

�

� �

�

Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning

�

� �

�

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Sarah Spurgeon, Editor in Chief

Jón Atli Benediktsson
Anjan Bose
James Duncan
Amin Moeness
Desineni Subbaram Naidu

Behzad Razavi
Jim Lyke
Hai Li
Brian Johnson

Jeffrey Reed
Diomidis Spinellis
Adam Drobot
Tom Robertazzi
Ahmet Murat Tekalp

�

� �

�

Advances in Electromagnetics Empowered by
Artificial Intelligence and Deep Learning

Edited by

Sawyer D. Campbell and Douglas H. Werner
Department of Electrical Engineering
The Pennsylvania State University
University Park, Pennsylvania, USA

IEEE Press Series on Electromagnetic Wave Theory

�

� �

�

Copyright © 2023 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/
go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates in the United States and other countries and may not be used without written permission. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product
or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents
of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional where appropriate.
Further, readers should be aware that websites listed in this work may have changed or disappeared between when
this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or
any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data Applied for:
Hardback ISBN: 9781119853893

Cover Image and Design: Wiley

Set in 9.5/12.5pt STIXTwoText by Straive, Chennai, India

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com/go/permission
http://www.wiley.com

�

� �

�

To the memory of my mother Joyce L. Campbell
—Sawyer D. Campbell

To my devoted wife Pingjuan Li Werner and to the memory of my grandmother Flora L. Werner

—Douglas H. Werner

�

� �

�

�

� �

�

vii

Contents

About the Editors xix
List of Contributors xx
Preface xxvi

Section I Introduction to AI-Based Regression and Classification 1

1 Introduction to Neural Networks 3
Isha Garg and Kaushik Roy

1.1 Taxonomy 3
1.1.1 Supervised Versus Unsupervised Learning 3
1.1.2 Regression Versus Classification 4
1.1.3 Training, Validation, and Test Sets 4
1.2 Linear Regression 5
1.2.1 Objective Functions 6
1.2.2 Stochastic Gradient Descent 7
1.3 Logistic Classification 9
1.4 Regularization 11
1.5 Neural Networks 13
1.6 Convolutional Neural Networks 16
1.6.1 Convolutional Layers 17
1.6.2 Pooling Layers 18
1.6.3 Highway Connections 19
1.6.4 Recurrent Layers 19
1.7 Conclusion 20

References 20

2 Overview of Recent Advancements in Deep Learning and Artificial
Intelligence 23
Vijaykrishnan Narayanan, Yu Cao, Priyadarshini Panda, Nagadastagiri Reddy Challapalle,
Xiaocong Du, Youngeun Kim, Gokul Krishnan, Chonghan Lee, Yuhang Li, Jingbo Sun,
Yeshwanth Venkatesha, Zhenyu Wang, and Yi Zheng

2.1 Deep Learning 24
2.1.1 Supervised Learning 26
2.1.1.1 Conventional Approaches 26
2.1.1.2 Deep Learning Approaches 29

�

� �

�

viii Contents

2.1.2 Unsupervised Learning 35
2.1.2.1 Algorithm 35
2.1.3 Toolbox 37
2.2 Continual Learning 38
2.2.1 Background and Motivation 38
2.2.2 Definitions 38
2.2.3 Algorithm 38
2.2.3.1 Regularization 39
2.2.3.2 Dynamic Network 40
2.2.3.3 Parameter Isolation 40
2.2.4 Performance Evaluation Metric 41
2.2.5 Toolbox 41
2.3 Knowledge Graph Reasoning 42
2.3.1 Background 42
2.3.2 Definitions 42
2.3.3 Database 43
2.3.4 Applications 43
2.3.5 Toolbox 44
2.4 Transfer Learning 44
2.4.1 Background and Motivation 44
2.4.2 Definitions 44
2.4.3 Algorithm 45
2.4.4 Toolbox 46
2.5 Physics-Inspired Machine Learning Models 46
2.5.1 Background and Motivation 46
2.5.2 Algorithm 46
2.5.3 Applications 49
2.5.4 Toolbox 50
2.6 Distributed Learning 50
2.6.1 Introduction 50
2.6.2 Definitions 51
2.6.3 Methods 51
2.6.4 Toolbox 54
2.7 Robustness 54
2.7.1 Background and Motivation 54
2.7.2 Definitions 55
2.7.3 Methods 55
2.7.3.1 Training with Noisy Data/Labels 55
2.7.3.2 Adversarial Attacks 55
2.7.3.3 Defense Mechanisms 56
2.7.4 Toolbox 56
2.8 Interpretability 56
2.8.1 Background and Motivation 56
2.8.2 Definitions 57
2.8.3 Algorithm 57
2.8.4 ToolBox 58
2.9 Transformers and Attention Mechanisms for Text and Vision Models 58

