be extended to regular relations: if R1 and R2 are regular relations then R1 ·
R2 = {〈w1 ·w2, w3 · w4〉 | 〈w1, w3〉 ∈ R1 and 〈w2, w4〉 ∈ R2}. Again, the construction
for FSA can be straightforwardly extended to the case of transducers, and it is easy
to show that R1 · R2 is a regular relation.

Example 24 (Operations on finite state transducers). Let R1 be the following relation,
mapping some English words to their German counterparts: R1={tomato:Tomate,
cucumber:Gurke, grapefruit:Grapefruit, pineapple:Ananas, coconut:Koko}. Let R2
be a similar relation: R2={grapefruit:Pampelmuse, coconut:Kokusnuß }. Then:
R1 ∪ R2={tomato:Tomate, cucumber:Gurke, grapefruit:Grapefruit, grapefruit:
Pampelmuse, pineapple:Ananas, coconut:Koko, coconut:Kokusnuß }.

A rather surprising fact is that regular relations are not closed under intersec-
tion. In other words, if R1 and R2 are two regular relations, then it very well
might be the case that R1 ∩ R1 is not a regular relation. It will take us beyond
the scope of the material covered so far to explain this fact, but it is important to
remember it when dealing with finite state transducers. For this reason exactly it
follows that the class of regular relations is not closed under complementation: since
intersection can be expressed in terms of union and complementation, if regular
relations were closed under complementation they would have been closed also
under intersection, which we know is not the case.

A very useful operation that is defined for transducers is composition. Intuitively,
a transducer relates one word (“input”) with another (“output”). When we have
more than one transducer, we can view the output of the first transducer as the
input to the second. The composition of T1 and T2 relates the input language of
T1 with the output language of T2, bypassing the intermediate level (which is the
output of T1 and the input of T2).

DEFINITION 10. If R1 is a relation from Σ∗1 to Σ∗2 and R2 is a relation from Σ∗2 to Σ∗3
then the composition of R1 and R2, denoted R1 ◦ R2, is a relation from Σ∗1 to Σ∗3 defined
as {〈w1, w3〉 | there exists a string w2 ∈ Σ∗2 such that w1R1w2 and w2R2w3}.
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Example 25 (Composition of finite state transducers). Let R1 be the following rela-
tion, mapping some English words to their German counterparts: R1={tomato:
Tomate, cucumber:Gurke, grapefruit:Grapefruit, grapefruit:Pampelmuse, pine-
apple:Ananas, coconut:Koko, coconut:Kokusnuß }. Let R2 be a similar relation,
mapping French words to their English translations: R2={tomate:tomato,
ananas: pineapple, pamplemousse:grapefruit, concombre:cucumber, cornichon:
cucumber, noix-de-coco:coconut}. Then R2 ◦ R1 is a relation mapping French
words to their German translations (the English translations are used to
compute the mapping, but are not part of the final relation): R2 ◦ R1 =
{tomate:Tomate, ananas:Ananas, pamplemousse:Grapefruit, pamplemousse:
Pampelmuse, concombre:Gurke, cornichon:Gurke, noix-de-coco:Koko, noix-de-
coco:Kokusnuße}.

5 Context-Free Languages

5.1 Where regular languages fail
Regular languages and relations are useful for various applications of natural lan-
guage processing, but there is a limit to what can be achieved with such means.
We mentioned in passing that not all languages over some alphabet Σ are regular;
we now look at what kind of languages lie beyond the regular ones.

To exemplify a non-regular language, consider a simple language over the
alphabet Σ ={a, b} whose members are strings that consist of some number, n,
of ‘a’s, followed by the same number of ‘b’s. Formally, this is the language L =
{an · bn | n > 0}. Assume towards a contradiction that this language is regular, and
therefore a deterministic finite state automaton A exists whose language is L. Con-
sider the language Li = {ai | i > 0}. Since every string in this language is a prefix
of some string (ai · bi) of L, there must be a path in A starting from the initial state
for every string in Li. Of course, there is an infinite number of strings in Li, but by
its very nature, A has a finite number of states. Therefore there must be two dif-
ferent strings in Li that lead the automaton to a single state. In other words, there
exist two strings, aj and ak, such that j �= k but δ̂(q0, aj) = δ̂(q0, ak). Let us call this
state q. There must be a path labeled bj leading from q to some final state qf , since
the string ajbj is in L. This situation is schematically depicted below (the dashed
arrows represent paths):

q0 q qf

a j

ak

b j

Therefore, there is also an accepting path akbj in A, and hence also akbj is in L, in
contradiction to our assumption. Hence no deterministic finite state automaton
exists whose language is L.
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We have seen one language, namely L={an · bn | n > 0}, which cannot be
defined by a finite state automaton and therefore is not regular. In fact, there are
several other such languages, and there is a well-known technique, the so-called
pumping lemma, for proving that certain languages are not regular. If a language is
not regular, then it cannot be denoted by a regular expression. We must look for
alternative means of specification for non-regular languages.

5.2 Grammars
In order to specify a class of more complex languages, we introduce the notion of
a grammar. Intuitively, a grammar is a set of rules that manipulate symbols. We
distinguish between two kinds of symbols: terminal ones, which should be thought
of as elements of the target language, and non-terminal ones, which are auxiliary
symbols that facilitate the specification. It might be instructive to think of the non-
terminal symbols as syntactic categories, such as Sentence, Noun Phrase, or Verb
Phrase. However, formally speaking, non-terminals have no “special,” external
interpretation where formal languages are concerned. Similarly, terminal symbols
might correspond to letters of some natural language, or to words, or to something
else: they are simply elements of some finite set.

Rules can express the internal structure of “phrases,” which should not nec-
essarily be viewed as natural language phrases. A rule is a non-empty sequence
of symbols, a mixture of terminals and non-terminals, with the only requirement
that the first element in the sequence be a non-terminal one (alternatively, one
can define a rule as an ordered pair whose first element is a non-terminal symbol
and whose second element is a sequence of symbols). We write such rules with a
special symbol, ‘→,’ separating the distinguished leftmost non-terminal from the
rest of the sequence. The leftmost non-terminal is sometimes referred to as the head
of the rule, while the rest of the symbols are called the body of the rule.

Example 26 (Rules). Assume that the set of terminals is {the, cat, in, hat} and the
set of non-terminals is {D, N, P, NP, PP }. Then possible rules over these two sets
include:

D → the NP → D N
N → cat PP → P NP
N → hat NP → NP PP
P → in

Note that the terminal symbols correspond to words of English, and not to letters
as was the case above.

Consider the rule NP → D N. If we interpret NP as the syntactic category noun
phrase, D as determiner, and N as noun, then what the rule informally means is that
one possible way to construct a noun phrase is by concatenating a determiner with
a noun. More generally, a rule specifies one possible way to construct a “phrase” of
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the category indicated by its head: this way is by concatenating phrases of the cat-
egories indicated by the elements in the body of the rule. Of course, there might be
more than one way to construct a phrase of some category. For example, there are
two rules which define the structure of the category NP in Example 26: either by
concatenating a phrase of category D with one of category N, or by concatenating
an NP with a PP.

In Example 26, rules are of two kinds: the ones on the left have a single terminal
symbol in their body, while the ones on the right have one or more non-terminal
symbols, but no rule mixes both terminal and non-terminal symbols in its body.
While this is a common practice where grammars for natural languages are con-
cerned, nothing in the formalism requires such a format for rules. Indeed, rules
can mix any combination of terminal and non-terminal symbols in their bodies.

Formal language theory defines rules and grammars in a much broader way
than that which was discussed above, and the definition below is actually only
a special case of rules and grammars. For various reasons that have to do with
the format of the rules, this special case is known as context-free rules. This has
nothing to do with the ability of grammars to refer to context; the term should not
be taken mnemonically. In the next section we discuss other rule-based systems. In
this section, however, we use the terms rule and context-free rule interchangeably,
as we do for grammars, derivations, etc.

DEFINITION 11. A context-free grammar is a four-tuple G = 〈V, Σ , P, S〉, where V
is a finite set of non-terminal symbols, Σ is an alphabet of terminal symbols, P ⊆
V × (V ∪Σ)∗ is a set of rules and S ∈ V is the start symbol.

