SNART GRAD TECHNOLOGY AND APPLICATIONS

SMART GRID

SMART GRID TECHNOLOGY AND APPLICATIONS

Janaka Ekanayake Cardiff University, UK

Kithsiri Liyanage University of Peradeniya, Sri Lanka

Jianzhong Wu Cardiff University, UK

Akihiko Yokoyama University of Tokyo, Japan

Nick Jenkins Cardiff University, UK

This edition first published 2012 © 2012 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Smart grid : technology and applications / Janaka Ekanayake . . . [et al.]. p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-97409-4 (cloth)
1. Smart power grids. I. Ekanayake, J. B. (Janaka B.)
TK3105.S677 2012
621.31–dc23

2011044006

A catalogue record for this book is available from the British Library.

Print ISBN: 978-0-470-97409-4

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India.

Contents

Abou	it the aut	hors	xi
Prefa	ace		xiii
Ackr	owledge	ments	XV
List	of abbrev	viations	xvii
1	The Sr	nart Grid	1
1.1	Introdu	action	1
1.2	Why in	nplement the Smart Grid now?	2
	1.2.1	Ageing assets and lack of circuit capacity	2
	1.2.2	Thermal constraints	2
	1.2.3	Operational constraints	3
	1.2.4	Security of supply	3
	1.2.5	National initiatives	4
1.3	What is	s the Smart Grid?	6
1.4	Early Smart Grid initiatives		7
	1.4.1	Active distribution networks	7
	1.4.2	Virtual power plant	9
	1.4.3	Other initiatives and demonstrations	9
1.5	Overvi	ew of the technologies required for the Smart Grid	12
	References		14
Part	I IN	FORMATION AND COMMUNICATION TECHNOLO	GIES
2	Data communication		
21	Introdu	intion	10

-	Data	ommunication	1)
2.1	Introdu	19	
2.2	Dedica	ted and shared communication channels	19
2.3	Switching techniques		23
	2.3.1	Circuit switching	24
	2.3.2	Message switching	24
	2.3.3	Packet switching	24
2.4	Communication channels		25
	2.4.1	Wired communication	27
	2.4.2	Optical fibre	29

	2.4.3		33
	2.4.4	Cellular mobile communication	34
	2.4.5	Satellite communication	34
2.5	Layere	d architecture and protocols	35
	2.5.1	The ISO/OSI model	36
	2.5.2	TCP/IP	40
	Referen	nces	43
3	Comm	unication technologies for the Smart Grid	45
3.1	Introdu	ction	45
3.2	Comm	unication technologies	46
	3.2.1	IEEE 802 series	46
	3.2.2	Mobile communications Multi protocol label switching	59
	3.2.3	Multi protocol label switching	60
	3.2.4	Power line communication	62
3.3	Standar	rds for information exchange	62
	3.3.1	Standards for smart metering	62
	3.3.2	Modbus	63
	3.3.3	DNP3	64
	3.3.4	IEC 61850	65
	Referen	nces	66
4	Inform	ation security for the Smart Grid	69
4.1	Introdu	ction	69
4.2	Encryp	tion and decryption	70
	4.2.1	Symmetric key encryption	71
	4.2.2	Public key encryption	75
4.3	Authentication		76
	4.3.1	Authentication based on shared secret key	76
	4.3.2	Authentication based on key distribution centre	77
4.4	Digital	signatures	77
	4.4.1	Secret key signature	77
	4.4.2	Public key signature	77
	4.4.3	Message digest	78
4.5	Cyber s	security standards	79
	4.5.1	IEEE 1686: IEEE standard for substation intelligent electronic	

	devices (IEDs) cyber security capabilities	79
4.5.2	IEC 62351: Power systems management and associated information	
	exchange – data and communications security	80
Reference	es	80