�

� �

�

Contents ix

2.9.1 Background and Motivation 58
2.9.2 Algorithm 59
2.9.3 Application 60
2.9.4 Toolbox 61
2.10 Hardware for Machine Learning Applications 62
2.10.1 CPU 62
2.10.2 GPU 63
2.10.3 ASICs 63
2.10.4 FPGA 64

Acknowledgment 64
References 64

Section II Advancing Electromagnetic Inverse Design with Machine
Learning 81

3 Breaking the Curse of Dimensionality in Electromagnetics Design Through
Optimization Empowered by Machine Learning 83
N. Anselmi, G. Oliveri, L. Poli, A. Polo, P. Rocca, M. Salucci, and A. Massa

3.1 Introduction 83
3.2 The SbD Pillars and Fundamental Concepts 85
3.3 SbD at Work in EMs Design 88
3.3.1 Design of Elementary Radiators 88
3.3.2 Design of Reflectarrays 92
3.3.3 Design of Metamaterial Lenses 93
3.3.4 Other SbD Customizations 96
3.4 Final Remarks and Envisaged Trends 101

Acknowledgments 101
References 102

4 Artificial Neural Networks for Parametric Electromagnetic Modeling and
Optimization 105
Feng Feng, Weicong Na, Jing Jin, and Qi-Jun Zhang

4.1 Introduction 105
4.2 ANN Structure and Training for Parametric EM Modeling 106
4.3 Deep Neural Network for Microwave Modeling 107
4.3.1 Structure of the Hybrid DNN 107
4.3.2 Training of the Hybrid DNN 108
4.3.3 Parameter-Extraction Modeling of a Filter Using the Hybrid DNN 108
4.4 Knowledge-Based Parametric Modeling for Microwave Components 111
4.4.1 Unified Knowledge-Based Parametric Model Structure 112
4.4.2 Training with l1 Optimization of the Unified Knowledge-Based Parametric Model 115
4.4.3 Automated Knowledge-Based Model Generation 117
4.4.4 Knowledge-Based Parametric Modeling of a Two-Section Low-Pass Elliptic

Microstrip Filter 117
4.5 Parametric Modeling Using Combined ANN and Transfer Function 121

�

� �

�

x Contents

4.5.1 Neuro-TF Modeling in Rational Form 121
4.5.2 Neuro-TF Modeling in Zero/Pole Form 122
4.5.3 Neuro-TF Modeling in Pole/Residue Form 123
4.5.4 Vector Fitting Technique for Parameter Extraction 123
4.5.5 Two-Phase Training for Neuro-TF Models 123
4.5.6 Neuro-TF Model Based on Sensitivity Analysis 125
4.5.7 A Diplexer Example Using Neuro-TF Model Based on Sensitivity Analysis 126
4.6 Surrogate Optimization of EM Design Based on ANN 129
4.6.1 Surrogate Optimization and Trust Region Update 129
4.6.2 Neural TF Optimization Method Based on Adjoint Sensitivity Analysis 130
4.6.3 Surrogate Model Optimization Based on Feature-Assisted of Neuro-TF 130
4.6.4 EM Optimization of a Microwave Filter Utilizing Feature-Assisted Neuro-TF 131
4.7 Conclusion 133