Note that this definition permits rules with empty bodies. Such rules, which
consist of a left-hand-side only, are called ε-rules, and are useful both for formal
and for natural languages. Example 33 below makes use of an ε-rule.

Example 27 (Grammar). The set of rules depicted in Example 26 can constitute the
basis for a grammar G = 〈V, Σ , P, S〉, where V = {D, N, P, NP, PP }, Σ = {the, cat,
in, hat}, P is the set of rules, and the start symbol S is NP.

In the sequel we depict grammars by listing their rules only, as we did in Exam-
ple 26. We keep a convention of using uppercase letters for the non-terminals and
lowercase letters for the terminals, and we assume that the set of terminals is the
smallest that includes all the terminals mentioned in the rules, and the same for
the non-terminals. Finally, we assume that the start symbol is the head of the first
rule, unless stated otherwise.

5.3 Derivation
In order to define the language denoted by a grammar we need to define the
concept of derivation. Derivation is a relation that holds between two forms, each a
sequence of grammar symbols (terminal and/or non-terminal).
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DEFINITION 12. Let G = 〈V, Σ , P, S〉 be a grammar. The set of forms induced by G is
(V ∪ Σ)∗. A form α immediately derives a form β, denoted by α ⇒ β, if and only if
there exist γl, γr ∈ (V ∪Σ)∗ such that α = γlAγr and β = γlγcγr, and A→ γc is a rule
in P. A is called the selected symbol.

A form α immediately derives β if a single non-terminal symbol, A, occurs in α,
such that whatever is to its left in α, the (possibly empty) sequence of terminal and
non-terminal symbols γl, occurs at the leftmost edge of β; and whatever is to the
right of A in α, namely the (possibly empty) sequence of symbols γr, occurs at the
rightmost edge of β; and the remainder of β, namely γc, constitutes the body of
some grammar rule of which A is the head.

Example 28 (Immediate derivation). Let G be the grammar of Example 27. The set of
forms induced by G contains all the (infinitely many) sequences of elements from
V and Σ , such as 〈〉, 〈NP〉, 〈D cat P D hat〉, 〈D N 〉, 〈the cat in the hat〉, etc.

Let us start with a simple form, 〈NP〉. Observe that it can be written as γlNPγr,
where both γl and γr are empty. Observe also that NP is the head of some grammar
rule: the rule NP → D N. Therefore, the form is a good candidate for derivation:
if we replace the selected symbol NP with the body of the rule, while preserving
its environment, we obtain γlD Nγr = D N. Therefore, 〈N 〉 ⇒ 〈D N 〉.

We now apply the same process to 〈D N 〉. This time the selected symbol is D
(we could have selected N, of course). The left context is again empty, while the
right context is γr = N. As there exists a grammar rule whose head is D, namely
D → the, we can replace the rule’s head by its body, preserving the context, and
obtain the form 〈the N〉. Hence 〈D N 〉 ⇒ 〈the N〉.

Given the form 〈the N〉, there is exactly one non-terminal that we can select,
namely N. However, there are two rules that are headed by N: N → cat and
N → hat . We can select either of these rules to show that both 〈the N〉 ⇒ 〈the cat〉
and 〈the N〉 ⇒ 〈the hat〉.

Since the form 〈the cat〉 consists of terminal symbols only, no non-terminal can
be selected and hence it derives no form.

We now extend the immediate derivation relation from a single step to an
arbitrary number of steps by considering the reflexive transitive closure of the
relation.

DEFINITION 13. The derivation relation, denoted ‘ ∗⇒,’ is defined recursively as follows:
α
∗⇒ β if α = β, or if α ⇒ γ and γ

∗⇒ β.

Example 29 (Extended derivation). In Example 28 we showed that the following
immediate derivations hold: 〈NP〉⇒〈D N 〉; 〈D N 〉⇒〈the N〉; 〈the N〉⇒〈the cat〉.
Therefore, 〈NP〉 ∗⇒ 〈the cat〉.

The derivation relation is the basis for defining the language denoted by a gram-
mar. Consider the form obtained by taking a single grammar symbol, say 〈A〉; if
this form derives a sequence of terminals, this string is a member of the language
denoted by A. The language of a grammar G, L(G), is the language denoted by its
start symbol.
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DEFINITION 14. Let G = 〈V, Σ , P, S〉 be a grammar. The language of a non-terminal
A ∈ V is

LG(A) = {a1 · · · an | ai ∈ Σ for 1 ≤ i ≤ n and 〈A〉 ∗⇒ 〈a1, . . . , an〉}

The language of the grammar G is L(G) = LG(S).

Example 30 (Language of a grammar). Consider again the grammar G of Exam-
ple 27. It is fairly easy to see that the language denoted by the non-terminal symbol
D, LG(D), is the singleton set {the}. Similarly, LG(P) is {in} and LG(N) = {cat, hat}.
It is more difficult to define the languages denoted by the non-terminals NP and
PP, although it should be straightforward that the latter is obtained by concatenat-
ing {in} with the former. We claim without providing a proof that LG(NP) is the
denotation of the regular expression (the · (cat+ hat) · (in· the · (cat+ hat))∗).

5.4 Derivation trees
Sometimes two derivations of the same string differ only in the order in which
they were applied. Consider again the grammar of Example 27. Starting with the
form 〈NP〉 it is possible to derive the string the cat in two ways:

(1) 〈NP〉 ⇒ 〈D N 〉 ⇒ 〈D cat〉 ⇒ 〈the cat〉
(2) 〈NP〉 ⇒ 〈D N 〉 ⇒ 〈the N〉 ⇒ 〈the cat〉

Derivation (1) applies first the rule N → cat and then the rule D → the whereas
derivation (2) applies the same rules in the reverse order. But since both use
the same rules to derive the same string, it is sometimes useful to collapse such
“equivalent” derivations into one. To this end the notion of derivation trees is
introduced.

A derivation tree (sometimes called parse tree, or simply tree) is a visual aid
in depicting derivations, and a means for imposing structure on a grammatical
string. Trees consist of vertices and branches; a designated vertex, the root of the
tree, is depicted on the top. Branches are connections between pairs of vertices.
Intuitively, trees are depicted “upside down,” since their root is at the top and
their leaves are at the bottom. An example of a derivation tree for the string the cat
in the hat with the grammar of Example 27 is given in Example 31.

Example 31 (Derivation tree).

NP

NP PP

D N P NP

D N

the cat in the hat
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Formally, a tree consists of a finite set of vertices and a finite set of branches
(or arcs), each of which is an ordered pair of vertices. In addition, a tree has a
designated vertex, the root, which has two properties: it is not the target of any arc,
and every other vertex is accessible from it (by following one or more branches).
When talking about trees we sometimes use family notation: if a vertex v has a
branch leaving it which leads to some vertex u, then we say that v is the mother
of u and u is the daughter, or child, of v. If u has two daughters, we refer to them
as sisters. Derivation trees are defined with respect to some grammar G, and must
obey the following conditions:

(1) every vertex has a label, which is either a terminal symbol, a non-terminal
symbol, or ε;

(2) the label of the root is the start symbol;
(3) if a vertex v has an outgoing branch, its label must be a non-terminal symbol;

furthermore, this symbol must be the head of some grammar rule; and the
elements in the body of the same rule must be the labels of the children of v,
in the same order;

(4) if a vertex is labeled ε, it is the only child of its mother.

A leaf is a vertex with no outgoing branches. A tree induces a natural “left-to-
right” order on its leaves; when read from left to right, the sequence of leaves is
called the frontier, or yield, of the tree.

Derivation trees correspond very closely to derivations. In fact, it is easy to show
that a non-terminal symbol A derives a form α if and only if α is the yield of some
parse tree whose root is A. In other words, whenever some string can be derived
from a non-terminal, there exists a derivation tree for that string, with the same
non-terminal as its root. However, sometimes there exist different derivations of
the same string that correspond to a single tree. The tree representation collapses
exactly those derivations that differ from each other only in the order in which
rules are applied.

Sometimes, however, different derivations (of the same string!) correspond to
different trees. This can happen only when the derivations differ in the rules which
they apply. When more than one tree exists for some string, we say that the string
is ambiguous. Ambiguity is a major problem when grammars are used for certain
formal languages, in particular for programming languages. But for natural lan-
guages, ambiguity is unavoidable as it corresponds to properties of the natural
language itself.