References

Part II SENSING, MEASUREMENT, CONTROL AND **AUTOMATION TECHNOLOGIES**

5	Smart metering and demand-side integration	83
5.1	Introduction	83

5.2	Smart r	netering	84
	5.2.1	Evolution of electricity metering	84
	5.2.2	Key components of smart metering	86
5.3	Smart meters: An overview of the hardware used		
	5.3.1	Signal acquisition	87
	5.3.2	Signal conditioning	89
	5.3.3	Analogue to digital conversion	90
	5.3.4	Computation	94
	5.3.5	Input/output	95
	5.3.6	Communication	96
5.4	Comm	unications infrastructure and protocols for smart metering	96
	5.4.1	Home-area network	96
	5.4.2	Neighbourhood area network	97
	5.4.3	Data concentrator	98
	5.4.4	Meter data management system	98
	5.4.5	Protocols for communications	98
5.5	Deman	d-side integration	99
	5.5.1	Services provided by DSI	100
	5.5.2	Implementations of DSI	104
	5.5.3	Hardware support to DSI implementations	107
	5.5.4	Flexibility delivered by prosumers from the demand side	109
	5.5.5	System support from DSI	110
	Referen	nces	111
6	Distrib	ution automation equipment	113
6.1	Introdu		113
6.2	Substat	ion automation equipment	114
	6.2.1		116
	6.2.2		121
	6.2.3	Intelligent electronic devices	121
	6.2.4	Bay controller	124
	6.2.5	Remote terminal units	124
6.3	Faults i	in the distribution system	125
	6.3.1	Components for fault isolation and restoration	127
	6.3.2	Fault location, isolation and restoration	132
6.4	Voltage	e regulation	135
	Referen	nces	139
7	Distrib	ution management systems	141
7.1	Introdu	ction	141
7.2	Data sc	burces and associated external systems	142
	7.2.1	SCADA	143
	7.2.2	Customer information system	144
7.3		ing and analysis tools	144
	7.3.1	Distribution system modelling	144

	7.3.2	Topology analysis	149
	7.3.3	Load forecasting	151
	7.3.4	Power flow analysis	152
	7.3.5	Fault calculations	156
	7.3.6	State estimation	160
	7.3.7	Other analysis tools	165
7.4	Applica	ations	165
	7.4.1	System monitoring	165
	7.4.2	System operation	166
	7.4.3	System management	168
	7.4.4	Outage management system (OMS)	168
	Referen	nces	171
8	Transn	nission system operation	173
8.1	Introdu		173
8.2	Data sources		173
	8.2.1	IEDs and SCADA	173
	8.2.2	Phasor measurement units	174
8.3	Energy	management systems	177
8.4	Wide a	Wide area applications	
	8.4.1	On-line transient stability controller	181
	8.4.2	Pole-slipping preventive controller	181
8.5	Visualisation techniques		183
	8.5.1	Visual 2-D presentation	184
	8.5.2	Visual 3-D presentation	185
	References		186

Part III POWER ELECTRONICS AND ENERGY STORAGE

9	Power electronic converters	189
9.1	Introduction	189
9.2	Current source converters	191
9.3	Voltage source converters	195
	9.3.1 VSCs for low and medium power applications	196
	9.3.2 VSC for medium and high power applications	199
	References	203
10	Power electronics in the Smart Grid	205
10.1	Introduction	205
10.2	Renewable energy generation	206
	10.2.1 Photovoltaic systems	206
	10.2.2 Wind, hydro and tidal energy systems	209
10.3	Fault current limiting	213
10.4	Shunt compensation	217

		D-STATCOM	218
	10.4.2	Active filtering	224
	10.4.3	Shunt compensator with energy storage	224
10.5	Series c	ompensation	228
	Referen	ces	231
11	Power e	electronics for bulk power flows	233
11.1	Introduc	tion	233
11.2	FACTS		234
	11.2.1	Reactive power compensation	235
	11.2.2	Series compensation	241
	11.2.3	Thyristor-controlled phase shifting transformer	243
	11.2.4	Unified power flow controller	245
	11.2.5	Interline power flow controller	246
11.3	HVDC		248
	11.3.1	Current source converters	249
	11.3.2	Voltage source converters	253
	11.3.3	Multi-terminal HVDC	256
	Referen	ces	257
12	Energy	storage	259
12.1	Introduc	0	259
12.2	Energy	storage technologies	263
	12.2.1	Batteries	263
	12.2.2	Flow battery	264
	12.2.3	Fuel cell and hydrogen electrolyser	266
	12.2.4	Flywheels	267
	12.2.5	Superconducting magnetic energy storage systems	270
	12.2.6	Supercapacitors	270
12.3	Case stu	dy 1: Energy storage for wind power	271
12.4		dy 2: Agent-based control of electrical vehicle battery charging	273
	Referen		277
Index			279

About the Authors

Janaka Ekanayake received his BSc Eng Degree in Electrical and Electronic Engineering from the University of Peradeniya, Sri Lanka, in 1990 and his PhD in Electrical Engineering from the University of Manchester Institute of Science and Technology (UMIST), UK in 1995. He is presently a Senior Lecturer at Cardiff University, UK. Prior to that he was a Professor in the Department of Electrical and Electronic Engineering, University of Peradeniya. His main research interests include power electronic applications for power systems, renewable energy generation and its integration. He is a Chartered Engineer, a Fellow of the IET, a Senior Member of IEEE, and a member of the IESL. He has published more than 30 papers in refereed journals and has also co-authored three books.