References 133

5 Advanced Neural Networks for Electromagnetic Modeling and Design 141
Bing-Zhong Wang, Li-Ye Xiao, and Wei Shao

5.1 Introduction 141
5.2 Semi-Supervised Neural Networks for Microwave Passive Component

Modeling 141
5.2.1 Semi-Supervised Learning Based on Dynamic Adjustment Kernel Extreme Learning

Machine 141
5.2.1.1 Dynamic Adjustment Kernel Extreme Learning Machine 142
5.2.1.2 Semi-Supervised Learning Based on DA-KELM 147
5.2.1.3 Numerical Examples 150
5.2.2 Semi-Supervised Radial Basis Function Neural Network 157
5.2.2.1 Semi-Supervised Radial Basis Function Neural Network 157
5.2.2.2 Sampling Strategy 161
5.2.2.3 SS-RBFNN With Sampling Strategy 162
5.3 Neural Networks for Antenna and Array Modeling 166
5.3.1 Modeling of Multiple Performance Parameters for Antennas 166
5.3.2 Inverse Artificial Neural Network for Multi-objective Antenna Design 175
5.3.2.1 Knowledge-Based Neural Network for Periodic Array Modeling 183
5.4 Autoencoder Neural Network for Wave Propagation in Uncertain Media 188
5.4.1 Two-Dimensional GPR System with the Dispersive and Lossy Soil 188
5.4.2 Surrogate Model for GPR Modeling 190
5.4.3 Modeling Results 191

References 193

Section III Deep Learning for Metasurface Design 197

6 Generative Machine Learning for Photonic Design 199
Dayu Zhu, Zhaocheng Liu, and Wenshan Cai

6.1 Brief Introduction to Generative Models 199
6.1.1 Probabilistic Generative Model 199
6.1.2 Parametrization and Optimization with Generative Models 199

�

� �

�

Contents xi

6.1.2.1 Probabilistic Model for Gradient-Based Optimization 200
6.1.2.2 Sampling-Based Optimization 200
6.1.2.3 Generative Design Strategy 201
6.1.2.4 Generative Adversarial Networks in Photonic Design 202
6.1.2.5 Discussion 203
6.2 Generative Model for Inverse Design of Metasurfaces 203
6.2.1 Generative Design Strategy for Metasurfaces 203
6.2.2 Model Validation 204
6.2.3 On-demand Design Results 206
6.3 Gradient-Free Optimization with Generative Model 207
6.3.1 Gradient-Free Optimization Algorithms 207
6.3.2 Evolution Strategy with Generative Parametrization 207
6.3.2.1 Generator from VAE 207
6.3.2.2 Evolution Strategy 208
6.3.2.3 Model Validation 209
6.3.2.4 On-demand Design Results 209
6.3.3 Cooperative Coevolution and Generative Parametrization 210
6.3.3.1 Cooperative Coevolution 210
6.3.3.2 Diatomic Polarizer 211
6.3.3.3 Gradient Metasurface 211
6.4 Design Large-Scale, Weakly Coupled System 213
6.4.1 Weak Coupling Approximation 214
6.4.2 Analog Differentiator 214
6.4.3 Multiplexed Hologram 215
6.5 Auxiliary Methods for Generative Photonic Parametrization 217
6.5.1 Level Set Method 217
6.5.2 Fourier Level Set 218
6.5.3 Implicit Neural Representation 218
6.5.4 Periodic Boundary Conditions 220
6.6 Summary 221

References 221

7 Machine Learning Advances in Computational Electromagnetics 225
Robert Lupoiu and Jonathan A. Fan

7.1 Introduction 225
7.2 Conventional Electromagnetic Simulation Techniques 226
7.2.1 Finite Difference Frequency (FDFD) and Time (FDTD) Domain Solvers 226
7.2.2 The Finite Element Method (FEM) 229
7.2.2.1 Meshing 229
7.2.2.2 Basis Function Expansion 229
7.2.2.3 Residual Formulation 230
7.2.3 Method of Moments (MoM) 230
7.3 Deep Learning Methods for Augmenting Electromagnetic Solvers 231
7.3.1 Time Domain Simulators 231
7.3.1.1 Hardware Acceleration 231
7.3.1.2 Learning Finite Difference Kernels 232
7.3.1.3 Learning Absorbing Boundary Conditions 234