Example 32 (Ambiguity). Consider again the grammar of Example 27, and the
string the cat in the hat in the hat. Intuitively, there can be (at least) two readings
for this string: one in which a certain cat wears a hat-in-a-hat, and one in which a
certain cat-in-a-hat is inside a hat. If we wanted to indicate the two readings with
parentheses, we would distinguish between

((the cat in the hat) in the hat)

and

(the cat in (the hat in the hat))
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This distinction in intuitive meaning is reflected in the grammar, and two different
derivation trees, corresponding to the two readings, are available for this string:

NP

NP

NP PP PP

D N P NP P NP

D N D N

the cat in the hat in the hat

NP

NP PP

D N P NP

NP PP

P NP

D N D N

the cat in the hat in the hat

Using linguistic terminology, in the left tree the second occurrence of the preposi-
tional phrase in the hat modifies the noun phrase the cat in the hat, whereas in the
right tree it only modifies the (first occurrence of) the noun phrase the hat. This
situation is known as syntactic or structural ambiguity.

5.5 Expressiveness
Context-free grammars are more expressive than regular expressions. In
Section 5.1 we claimed that the language L={anbn | n > 0} is not regular; we now
show a context-free grammar for this language. The grammar, G=〈V, Σ , P, S〉, has
two terminal symbols, Σ ={a, b}, and one non-terminal symbol, V = {S}. The idea
is that whenever S is used recursively in a derivation (rule 1), the current form is
extended by exactly one a on the left and one b on the right, hence the number of
‘a’s and ‘b’s must be equal.

Example 33 (A context-free grammar for L = {anbn | n ≥ 0}).

(1) S → a S b
(2) S → ε

DEFINITION 15. The class of languages that can be generated by context-free grammars
is the class of context-free languages.

The class of context-free languages properly contains the regular languages:
given some finite state automaton which generates some language L, it is always
possible to construct a context-free grammar whose language is L. We conclude
this section with a discussion of converting automata to context-free grammars.

Let A = 〈Q, q0, δ, F〉 be a deterministic finite state automaton with no ε-moves
over the alphabet Σ . The grammar we define to simulate A is G = 〈V, Σ , P, S〉,
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where the alphabet Σ is that of the automaton, and where the set of non-terminals,
V, is the set Q of the automaton states. The idea is that a single (immediate) deriva-
tion step with the grammar simulates a single arc traversal with the automaton.
Since automata states are simulated by grammar non-terminals, it is reasonable to
simulate the initial state by the start symbol, and hence the start symbol S is q0.
What is left, of course, are the grammar rules. These come in two varieties: first,
for every automaton arc δ(q, a) = q′ we stipulate a rule q → a q′. Then, for every
final state qf ∈ F, we add the rule qf → ε.

Example 34 (Simulating a finite state automaton by a grammar). Consider the automa-
ton 〈Q, q0, δ, F〉 depicted below, where Q = {q0, q1, q2, q3}, F = {q3}, and δ is
{〈q0, m, q1〉, 〈q1, e, q2〉, 〈q2, o, q2〉, 〈q2, w, q3〉, 〈q0, w, q2〉}:

q0 q1 q2 q3
m e

o

w

w

The grammar G=〈V, Σ , P, S〉 which simulates this automaton has V={q0, q1,
q2, q3}, S = q0, and the set of rules:

(1) q0→m q1
(2) q1→ e q2
(3) q2→ o q2
(4) q2→w q3
(5) q0→w q2
(6) q3→ ε

The string meoow, for example, is generated by the automaton by walking along
the path q0 − q1 − q2 − q2 − q2 − q3. The same string is generated by the grammar
with the derivation

〈q0〉 1⇒ 〈mq1〉 2⇒ 〈meq2〉 3⇒ 〈meoq2〉 3⇒ 〈meooq2〉 4⇒ 〈meoowq3〉 6⇒ 〈meoow〉
Since every regular language is also a context-free language, and since we have

shown a context-free language that is not regular, we conclude that the class of
regular languages is properly contained within the class of context-free languages.

Observing the grammar of Example 34, a certain property of the rules stands
out: the body of each of the rules either consists of a terminal followed by a
non-terminal or is empty. This is a special case of what are known as right-
linear grammars. In a right-linear grammar, the body of each rule consists of a
(possibly empty) sequence of terminal symbols, optionally followed by a sin-
gle non-terminal symbol. Most importantly, no rule exists whose body contains
more than one non-terminal; and if a non-terminal occurs in the body, it is
in the final position. Right-linear grammars are a restricted variant of context-
free grammars, and it can be shown that they generate all and only the regular
languages.
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5.6 Formal properties of context-free languages
Context-free languages are more expressive than regular languages; this addi-
tional expressive power comes with a price: given an arbitrary context-free
grammar G and some string w, determining whether w ∈ L(G) takes time pro-
portional to the cube of the length of w, O(|w|3) (in the worst case). In addition,
context-free languages are not closed under some of the operations that the regular
languages are closed under.

It should be fairly easy to see that context-free languages are closed under union.
Given two context-free grammars G1 = 〈V1, Σ1, P1, S1〉 and G2 = 〈V2, Σ2, P2, S2〉,
a grammar G = 〈V, Σ , P, S〉 whose language is L(G1) ∪ L(G2) can be constructed
as follows: the alphabet Σ is the union of Σ1 and Σ2, the non-terminal set V is a
union of V1 and V2, plus a new symbol S, which is the start symbol of G. Then,
the rules of G are just the union of the rules of G1 and G2, with two additional
rules: S → S1 and S → S2, where S1 and S2 are the start symbols of G1 and G2
respectively. Clearly, every derivation in G1 can be simulated by a derivation in
G using the same rules exactly, starting with the rule S → S1, and similarly for
derivations in G2. Also, since S is a new symbol, no other derivations in G are
possible. Therefore L(G) = L(G1) ∪ L(G2).

A similar idea can be used to show that the context-free languages are closed
under concatenation: here we only need one additional rule, namely S → S1 S2,
and the rest of the construction is identical. Any derivation in G will “first” derive
a string of G1 (through S 1) and then a string of G2 (through S 2). To show clo-
sure under the Kleene-closure operation, use a similar construction with the added
rules S → ε and S → S S1.

However, it is possible to show that the class of context-free languages is
not closed under intersection. That is, if L1 and L2 are context-free languages,
then it is not guaranteed that L1 ∩ L2 is context-free as well. From this fact
it follows that context-free languages are not closed under complementation
either. While context-free languages are not closed under intersection, they are
closed under intersection with regular languages: if L is a context-free lan-
guage and R is a regular language, then it is guaranteed that L ∩ R is context-
free.

In the previous section we have shown a correspondence between two spec-
ification formalisms for regular languages: regular expressions and finite state
automata. For context-free languages, we focused on a declarative formalism,
namely context-free grammars, but they, too, can be specified using a computa-
tional model. This model is called push-down automata, and it consists of finite
state automata augmented with unbounded memory in the form of a stack. Com-
putations can use the stack to store and retrieve information: each transition
can either push a symbol (taken from a special alphabet) onto the top of the
stack, or pop one element off the top of the stack. A computation is success-
ful if it ends in a final state with an empty stack. It can be shown that the class
of languages defined by push-down automata is exactly the class of context-free
languages.
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5.7 Normal forms
The general definition of context-free grammars stipulates that the body of a rule
may consist of any sequence of terminal and non-terminal symbols. However, it is
possible to restrict the form of the rules without affecting the generative capacity
of the formalism. Such restrictions are known as normal forms and are the topic of
this section.

The best-known normal form is the Chomsky normal form (CNF): under this
definition, rules are restricted to be of either of two forms. The body of any rule in
a grammar may consist either of a single terminal symbol, or of exactly two non-
terminal symbols (as a special case, empty bodies are also allowed). For example,
the rules D → the and NP → D N can be included in a CNF grammar, but the
rule S → a S b cannot.

Unlike the right-linear grammars defined in Section 5.5, which can only gen-
erate regular languages, CNF grammars are equivalent in their weak generative
capacity to general context-free grammars: it can be proven that for every context-
free language L there exists a CNF grammar G such that L = L(G). In other words,
CNF grammars can generate all the context-free languages.