Kithsri M. Liyanage is attached to the Department of Electrical and Electronic Engineering, University of Peradeniya, Sri Lanka, as a Professor. He obtained his BSc Eng from the University of Peradeniya in 1983 and his Dr Eng from the University of Tokyo in 1991. He was a Visiting Scientist at the Department of Electrical Engineering, the University of Washington, from 1993 to 1994 and a Visiting Research Fellow at the Advanced Centre for Power and Environmental Technology, the University of Tokyo, Japan, from 2008 to 2010. He has authored or co-authored more than 30 papers related to Smart Grid applications and control since 2009. His research interest is mainly in the application of ICT for the realisation of the Smart Grid.

Jianzhong Wu received his BSc, MSc and PhD in 1999, 2001 and 2004 respectively, from Tianjin University, China. He was an Associate Professor in Tianjin University, and then moved to the University of Manchester as a research fellow in 2006. Since 2008, he has been a lecturer at the Cardiff School of Engineering. His main research interests include Energy Infrastructure and Smart Grids. He has a track record of undertaking a number of EU and other funded projects. He is a member of the IET, the IEEE and the ACM. He has published more than 30 papers and co-authored one book.

Akihiko Yokoyama received his BS, MS and PhD in 1979, 1981 and 1984 respectively, from the University of Tokyo, Japan. Since 2000, he has been a Professor in the Department of Electrical Engineering, the University of Tokyo. He has been a Visiting Scholar at the University of Texas at Arlington and the University of California at Berkeley. His main research interests include power system analysis and control and Smart Grids. He is a Senior

Member of the Institute of Electrical Engineers of Japan (IEEJ), the Japan Society for Industrial and Applied Mathematics (JSIAM), the IEEE and a member of CIGRE.

Nick Jenkins was at the University of Manchester (UMIST) from 1992 to 2008. He then moved to Cardiff University where he is now Professor of Renewable Energy. His previous career had included 14 years industrial experience, of which five years were in developing countries. While at Cardiff University he has developed teaching and research activities in electrical power engineering and renewable energy. He is a Fellow of the IET, the IEEE and the Royal Academy of Engineering. He is a Distinguished Member of CIGRE and from 2009 to 2011 was the Shimizu Visiting Professor to the Atmosphere and Energy Program at Stanford University, USA.

Preface

Electric power systems throughout the world are facing radical change stimulated by the pressing need to decarbonise electricity supply, to replace ageing assets and to make effective use of rapidly developing information and communication technologies (ICTs). These aims all converge in the Smart Grid. The Smart Grid uses advanced information and communication to control this new energy system reliably and efficiently. Some ICT infrastructure already exists for transmission voltages but at present there is very little real-time communication either to or from the customer or in distribution circuits.

The Smart Grid vision is to give much greater visibility to lower voltage networks and to enable the participation of customers in the operation of the power system, particularly through Smart Meters and Smart Homes. The Smart Grid will support improved energy efficiency and allow a much greater utilisation of renewables. Smart Grid research and development is currently well funded in the USA, the UK, China, Japan and the EU. It is an important research topic in all parts of the world and the source of considerable commercial interest.

The aim of the book is to provide a basic discussion of the Smart Grid concept and then, in some detail, to describe the technologies that are required for its realisation. Although the Smart Grid concept is not yet fully defined, the book will be valuable in describing the key enabling technologies and thus permitting the reader to engage with the immediate development of the power system and take part in the debate over the future of the Smart Grid.

This book is the outcome of the authors' experience in teaching to undergraduate and MSc students in China, Japan, Sri Lanka, the UK and the USA and in carrying out research. The content of the book is grouped into three main technologies:

- 1. Part I Information and communication systems (Chapters 2–4)
- 2. Part II Sensing, measurement, control and automation (Chapters 5–8)
- 3. Part III Power electronics and energy storage (Chapters 9–12).

These three groups of technologies are presented in three Parts in this book and are relatively independent of each other. For a course module on an MEng or MSc in power systems or energy Chapters 2-4, 5-7 and 9-11 are likely to be most relevant, whereas for a more general module on the Smart Grid, Chapters 2–5 and Chapters 9 and 12 are likely to be most appropriate.

The technical content of the book includes specialised topics that will appeal to engineers from various disciplines looking to enhance their knowledge of technologies that are making an increasing contribution to the realisation of the Smart Grid.