�

� �

�

xii Contents

7.3.2 Augmenting Variational CEM Techniques Via Deep Learning 234
7.4 Deep Electromagnetic Surrogate Solvers Trained Purely with Data 235
7.5 Deep Surrogate Solvers Trained with Physical Regularization 240
7.5.1 Physics-Informed Neural Networks (PINNs) 240
7.5.2 Physics-Informed Neural Networks with Hard Constraints (hPINNs) 241
7.5.3 WaveY-Net 243
7.6 Conclusions and Perspectives 249

Acknowledgments 250
References 250

8 Design of Nanofabrication-Robust Metasurfaces Through Deep
Learning-Augmented Multiobjective Optimization 253
Ronald P. Jenkins, Sawyer D. Campbell, and Douglas H. Werner

8.1 Introduction 253
8.1.1 Metasurfaces 253
8.1.2 Fabrication State-of-the-Art 253
8.1.3 Fabrication Challenges 254
8.1.3.1 Fabrication Defects 254
8.1.4 Overcoming Fabrication Limitations 255
8.2 Related Work 255
8.2.1 Robustness Topology Optimization 255
8.2.2 Deep Learning in Nanophotonics 256
8.3 DL-Augmented Multiobjective Robustness Optimization 257
8.3.1 Supercells 257
8.3.1.1 Parameterization of Freeform Meta-Atoms 257
8.3.2 Robustness Estimation Method 259
8.3.2.1 Simulating Defects 259
8.3.2.2 Existing Estimation Methods 259
8.3.2.3 Limitations of Existing Methods 259
8.3.2.4 Solver Choice 260
8.3.3 Deep Learning Augmentation 260
8.3.3.1 Challenges 261
8.3.3.2 Method 261
8.3.4 Multiobjective Global Optimization 267
8.3.4.1 Single Objective Cost Functions 267
8.3.4.2 Dominance Relationships 267
8.3.4.3 A Robustness Objective 269
8.3.4.4 Problems with Optimization and DL Models 269
8.3.4.5 Error-Tolerant Cost Functions 269
8.3.5 Robust Supercell Optimization 270
8.3.5.1 Pareto Front Results 270
8.3.5.2 Examples from the Pareto Front 271
8.3.5.3 The Value of Exhaustive Sampling 272
8.3.5.4 Speedup Analysis 273
8.4 Conclusion 275

�

� �

�

Contents xiii

8.4.1 Future Directions 275
Acknowledgments 276
References 276

9 Machine Learning for Metasurfaces Design and Their Applications 281
Kumar Vijay Mishra, Ahmet M. Elbir, and Amir I. Zaghloul

9.1 Introduction 281
9.1.1 ML/DL for RIS Design 283
9.1.2 ML/DL for RIS Applications 283
9.1.3 Organization 285
9.2 Inverse RIS Design 285
9.2.1 Genetic Algorithm (GA) 286
9.2.2 Particle Swarm Optimization (PSO) 286
9.2.3 Ant Colony Optimization (ACO) 289
9.3 DL-Based Inverse Design and Optimization 289
9.3.1 Artificial Neural Network (ANN) 289
9.3.1.1 Deep Neural Networks (DNN) 290
9.3.2 Convolutional Neural Networks (CNNs) 290
9.3.3 Deep Generative Models (DGMs) 291
9.3.3.1 Generative Adversarial Networks (GANs) 291
9.3.3.2 Conditional Variational Autoencoder (cVAE) 293
9.3.3.3 Global Topology Optimization Networks (GLOnets) 293
9.4 Case Studies 294
9.4.1 MTS Characterization Model 294
9.4.2 Training and Design 296
9.5 Applications 298
9.5.1 DL-Based Signal Detection in RIS 302
9.5.2 DL-Based RIS Channel Estimation 303
9.6 DL-Aided Beamforming for RIS Applications 306
9.6.1 Beamforming at the RIS 306
9.6.2 Secure-Beamforming 308
9.6.3 Energy-Efficient Beamforming 309
9.6.4 Beamforming for Indoor RIS 309
9.7 Challenges and Future Outlook 309
9.7.1 Design 310
9.7.1.1 Hybrid Physics-Based Models 310
9.7.1.2 Other Learning Techniques 310
9.7.1.3 Improved Data Representation 310
9.7.2 Applications 311
9.7.3 Channel Modeling 311
9.7.3.1 Data Collection 311
9.7.3.2 Model Training 311
9.7.3.3 Environment Adaptation and Robustness 312
9.8 Summary 312