The utility of normal forms is in their simplicity. When some property of context-
free languages has to be proven, it is sometimes much simpler to prove it for
the restricted version of the formalism (e.g., for CNF grammars only), because
the result can then extend to the entire class of languages. Similarly, processing
normal-form grammars may be simpler than processing the general class of gram-
mars. Thus, the first parsing algorithms for context-free grammars were limited
to grammars in CNF. In natural language grammars, a normal form can embody
the distinction between “real” grammar rules and the lexicon; a commonly used
normal form defines grammar rules to have either a single terminal symbol or any
sequence of zero or more non-terminal symbols in their body (notice that this is a
relaxation of CNF).

6 The Chomsky Hierarchy

6.1 A hierarchy of language classes
We focus in this section on grammars as formalisms which denote languages. We
have seen two types of grammars: context-free grammars, which generate the class
of context-free languages; and right-linear grammars, which generate the class of
regular languages. Right-linear grammars are a special case of context-free gram-
mars, where additional constraints are imposed on the form of the rules. More
generally, constraining the form of the rules can constrain the expressive power
of the formalism. Similarly, more freedom in the form of the rules can extend the
expressiveness of the formalism.

One way to achieve this is to allow more than a single non-terminal symbol
in the head of the rules or, in other words, restrict the application of rules to a
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specified context. In context-free grammars, a rule can be applied during a deriva-
tion whenever its head, A, is an element in a form. In the extended formalism such
a derivation is allowed only if the context of A in the form, that is, A’s neighbors to
the right and left, are as specified in the rule. Due to this reference to context, this
formalism is known as context-sensitive grammars. A rule in a context-sensitive
grammar has the form α1 A α2→ α1βα2, where α1, α2, and β are all (possibly
empty) sequences of terminal and non-terminal symbols. The other components
of context-sensitive grammars are as in context-free grammars.

As usual, the class of languages that can be generated by context-sensitive gram-
mars is called the context-sensitive languages. Considering that every context-free
grammar is a special case of context-sensitive grammars (with an empty con-
text), it should be clear that every context-free language is also context-sensitive
or, in other words, that the context-free languages are contained in the set of the
context-sensitive ones. As it turns out, this containment is proper, and there are
context-sensitive languages that are not context-free.

This establishes a hierarchy of classes of languages: the regular languages are
properly contained in the context-free languages, which are properly contained
in the context-sensitive languages. These, in turn, are known to be properly con-
tained in the set of languages generated by the so-called unrestricted or general
phrase-structure grammars (this set is called the recursively enumerable languages).
Each of the language classes in this hierarchy is associated with a computational
model: FSA and push-down automata for the regular and context-free languages
respectively; linear bounded Turing machines for the context-sensitive languages;
and Turing machines for the recursively enumerable languages.

This hierarchy of language classes is called the Chomsky hierarchy of languages,
and is schematically depicted in Figure 1.1.

6.2 The location of natural languages in the hierarchy
The Chomsky hierarchy of languages reflects a certain order of complexity: in
some sense, the lower the language class is in the hierarchy, the simpler are its
possible constructions. Furthermore, lower language classes allow for more effi-
cient processing (in particular, the recognition problem is tractable for regular and
context-free languages, but not for higher classes). If formal grammars are used
to express the structure of natural languages, then we must know the location of
these languages in the hierarchy.

Chomsky presents a theorem that says “English is not a regular language” (1957:
21); as for context-free languages, he says “I do not know whether or not English
is itself literally outside the range of such analyses” (1957: 34). For many years,
however, it was well accepted that natural languages were beyond the expres-
sive power of context-free grammars. This was only proven in the 1980s, when
two natural languages (Dutch and a dialect of Swiss German) were shown to
be trans-context-free (that is, beyond the expressive power of context-free gram-
mars). Still, the constructions in natural languages that necessitate more than
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Phrase-structure
languages

Context-sensitive
languages

Context-free
languages

Regular
languages

Figure 1.1 Chomsky’s hierarchy of languages.

context-free power are few and very specific. (Most of these constructions boil
down to patterns of the form anbmcndm, known as cross-serial dependencies; with
some mathematical machinery, based mostly on closure properties of the context-
free languages, it can be proven that languages that include such patterns cannot
be context-free.) This motivated the definition of the class of mildly context-sensitive
languages, which we discuss in Section 7.

6.3 Weak and strong generative capacity
So far we have only looked at grammars as generating sets of strings (i.e., lan-
guages), and ignored the structures that grammars impose on the strings in their
languages. In other words, when we say that English is not a regular language
we mean that no regular expression exists whose denotation is the set of all and
only the sentences of English. Similarly, when a claim is made that some natu-
ral language, say Dutch, is not context-free, it should be read as saying that no
context-free grammar exists whose language is Dutch. Such claims are propo-
sitions about the weak generative capacity of the formalisms involved: the weak
generative capacity of regular expressions is insufficient for generating English;
the weak generative capacity of context-free languages is insufficient for Dutch.
Where natural languages are concerned, however, weak generative capacity might



“9781405155816_4_001” — 2012/5/22 — 19:11 — page 40 — #32

40 Shuly Wintner

not correctly characterize the relationship between a formalism (such as regular
expressions or context-free grammars) and a language (such as English or Dutch).
This is because one expects the formalism not only to be able to generate the strings
in a language, but also to assign them “correct” structures.

In the case of context-free grammars, the structure assigned to strings is a
derivation tree. Other linguistic formalisms may assign other kinds of objects to
their sentences. We say that the strong generative capacity of some formalism is
sufficient to generate some language if the formalism can (weakly) generate all
the strings in the language, and also to assign them the “correct” structures. Unlike
weak generative capacity, which is a properly defined mathematical notion, strong
generative capacity is poorly defined, because no accepted definition of the
“correct” structure for some string in some language exists.

7 Mildly Context-Sensitive Languages

When it was finally proven that context-free grammars are not even weakly ade-
quate as models of natural languages, research focused on “mild” extensions of
the class of context-free languages. In a seminal work, Joshi (1985) coined the term
mildly context-sensitive languages, which is loosely defined as a class of languages
that:

(1) properly contains all the context-free languages;
(2) can be parsed in polynomial time;
(3) can properly account for the constructions in natural languages that context-

free languages fail to account for, such as cross-serial dependencies; and
(4) has the linear-growth property (this is a formal property that we ignore here).

One formalism that complies with these specifications (and which motivated
their design) is tree adjoining grammars (TAGs). Motivated by linguistic consider-
ations, TAGs extend the scope of locality in which linguistic constraints can be
expressed. The elementary building blocks of the formalism are trees. Whereas
context-free grammar rules enable one to express constraints among the mother in
a local tree and its immediate daughters, the elementary trees of TAG facilitate the
expression of constraints between arbitrarily distant nodes, as long as they are part
of the same elementary tree. Two operations, adjunction and substitution, construct
larger trees from smaller ones, so that the basic operations that take place dur-
ing derivations are not limited to string concatenation. Crucially, these operations
facilitate nesting of one tree within another, resulting in extended expressiveness.

The class of languages generated by tree adjoining grammars is naturally called
the tree adjoining languages. It contains the context-free languages, and several
trans-context-free ones, such as the language {anbmcndm | n, m ≥ 0}. As usual, the
added expressiveness comes with a price, and determining membership of a string
w in a language generated by some TAG can only be done in time proportional
to |w|6.
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Several linguistic formalisms were proposed as adequate for expressing the
class of natural languages. Noteworthy among them are three formalisms: head
grammars, linear indexed grammars, and combinatory categorial grammars. All three
were developed independently with natural languages as their main motivation;
and all three were proven to be (weakly) equivalent to TAG. The class of tree
adjoining languages, therefore, may be just the correct formal class in which all
natural languages reside.

8 Further Reading

Much of the material presented in this chapter can be found in introductory text-
books on formal language theory. Hopcroft and Ullman (1979, chapter 1) provide
a formal presentation of formal language theory; just as rigorous, but with an
eye to linguistic uses and applications, is the presentation of Partee et al. (1990,
chapters 1–3). For the ultimate reference, consult the Handbook of Formal Languages
(Rozenberg & Salomaa 1997).