Acknowledgments 313
References 313

�

� �

�

xiv Contents

Section IV RF, Antenna, Inverse-Scattering, and Other EM Applications of
Deep Learning 319

10 Deep Learning for Metasurfaces and Metasurfaces for Deep Learning 321
Clayton Fowler, Sensong An, Bowen Zheng, and Hualiang Zhang

10.1 Introduction 321
10.2 Forward-Predicting Networks 322
10.2.1 FCNN (Fully Connected Neural Networks) 323
10.2.2 CNN (Convolutional Neural Networks) 324
10.2.2.1 Nearly Free-Form Meta-Atoms 324
10.2.2.2 Mutual Coupling Prediction 327
10.2.3 Sequential Neural Networks and Universal Forward Prediction 330
10.2.3.1 Sequencing Input Data 331
10.2.3.2 Recurrent Neural Networks 332
10.2.3.3 1D Convolutional Neural Networks 332
10.3 Inverse-Design Networks 333
10.3.1 Tandem Network for Inverse Designs 333
10.3.2 Generative Adversarial Nets (GANs) 335
10.4 Neuromorphic Photonics 339
10.5 Summary and Outlook 340

References 341

11 Forward and Inverse Design of Artificial Electromagnetic Materials 345
Jordan M. Malof, Simiao Ren, and Willie J. Padilla

11.1 Introduction 345
11.1.1 Problem Setting 346
11.1.2 Artificial Electromagnetic Materials 347
11.1.2.1 Regime 1: Floquet–Bloch 348
11.1.2.2 Regime 2: Resonant Effective Media 349
11.1.2.3 All-Dielectric Metamaterials 350
11.2 The Design Problem Formulation 351
11.3 Forward Design 352
11.3.1 Search Efficiency 353
11.3.2 Evaluation Time 354
11.3.3 Challenges with the Forward Design of Advanced AEMs 354
11.3.4 Deep Learning the Forward Model 355
11.3.4.1 When Does Deep Learning Make Sense? 355
11.3.4.2 Common Deep Learning Architectures 356
11.3.5 The Forward Design Bottleneck 356
11.4 Inverse Design with Deep Learning 357
11.4.1 Why Inverse Problems Are Often Difficult 359
11.4.2 Deep Inverse Models 360
11.4.2.1 Does the Inverse Model Address Non-uniqueness? 360
11.4.2.2 Multi-solution Versus Single-Solution Models 360
11.4.2.3 Iterative Methods versus Direct Mappings 361
11.4.3 Which Inverse Models Perform Best? 361
11.5 Conclusions and Perspectives 362

�

� �

�

Contents xv

11.5.1 Reducing the Need for Training Data 362
11.5.1.1 Transfer Learning 362
11.5.1.2 Active Learning 363
11.5.1.3 Physics-Informed Learning 363
11.5.2 Inverse Modeling for Non-existent Solutions 363
11.5.3 Benchmarking, Replication, and Sharing Resources 364

Acknowledgments 364
References 364

12 Machine Learning-Assisted Optimization and Its Application to Antenna and
Array Designs 371
Qi Wu, Haiming Wang, and Wei Hong