A very good formal exposition of regular languages and the computing machin-
ery associated with them is given by Hopcroft and Ullman (1979, chapters 2–3).
Another useful source is Partee et al. (1990, chapter 17). Theorem 1 is due to Kleene
(1956); Theorem 2 is due to Rabbin and Scott (1959); Theorem 3 is a corollary of the
Myhil–Nerode theorem (Nerode 1958). The pumping lemma for regular languages
is due to Bar-Hillel et al. (1961).

For natural language applications of finite state technology refer to Roche and
Schabes (1997a), which is a collection of papers ranging from mathematical prop-
erties of finite state machinery to linguistic modeling using them. The introduction
(Roche & Schabes 1997b) can be particularly useful, as will be Karttunen (1991).
Kaplan and Kay (1994) is a classic work that sets the very basics of finite state
phonology, referring to automata, transducers, and two-level rules. As an example
of an extended regular expression language, with an abundance of applications to
natural language processing, see Beesley and Karttunen (2003). Finally, Karttunen
et al. (1996) is a fairly easy paper that relates regular expressions and relations
to finite automata and transducers, and exemplifies their use in several language
engineering applications.

Context-free grammars and languages are discussed by Hopcroft and Ullman
(1979, chapters 4, 6) and Partee et al. (1990, chapter 18). The correspondence
between regular languages and right-linear grammars is due to Chomsky and
Miller (1958). A cubic-time parsing algorithm for context-free languages was first
proposed by Kasami (1965); see also Younger (1967). Push-down automata were
introduced by Oettinger (1961); see also Schützenberger (1963). Chomsky (1962)
proved that they were equivalent to context-free grammars.

A linguistic formalism that is based on the ability of context-free grammars to
provide adequate analyses for natural languages is generalized phrase-structure
grammars, or GPSGs (Gazdar et al., 1985).
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The Chomsky hierarchy of languages is due to Chomsky (1956, 1959). The
location of the natural languages in this hierarchy is discussed in several
papers, of which the most readable, enlightening, and amusing is Pullum and
Gazdar (1982). Several other works discussing the non-context-freeness of nat-
ural languages are collected in Part III of Savitch et al. (1987). Rounds et al.
(1987) inquire into the relations between formal language theory and linguistic
theory, in particular referring to the distinction between weak and strong gen-
erative capacity. Works showing that natural languages cannot be described by
context-free grammars include Bresnan et al. (1982) (Dutch), Shieber (1985) (Swiss
German), and Manaster-Ramer (1987) (Dutch). Miller (1999) is dedicated to gener-
ative capacity of linguistic formalisms, where strong generative capacity is defined
as the model theoretic semantics of a formalism.

Tree adjoining grammars were introduced by Joshi et al. (1975) and are dis-
cussed in several subsequent papers Joshi (1985; 1987; 2003). A polynomial-time
parsing algorithm for TAG is given by Vijay-Shanker and Weir (1993) and Satta
(1994). The three formalisms that are equivalent to TAG are head grammars
(Pollard 1984), linear-indexed grammars (Gazdar 1988), and combinatory cate-
gorial grammars (Steedman 2000); they were proven equivalent by Vijay-Shanker
and Weir (1994).
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2 Computational Complexity
in Natural Language

IAN PRATT-HARTMANN

We have become so used to viewing natural language in computational terms that
we need occasionally to remind ourselves of the methodological commitment this
view entails. That commitment is this: we assume that to understand linguistic
tasks – tasks such as recognizing sentences, determining their structure, extracting
their meaning, and manipulating the information they contain – is to discover the
algorithms required to perform those tasks, and to investigate their computational
properties. To be sure, the physical realization of the corresponding processes in
humans is a legitimate study too, but one from which the computational inves-
tigation of language may be pursued in splendid isolation. Complexity theory is
the mathematical study of the resources – both in time and space – required to
perform computational tasks. What bounds can we place – from above or below –
on the number of steps taken to compute such-and-such a function, or a function
belonging to such-and-such a class? What bounds can we place on the amount
of memory required? It is therefore not surprising that, in the study of natural
language, complexity-theoretic issues abound.

Since any computational task can be the object of complexity-theoretic investiga-
tion, it would be hopeless even to attempt a complete survey of complexity theory
in the study of natural language. We focus therefore on a selection of topics in
natural language where there has been a particular accumulation of complexity-
theoretic results. Section 2 discusses parsing and recognition; Section 3 discusses
the computation of logical form; and Section 4 discusses the problem of determin-
ing logical relationships between sentences in natural language. But we begin with
a brief review of complexity theory itself.

1 A Brief Review of Complexity Theory

Any account of complexity theory rests on some model of computation. The most
widely used such model is the multi-tape Turing machine; and that is the model
we use here. Throughout this chapter, we employ standard notation for strings: if

The Handbook of Computational Linguistics and Natural Language Processing, First Edition.
Edited by Alexander Clark, Chris Fox and Shalom Lappin.
c© 2013 Blackwell Publishing Ltd except for editorial material and organization.
c© 2013 Alexander Clark, Chris Fox, and Shalom Lappin. Published 2013 by Blackwell Publishing Ltd.
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Σ is an alphabet (a finite, non-empty set of symbols), Σ∗ denotes the set of strings
(finite sequences of elements) over Σ . The length of any string σ is denoted |σ |;
the empty (zero-length) string is denoted ε; and the concatenation of strings σ and
τ is denoted στ . We follow standard practice in ignoring the difference between
elements of Σ and the corresponding one-element strings.

1.1 Turing machines and models of computation
Informally, a multi-tape Turing machine comprises a finite number of tapes, a finite
set of states, and an instruction table. The tapes may be thought of as the machine’s
memory, the states as the line numbers of its program, and the instruction table as
the instructions of that program. The tapes are numbered consecutively from 1 to
(say) K ≥ 2; Tape 1 is referred to as the input tape and Tape K as the output tape;
all other tapes are work-tapes (Figure 2.1). Each tape consists of a one-way infinite
sequence of squares (i.e., there is a leftmost square, but no rightmost square), and
is scanned by its own tape-head, which is always located over one of these squares.
Every square contains a unique symbol, which is either a member of some non-
empty, finite set Σ , called the alphabet of the Turing machine, or one of the special
symbols �� (read: ‘blank’) or � (read: ‘start’).

The set of states, Q, is assumed to contain a pair of distinguished states: the
initial state q0 and the halting state q1; otherwise, states have no internal structure.
The instruction table of the Turing machine is a finite set T of quintuples

(1) 〈p, s̄, q, t̄, d̄〉,

where p and q are states (i.e., elements of Q), s̄ = (s1, . . . , sK) and t̄ = (t1, . . . , tK)

are K-tuples of symbols (i.e., elements of Σ ∪ {��, �}), and d̄ = (d1, . . . , dK) is a K-
tuple whose elements are the special tags left, right, and stay. Informally, the
Turing machine interprets the instruction (1) as follows:

(2)

If the current state is p, and, for each k (1 ≤ k ≤ K), the square currently
being scanned on Tape k contains the symbol sk, then set the new state to be
q, and, for each k (1 ≤ k ≤ K) do the following: write tk on the square cur-
rently being scanned on Tape k, and place Tape k’s head either one square
left, or one square right, or in its current location, as directed by dk.

We can make Tape 1 a read-only tape by insisting that it is never altered (i.e., that
t1 = s1); likewise, we can make Tape K a write-only tape by insisting that its head
never moves to the left. The symbol � is used to indicate the extreme left of a tape:
we insist that, if any tape-head is over this symbol, it never receives an instruction
to move left; moreover, � is never written or overwritten. The halting state q1
indicates that the computation is over, and we insist that no instruction can be
executed in this state. (It is easy to specify these conditions formally.) Technically
speaking, a Turing machine is simply a tuple M = 〈K, Σ , Q, q0, q1, T〉 conforming
to the above specifications.
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s1 sm �� Tape 1

Tape 2�

...

� t1 tl �� Tape K

T

Figure 2.1 Architecture of a multi-tape Turing machine.

Turing machines perform computations, which proceed in discrete time-steps. At
each time-step, the machine is in a specific configuration, consisting of its current
state q, the position of the tape-head for each of the tapes, and the contents of each
of the tapes. The initial configuration is as follows: the current state is q0 (the initial
state), with each tape-head positioned over the leftmost square of the tape; Tape 0
has the symbol � in the leftmost square, followed by a string σ ∈ Σ∗, called the
input of the computation, and is otherwise filled with ��; all other tapes have the
symbol � in the leftmost square, and are otherwise filled with ��. At each time-step,
an instruction from T of the form (1) is executed as specified in (2), resulting in the
next configuration. The computation halts when (and only when) no instruction
in T can be executed. Note that, if the halting state q1 is reached, the computation
necessarily halts at that point. A run is a (finite or infinite) sequence of configura-
tions obtained in this way; if the run is finite, so that the Turing machine halts, we
call it a terminating run. Given a terminating run, the output of the computation
is the string of Σ∗ which, in the final configuration, is written on the output tape
(strictly) between the � and the first ��. Notice that, in general, a Turing machine
may be able to execute more than one instruction at any given time. In that case,
we should think of the choice being made freely by the machine. We call a Turing
machine deterministic just in case, for any state p and any K-tuple of symbols s̄, T
contains at most one instruction of the form (1) starting with the pair 〈p, s̄〉 (i.e., the
machine never has a choice as to which instruction to perform). A non-deterministic
Turing machine is just another term for a Turing machine.

DEFINITION 1 (COMPUTABLE). Let M be a deterministic Turing machine over alphabet
Σ . For any string σ ∈ Σ∗, either M halts on input σ , or it does not. In the former case, M
will output a definite string τ ∈ Σ∗, and we can define the partial function fM : Σ∗ → Σ∗
as follows.

fM(σ ) =
{

τ if M halts on input σ

undefined otherwise
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We say that M computes the function fM. A partial function f : Σ∗→Σ∗ is Turing
computable (or just: computable) if it is computed by some deterministic Turing
machine.

The instruction table of a Turing machine is fixed. Thus, a Turing machine is not
a model of a computing machine in the sense we normally imagine, but rather of
a computer program: there is only one thing it computes. On the other hand, since
Turing machines are, formally, just tuples of finite objects, any Turing machine
M can easily be coded as a string σ ′M over a suitable alphabet Σ ′, and that string
can be input to another Turing machine, say M′. It can be shown that there exists a
universal Turing machine U, which is able to simulate any Turing machine M over an
alphabet Σ in the following sense: for any string, σ ∈ Σ∗, M has a non-terminating
run on input σ if and only if U has a terminating run on input σ ′Mσ ; moreover, in
case of termination, the output of M′ is the same as the output of M. Any such
Turing machine U is a model of a computing machine in the sense we normally
imagine: it is able to execute an arbitrary ‘program’ σ ′M on arbitrary ‘data’ σ . Given
such a coding scheme, consider the halting function, H : (Σ ′)∗ → {
,⊥} defined as

H(σ ′)=
{

 if σ ′ encodes a Turing machine M that has a terminating run on input ε

⊥ otherwise

This function is clearly well defined, and indeed total. Perhaps the most funda-
mental fact in computability theory is due to Turing (1936–7):

THEOREM 1 (TURING). The halting function is not computable.

Definition 1 applies to functions f : Σ∗ →Σ∗ for any alphabet Σ . However,
this definition can be extended to functions with other countable domains and
ranges, relative to some coding of the relevant inputs and outputs as strings over
an alphabet. Consider for instance the familiar coding of natural numbers as bit
strings (elements of {0, 1}∗). For n ∈ N, denote by n̄ the standard binary represen-
tation of n (without leading zeros); and for s ∈ {0, 1}∗, denote by #s the natural
number represented by s. If f : N → N is a function, we consider f computable if
the function g : {0, 1}∗ → {0, 1}∗ defined by

g(s) = ( f (#s))

is computable in the sense of Definition 1. Computability of functions with other
domains and ranges – e.g., rational numbers, lists, graphs, etc. – is understood sim-
ilarly. Technically, this extended notion of computability is relative to the coding
scheme employed. In practice, however, all reasonable coding schemes usually
yield the same computability (and complexity) results; if so, it is legitimate to
speak of such functions as being computable or non-computable, leaving the
operative coding scheme implicit.

The architecture of Turing machines given above is, in all essential details, that
set out in Turing (1936–7). We have followed more recent practice in distinguish-
ing input, output and work-tapes (Turing’s machine had a single tape) to make it
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a little easier to talk about space-bounded computations. But this makes no dif-
ference to any of the results reported here. The thesis that Turing computability
captures our pre-theoretic notion of computability is generally referred to as the
Church–Turing thesis. It is important to appreciate that this thesis does not rest on
the existence of universal Turing machines, or indeed on any purely mathematical
fact. Methodologically, the apparatus introduced above is an exercise in concep-
tual analysis: the proposed replacement of an informally understood notion with
a rigorous definition. Historically, several competing analyses of computability
were proposed at more or less the same time, most notably Gödel’s notion of
recursive function and Church’s λ-calculus. All three notions in effect coincide, how-
ever; so there is general consensus about the formal model presented here. For an
accessible modern treatment, see Papadimitriou (1994, Chapter 2).

The fundamental goal of complexity theory is to analyze the resources, in either
time or space, required to perform computational tasks. The first step is to measure
the computational resources required by particular algorithms.

DEFINITION 2. Let M be a Turing machine with alphabet Σ , and let g : N → N be a
function. We say M runs in time g if, for all but finitely many strings σ ∈ Σ∗, any run
of M on input σ halts within at most g(|σ |) steps. Similarly, M runs in space g if, for all
but finitely many strings σ ∈ Σ∗, any run of M on input σ uses at most g(|σ |) squares
on any of its work-tapes.

Allowing M to break the bound g in finitely many cases avoids problems caused by
zero-length inputs and other trivial anomalies. Notice also the asymmetry in the
definitions of time and space complexity: because measures of space complexity
include only the work-tapes (and so exclude the input and output tapes), they can
be sublinear. For time complexity, sublinear bounds make little sense, because they
do not give the machine the opportunity to read its input.

Unfortunately, Definition 2 is too fragile to provide a meaningful measure of
algorithmic complexity. Suppose M is a deterministic Turing machine computing
some function in time g, and let c be a positive number. Provided g is mod-
erately fast-growing (say, faster than linear growth), it is routine to construct
another deterministic Turing machine M′ – perhaps with more tapes or more
states or a larger alphabet – that computes the same function in time cg(n). That
is: we can always speed up M by a linear factor! Since M and M′ do not rep-
resent interestingly different algorithms, the statement that a Turing machine
runs in time – say – 3n2 + n + 4 as opposed to 14n2 + 87n + 11 is, from an
algorithmic point of view, not significant. Similar remarks also apply to space
bounds.

DEFINITION 3. Let M be a Turing machine, and G a set of functions from N to N. We say
that M runs in time G if, for some g ∈ G, M runs in time g. Similarly, we say that M
runs in space G if, for some g ∈ G, M runs in space g.

In particular, the following classes of functions suggest themselves.
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DEFINITION 4 (O-NOTATION). Let g : Nk → N be a function. Denote by O( g) the set
of functions

O( g) = {g′ : Nk → N | there exist c ∈ N, n′1, . . . , n′k ∈ N s.t.

for all n1 > n′1 . . . for all nk > n′k, g′(n1, . . . , nk) ≤ cg(n1, . . . , nk)
}

Informally, O( g) is the class of functions which are eventually dominated by some
positive multiple of g. Combining Definitions 3 and 4, it makes sense to say, for
example, that a given Turing machine runs in time (or space) O(n2), or O(n3),
or O(2n). And this sort of complexity measure, it turns out, is robust under the
expansions of computational resources considered above. For example, it can be
shown that, for any k > 0, there is a function that can be computed by a deter-
ministic Turing machine running in time O(nk+1) which cannot be computed by
any deterministic Turing machine running in time O(nk); and similarly for space
bounds. (The precise statement of these theorems, known as separation theorems,
is somewhat intricate; see Kozen, 2006, Lecture 3, or Papadimitriou, 1994: 143ff.)
O-notation has the further advantage of permitting a useful degree of informality
when analyzing the complexity of an algorithm, since a pseudo-code description
of that algorithm, of the sort standardly found in computing texts, often suffices
to show that it will run in time or space O( g) (for some function g) without our
having first to compile that description into a Turing machine. Finally, a word
of caution. Knowing that a Turing machine (or algorithm) has time complexity
O( g) at best imposes a bound on how rapidly the cost of computation grows
with the size of the input. That is, the complexity measures in question are asymp-
totic. In many cases, algorithms with suboptimal asymptotic complexity measures
perform best in practice.