12.1 Introduction 371
12.2 Machine Learning-Assisted Optimization Framework 372
12.3 Machine Learning-Assisted Optimization for Antenna and Array Designs 375
12.3.1 Design Space Reduction 375
12.3.2 Variable-Fidelity Evaluation 375
12.3.3 Hybrid Optimization Algorithm 378
12.3.4 Robust Design 379
12.3.5 Antenna Array Synthesis 380
12.4 Conclusion 381

References 381

13 Analysis of Uniform and Non-uniform Antenna Arrays Using Kernel
Methods 385
Manel Martínez-Ramón, José Luis Rojo Álvarez, Arjun Gupta, and Christos Christodoulou

13.1 Introduction 385
13.2 Antenna Array Processing 386
13.2.1 Detection of Angle of Arrival 387
13.2.2 Optimum Linear Beamformers 388
13.2.3 Direction of Arrival Detection with Random Arrays 389
13.3 Support Vector Machines in the Complex Plane 390
13.3.1 The Support Vector Criterion for Robust Regression in the Complex Plane 390
13.3.2 The Mercer Theorem and the Nonlinear SVM 393
13.4 Support Vector Antenna Array Processing with Uniform Arrays 394
13.4.1 Kernel Array Processors with Temporal Reference 394
13.4.1.1 Relationship with the Wiener Filter 394
13.4.2 Kernel Array Processor with Spatial Reference 395
13.4.2.1 Eigenanalysis in a Hilbert Space 395
13.4.2.2 Formulation of the Processor 396
13.4.2.3 Relationship with Nonlinear MVDM 397
13.4.3 Examples of Temporal and Spatial Kernel Beamforming 398
13.5 DOA in Random Arrays with Complex Gaussian Processes 400
13.5.1 Snapshot Interpolation from Complex Gaussian Process 400
13.5.2 Examples 402
13.6 Conclusion 403

Acknowledgments 404
References 404

�

� �

�

xvi Contents

14 Knowledge-Based Globalized Optimization of High-Frequency Structures
Using Inverse Surrogates 409
Anna Pietrenko-Dabrowska and Slawomir Koziel

14.1 Introduction 409
14.2 Globalized Optimization by Feature-Based Inverse Surrogates 411
14.2.1 Design Task Formulation 411
14.2.2 Evaluating Design Quality with Response Features 412
14.2.3 Globalized Search by Means of Inverse Regression Surrogates 414
14.2.4 Local Tuning Procedure 418
14.2.5 Global Optimization Algorithm 420
14.3 Results 421
14.3.1 Verification Structures 422
14.3.2 Results 423
14.3.3 Discussion 423
14.4 Conclusion 428

Acknowledgment 428
References 428

15 Deep Learning for High Contrast Inverse Scattering of Electrically Large
Structures 435
Qing Liu, Li-Ye Xiao, Rong-Han Hong, and Hao-Jie Hu

15.1 Introduction 435
15.2 General Strategy and Approach 436
15.2.1 Related Works by Others and Corresponding Analyses 436
15.2.2 Motivation 437
15.3 Our Approach for High Contrast Inverse Scattering of Electrically Large

Structures 438
15.3.1 The 2-D Inverse Scattering Problem with Electrically Large Structures 438
15.3.1.1 Dual-Module NMM-IEM Machine Learning Model 438
15.3.1.2 Receiver Approximation Machine Learning Method 440
15.3.2 Application for 3-D Inverse Scattering Problem with Electrically Large Structures 441
15.3.2.1 Semi-Join Extreme Learning Machine 441
15.3.2.2 Hybrid Neural Network Electromagnetic Inversion Scheme 445
15.4 Applications of Our Approach 450
15.4.1 Applications for 2-D Inverse Scattering Problem with Electrically Large Structures 450
15.4.1.1 Dual-Module NMM-IEM Machine Learning for Fast Electromagnetic Inversion of