1.2 Decision problems
So far, we have discussed complexity measures for particular algorithms, under-
stood as deterministic Turing machines. We now develop this idea in two crucial –
though logically quite separate – ways.

The first development extends Definition 1 to non-deterministic computation.
To do this, we first restrict attention to functions whose range contains just two
elements – we conventionally employ 
 and ⊥ – representing ‘YES’ and ‘NO’
respectively. A function f : A→ {
,⊥}, where A is a countable set, is called a deci-
sion problem, or simply a problem. While decision problems may initially seem of
limited practical interest, they play a central role in complexity theory. Moreover,
the restriction to decision problems is less severe than might at first appear: the
complexity of many functions can often be usefully characterized in terms of the
complexity of closely related decision problems.

Now, any decision problem f : A → {
,⊥} can alternatively be regarded as a
subset of A – namely, the subset {a ∈ A | f (a) = 
}. In particular, if A = Σ∗ for some
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alphabet Σ (or if the encoding of A in Σ∗ is obvious), a decision problem defined
on A is, in effect, a set of strings over Σ , or, in the parlance of formal language
theory, a language over Σ . Conversely, of course, any language L ⊆ Σ∗ may be
regarded as a decision problem f : Σ∗ → {
,⊥} given by:

f (σ ) =
{

 if σ ∈ L
⊥ otherwise

The observation that decision problems and languages are essentially the same
thing prompts the following definition.

DEFINITION 5. Let M be a Turing machine over the alphabet Σ , and suppose without
loss of generality that Σ contains the symbol 
. We say that M accepts a string σ ∈ Σ∗
if there exists a terminating run of M with input σ and output 
. The language L ⊆ Σ∗
recognized by M, denoted L(M), is the set of strings accepted by M.

It is important to bear in mind that, in Definition 5, M can be non-deterministic. That
is: L(M) is the set of inputs for which M may yield the output 
. (It is sometimes
convenient to imagine a benign helper guiding M to make the ‘right’ choice of
instructions required to accept a string σ ∈ L.) Equally important is that, if σ �∈ L,
there is no requirement for M to produce any particular output (as long as it is not

, of course), or indeed to halt at all.

The case where M halts on every input is of particular interest, however:

DEFINITION 6 (DECIDABLE). Let L be a language. We call L decidable if it is recognized
by a Turing machine guaranteed to halt on every input.

It is routine to show that any decidable language is in fact recognized by a deter-
ministic Turing machine that halts on every input. Furthermore, that machine can
easily be modified so as always to produce one of the two outputs 
, ⊥. Thus, a
decision problem f : Σ∗ → {
,⊥} is a computable function, in the sense of Defi-
nition 1, just in case the corresponding language L = {σ | f (σ ) = 
} is decidable,
in the sense of Definition 6. Henceforth, then, we shall identify decision problems
and languages, employing whichever term is most appropriate in context.

We may think of Definition 5 as a generalization of Definition 1 to the case of
non-deterministic computation. The significance of this generalization is that, while
deterministic and non-deterministic Turing machines recognize the same class of
languages, they may not in general do so within the same computational bounds,
a possibility which plays a central role in complexity theory.

We can generalize the above observations on linear speedup to the case of non-
deterministic computation for decision problems. We give a reasonably precise
version here:

THEOREM 2. Let L be a language over some alphabet, let g : N → N and h : N → N

be functions, let c ≥ 1, and suppose g(n) ≥ n + 1, and h(n) ≥ log n. If L is recognized
by some Turing machine running in time cg(n), then it is recognized by some Turing
machine running in time g(n). If L is recognized by some Turing machine running in
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space ch(n), then it is recognized by some Turing machine running in space h(n). The
previous statements continue to hold when “Turing machine” is replaced throughout by
“deterministic Turing machine.”

Now for the second development in our analysis of complexity. So far, we
have provided measures of the time and space requirements of particular Turing
machines (or, by extension, and using O-notation, of particular algorithms). But
what primarily interests us in complexity theory are the time and space require-
ments of a maximally efficient Turing machine for computing a particular function or,
more specifically, solving a particular decision problem. Recalling the equivalence
between decision problems and languages discussed above, we define:

DEFINITION 7. Let L be a language over some alphabet, and let G be a set of functions
from N to N. We say that L is in TIME(G) (or SPACE(G)) if there exists a deterministic
Turing machine M recognizing L, such that M runs in time (respectively, space) G.

Classes of languages of the form TIME(G) or SPACE(G) are referred to as (deter-
ministic) complexity classes. To avoid notational clutter, if g is a function from N

to N, we write TIME( g) instead of TIME({g}); and similarly for other complexity
classes.

So far, we have encountered classes of functions of the form O( g) for various g.
When analyzing the complexity of languages (rather than of specific algorithms),
however, larger classes of functions are typically more useful.

DEFINITION 8. Let P, E, and Ek ( for k > 1) be the sets of functions from N to N defined
as follows:

P = {nc | c > 0
}

E =
{

2nc | c > 0
}

E2 =
{

22nc | c > 0
}

Ek =
{

2
2···2

}nc
k times | c > 0

}

A function g : N→ N which is in Ek for some k is said to be elementary.

Non-elementary functions grow rapidly. However, it is easy to define a com-
putable function which is non-elementary:

f (n) = 2 2···2
}

n times
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Combining Definitions 7 and 8, we obtain complexity classes which are often
known under the following, more pronounceable names:

LOGSPACE= SPACE(log n)

PTIME=TIME(P) PSPACE= SPACE(P)

EXPTIME=TIME(E) EXPSPACE= SPACE(E)

k-EXPTIME=TIME(Ek) k-EXPSPACE= SPACE(Ek)

Thus, PTIME is the class of languages recognizable by a deterministic Turing
machine in polynomial time, EXPSPACE, the class of languages recognizable by
a deterministic Turing machine in exponential space, and so on. In some texts,
LOGSPACE is referred to as L, PTIME as P, and EXPTIME as EXP. Notice, inciden-
tally, that there is no point in defining, say, G = {log(nc) | c > 0} and then setting
LOGSPACE = SPACE(G), since, by Theorem 2, linear factors may be ignored.
Finally, if L is not recognizable by any Turing machine running in time bounded
by an elementary function, then L is said to have non-elementary complexity. We
shall encounter examples of decidable, but non-elementary, problems below.

Definition 7 may be adapted directly to deal with non-deterministic
computation.

DEFINITION 9. Let L be a language over some alphabet, and let G be a set of functions
from N to N. We say that L is in NTIME(G) (or NSPACE(G)) if there exists a Turing
machine M recognizing L, such that M runs in time (respectively, space) G.

Classes of languages of the form NTIME(G) or NSPACE(G) are referred to as (non-
deterministic) complexity classes.

Combining Definitions 8 and 9, we obtain complexity classes which are often
known under the following, more pronounceable names:

(3)

NLOGSPACE=NSPACE(log n)

NPTIME=NTIME(P) NPSPACE=NSPACE(P)

NEXPTIME=NTIME(E) NEXPSPACE=NSPACE(E)

Nk-EXPTIME=NTIME(Ek) Nk-EXPSPACE=NSPACE(Ek)

In some texts, NLOGSPACE is referred to as NL, NPTIME as NP, and NEXPTIME
as NEXP.

Notice the asymmetry involved in the notion of non-deterministic computation:
M recognizes L ⊆ Σ∗ just in case, for each string σ ∈ Σ∗, σ ∈ L if and only if there
exists a successfully terminating run of M (i.e., a terminating run with output 
)
on input σ – that is to say, σ ∈ Σ∗ \ L if and only if all runs of M on input σ fail to
halt successfully. This asymmetry prompts us to define the complement classes as
follows.

DEFINITION 10. If C is a class of languages, then Co-C is the class of languages L such
that Σ∗ \ L is in C, where Σ is the alphabet of L.

It is easy to see that, for any interesting class of functions G, TIME(G) = Co-
TIME(G) and SPACE(G) = Co-SPACE(G). For this reason, we never speak of
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Co-PTIME, Co-PSPACE, etc. The situation with non-deterministic complexity
classes is different, however. It is not known whether NPTIME = Co-NPTIME;
and similarly for many other classes of the form Co-NTIME(G). Indeed, such
complexity classes are regularly encountered. In particular, putting together
Definition 10, and the NTIME-classes listed in (3), we obtain the complexity
classes Co-NPTIME, Co-NEXPTIME, and Co-Nk-EXPTIME. (And similarly for the
corresponding space-complexity classes; but see Theorem 4.)

1.3 Relations between complexity classes
It is obvious from the above definitions that any language in TIME(G)

(or SPACE(G)) is non-deterministically recognizable within the same bounds.
Formally,

TIME(G) ⊆ NTIME(G) SPACE(G) ⊆ NSPACE(G)

A little less obviously, we see that:

NPTIME ⊆ EXPTIME NEXPTIME ⊆ 2-EXPTIME · · ·

Consider the first of these inclusions. If M non-deterministically recognizes L, and
p is a polynomial such that M is guaranteed to halt within time p(n) on input of
size n, the number of possible runs of M on inputs of this size is easily seen to be
bounded by 2q(n) for some polynomial q. But then a deterministic Turing machine
M′, simulating M, can check all of these runs in exponential time, outputting 
 if
any one of them halts successfully. Hence, NPTIME ⊆ EXPTIME. The inclusion
NEXPTIME ⊆ 2-EXPTIME follows analogously; and so on up the complexity hier-
archy. In fact, similar arguments establish the following more elaborate system of
inclusions.

(4)
PTIME ⊆ NPTIME ⊆ PSPACE ⊆

EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE ⊆
2-EXPTIME ⊆ 2-NEXPTIME · · ·

The following result establishes that, for classes of sufficiently ‘large’ functions,
non-determinism makes no difference to space complexity (Savitch 1970).

THEOREM 3 (SAVITCH). If g(n) ≥ log n, then NSPACE(g(n)) ⊆ SPACE((g(n))2)

In some statements of this theorem, certain technical conditions are imposed on
g; but see, e.g., Kozen (2006: 15–16). Since the classes of functions P, E, E2,
etc. are closed under squaring, we have NPSPACE = PSPACE, NEXPSPACE =
EXPSPACE, and so on. As an instant corollary, since these deterministic classes are
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equal to their complements, we have NPSPACE = Co-NPSPACE, NEXPSPACE =
Co-NEXPSPACE, and so on.

Care is required when applying the reasoning of the previous paragraph. Setting
g(n) = log n, Theorem 3 tells us that NLOGSPACE ⊆ SPACE((log n)2); however,
this is not sufficient to imply that NLOGSPACE⊆ LOGPSPACE. Nevertheless, the
following result establishes that equivalence under complementation continues to
hold even in this case (Immerman 1988).

THEOREM 4 (IMMERMAN–SZELEPCSÉNYI). If g(n) ≥ log n, then NSPACE(g(n)) =
Co-NSPACE(g(n))

In some statements of this theorem, certain technical conditions are imposed on
g; but again, see Kozen (2006: 22–4). As a special case, we have NSPACE(n) =
Co-NSPACE(n), which settled a long-standing conjecture in formal language the-
ory (see Section 2.3 below). As an instant corollary of Theorem 4, NLOGSPACE =
Co-NLOGSPACE.

Adding these ‘small’ complexity classes to the inclusions (4), we obtain

(5)
LOGSPACE ⊆ NLOGSPACE ⊆ PTIME ⊆ NPTIME ⊆

PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆
EXPSPACE ⊆ 2-EXPTIME ⊆ 2-NEXPTIME · · ·

1.4 Lower bounds
Notwithstanding the above caveats on the interpretation of asymptotic
complexity measures, saying that a language is in a complexity class C places
some kind of upper bound on the resources required to recognize it. But what of
lower bounds? What if we want to say that a language cannot be recognized within
certain time or space bounds? For the complexity classes introduced above, useful
lower-bound characterizations are indeed possible.

The basic idea is that of a reduction of one language (or decision problem) to
another. Let L1 and L2 be languages, perhaps over different alphabets Σ1 and Σ2.
Suppose that there exists a function g : Σ∗1 → Σ∗2 such that, for any string σ ∈ Σ∗1 ,
σ ∈ L1 if and only if g(σ ) ∈ L2. We may think of g as a means of ‘translating’ L1 into
L2: in particular, any Turing machine recognizing L2 can be modified to recognize
L1 by simply prepending the translation g. If the cost of this translation is small,
then we may regard L2 as being ‘at least as hard to recognize as’ L1.

DEFINITION 11 (REDUCTION). Let Σ1 and Σ2 be alphabets, and let Li be a language
over Σi (i = 1, 2). A reduction of L1 to L2 is a function g : Σ∗1 → Σ∗2 , such that g can
be computed by a (deterministic) Turing machine in space O(log n), and for all σ ∈ Σ∗1 ,
σ ∈ L1 if and only if g(σ ) ∈ L2; in that case, we say that L1 is reducible to L2. If, instead,
g can merely be computed in time O(nk) for some k, we call it a polynomial reduction,
and we say that L1 is polynomially reducible to L2.
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Let C be any of the complexity classes mentioned in (5), or the complement of any
of these classes. It can be shown that, if L2 is in C, and L1 is reducible to L2, then
L1 is in C. We say that C is ‘closed under reductions’. If C is any of the complexity
classes mentioned in (4), then C is, similarly, ‘closed under polynomial reductions.’

THEOREM 5. The relation of reducibility is transitive: if L1 is reducible to L2, and L2 to
L3, then L1 is reducible to L3.

We remark that Theorem 5 is not obvious (though its analogue in the case of
polynomial reducibility is) see, e.g., Papadimitriou (1994: 164).

Now we can give our characterization of lower complexity bounds.

DEFINITION 12 (HARDNESS AND COMPLETENESS). Let C be a complexity class. A
language L is said to be hard for C, or C-hard, if any language in C is reducible to
L; L is said to be complete for C, or C-complete, if L is C-hard and also in C. Addi-
tionally, L is said to be C-hard under polynomial reduction if any decision problem
in C is polynomially reducible to L; similarly for C-completeness under polynomial
reduction.

It follows from Theorem 5 that, if L1 is C-hard for some complexity class C, and L1
is reducible to L2, then L2 is C-hard. Similarly, mutatis mutandis, for hardness under
polynomial reductions. Notice that the notion of LOGSPACE-completeness is
uninteresting: any problem in LOGSPACE is by definition LOGSPACE-complete.
Under polynomial reductions, the notion of PTIME-completeness is similarly
uninteresting. Definition 12 reflects the fact that reducibility in logarithmic space
is taken to be the default in complexity theory. However, for most higher complex-
ity classes, it is generally easier and just as informative to work with reducibility
in polynomial time; and this is what is often done in practice. Hardness results,
in the sense of Definition 12, are sometimes referred to, for obvious reasons, as
‘lower complexity bounds.’ However, it is important not to be misled by this ter-
minology: for example, it is easy to show that there are PTIME-hard problems in
TIME(n); but TIME(n) is properly contained in PTIME!

Many natural problems (it is easier here to speak of problems rather than lan-
guages) can be shown to be complete for the complexity classes introduced above.
Here are three very well-known examples. In the context of propositional logic,
a literal is a proposition letter or a negated proposition letter; proposition letters
are said to be positive literals, their negations negative literals. A clause is a disjunc-
tion of literals; a clause is said to be Horn if it contains at most one positive literal.
Theorems 6–9 are among the most fundamental in complexity theory. For an acces-
sible treatment, see, e.g., Papadimitriou (1994: 171, 176, and 398 respectively).
Theorem 6 is due to Cook (1971).

THEOREM 6 (COOK). The problem of determining whether a given set of clauses is
satisfiable is NPTIME-complete.

THEOREM 7. The problem of determining whether a given set of Horn clauses is satisfiable
is PTIME-complete.