Inhomogeneous Scatterers with High Contrasts and Large Electrical Dimensions 450
15.4.1.2 Nonlinear Electromagnetic Inversion of Damaged Experimental Data by a Receiver

Approximation Machine Learning Method 454
15.4.2 Applications for 3-D Inverse Scattering Problem with Electrically Large Structures 459
15.4.2.1 Super-Resolution 3-D Microwave Imaging of Objects with High Contrasts by a

Semi-Join Extreme Learning Machine 459
15.4.2.2 A Hybrid Neural Network Electromagnetic Inversion Scheme (HNNEMIS) for

Super-Resolution 3-Dimensional Microwave Human Brain Imaging 473
15.5 Conclusion and Future work 480
15.5.1 Summary of Our Work 480
15.5.1.1 Limitations and Potential Future Works 481

References 482

�

� �

�

Contents xvii

16 Radar Target Classification Using Deep Learning 487
Youngwook Kim

16.1 Introduction 487
16.2 Micro-Doppler Signature Classification 488
16.2.1 Human Motion Classification 490
16.2.2 Human Hand Gesture Classification 494
16.2.3 Drone Detection 495
16.3 SAR Image Classification 497
16.3.1 Vehicle Detection 497
16.3.2 Ship Detection 499
16.4 Target Classification in Automotive Radar 500
16.5 Advanced Deep Learning Algorithms for Radar Target Classification 503
16.5.1 Transfer Learning 504
16.5.2 Generative Adversarial Networks 506
16.5.3 Continual Learning 508
16.6 Conclusion 511

References 511

17 Koopman Autoencoders for Reduced-Order Modeling of Kinetic
Plasmas 515
Indranil Nayak, Mrinal Kumar, and Fernando L. Teixeira

17.1 Introduction 515
17.2 Kinetic Plasma Models: Overview 516
17.3 EMPIC Algorithm 517
17.3.1 Overview 517
17.3.2 Field Update Stage 519
17.3.3 Field Gather Stage 521
17.3.4 Particle Pusher Stage 521
17.3.5 Current and Charge Scatter Stage 522
17.3.6 Computational Challenges 522
17.4 Koopman Autoencoders Applied to EMPIC Simulations 523
17.4.1 Overview and Motivation 523
17.4.2 Koopman Operator Theory 524
17.4.3 Koopman Autoencoder (KAE) 527
17.4.3.1 Case Study I: Oscillating Electron Beam 529
17.4.3.2 Case Study II: Virtual Cathode Formation 532
17.4.4 Computational Gain 534
17.5 Towards A Physics-Informed Approach 535
17.6 Outlook 536

Acknowledgments 537
References 537

Index 543

�

� �

�

�

� �

�

xix

About the Editors

Sawyer D. Campbell is an Associate Research Professor in Electrical Engineering and associate
director of the Computational Electromagnetics and Antennas Research Laboratory (CEARL), as
well as a faculty member of the Materials Research Institute (MRI), at The Pennsylvania State
University. He has published over 150 technical papers and proceedings articles and is the author
of two books and five book chapters. He is a Senior Member of the Institute of Electrical and
Electronics Engineers (IEEE), OPTICA, and SPIE and Life Member of the Applied Computational
Electromagnetics Society (ACES). He is the past Chair and current Vice Chair/Treasurer of the
IEEE Central Pennsylvania Section.

Douglas H. Werner holds the John L. and Genevieve H. McCain Chair Professorship in Electrical
Engineering and is the director of the Computational Electromagnetics and Antennas Research
Laboratory (CEARL), as well as a faculty member of the Materials Research Institute (MRI), at
The Pennsylvania State University. Prof. Werner has received numerous awards and recognitions
for his work in the areas of electromagnetics and optics. He holds 20 patents, has published over
1000 technical papers and proceedings articles, and is the author of 7 books and 35 book chapters.
He is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), the Institute of
Engineering and Technology (IET), Optica, the International Society for Optics and Photonics
(SPIE), the Applied Computational Electromagnetics Society (ACES), the Progress In Electromag-
netics Research (PIER) Electromagnetics Academy, and the National Academy of Inventors (NAI).

�

� �

�

xx

List of Contributors

Sensong An
Department of Electrical & Computer
Engineering
University of Massachusetts Lowell
Lowell, MA
USA

and

Department of Materials Science &
Engineering
Massachusetts Institute of Technology
Cambridge, MA
USA

N. Anselmi
ELEDIA Research Center (ELEDIA@UniTN –
University of Trento)
DICAM – Department of Civil, Environmental,
and Mechanical Engineering
Trento
Italy

Wenshan Cai
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA
USA

Sawyer D. Campbell
The Pennsylvania State University
University Park, PA
USA

Yu Cao
School of Electrical, Computer and Energy
Engineering
Arizona State University
Tempe, AZ
USA

Nagadastagiri Reddy Challapalle
School of Electrical Engineering and Computer
Science
The Pennsylvania State University
University Park, PA
USA

Christos Christodoulou
Department of Electrical and Computer
Engineering
The University of New Mexico
Albuquerque, NM
USA

Xiaocong Du
School of Electrical, Computer and Energy
Engineering
Arizona State University
Tempe, AZ
USA

Ahmet M. Elbir
Interdisciplinary Centre for Security
Reliability and Trust (SnT)
University of Luxembourg
Luxembourg

�

� �

�

List of Contributors xxi

Jonathan A. Fan
Department of Electrical Engineering
Stanford University
Stanford, CA
USA

Feng Feng
School of Microelectronics
Tianjin University
Tianjin
China

Clayton Fowler
Department of Electrical & Computer
Engineering
University of Massachusetts Lowell
Lowell, MA
USA

Isha Garg
Elmore School of Electrical and Computer
Engineering
Purdue University
West Lafayette, IN
USA

Arjun Gupta
Facebook
Menlo Park, CA
USA

Rong-Han Hong
Institute of Electromagnetics and Acoustics
Xiamen University
Xiamen
China

Wei Hong
State Key Laboratory of Millimeter Waves
School of Information Science and Engineering
Southeast University
Nanjing, Jiangsu Province
China

and

Department of New Communications
Purple Mountain Laboratories
Nanjing, Jiangsu Province
China

Hao-Jie Hu
Institute of Electromagnetics and Acoustics
Xiamen University
Xiamen
China

Ronald P. Jenkins
The Pennsylvania State University
University Park, PA
USA

Jing Jin
College of Physical Science and Technology
Central China Normal University
Wuhan
China

Youngeun Kim
School of Engineering & Applied Science
Yale University
New Haven, CT
USA

Youngwook Kim
Electronic Engineering
Sogang University
Seoul
South Korea

Slawomir Koziel
Faculty of Electronics, Telecommunications
and Informatics
Gdansk University of Technology
Gdansk
Poland

and

�

� �

�

xxii List of Contributors

Engineering Optimization & Modeling Center
Reykjavik University
Reykjavik
Iceland

Gokul Krishnan
School of Electrical, Computer and Energy
Engineering
Arizona State University
Tempe, AZ
USA

Mrinal Kumar
Department of Mechanical and Aerospace
Engineering
The Ohio State University
Columbus, OH
USA

Chonghan Lee
School of Electrical Engineering and Computer
Science
The Pennsylvania State University
University Park, PA
USA

Yuhang Li
School of Engineering & Applied Science
Yale University
New Haven, CT
USA

Qing Liu
Institute of Electromagnetics and Acoustics
Xiamen University
Xiamen
China

Zhaocheng Liu
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA
USA

Robert Lupoiu
Department of Electrical Engineering
Stanford University
Stanford, CA
USA

Jordan M. Malof
Department of Electrical and Computer
Engineering
Duke University
Durham, NC
USA

Manel Martínez-Ramón
Department of Electrical and Computer
Engineering
The University of New Mexico
Albuquerque, NM
USA

A. Massa
ELEDIA Research Center (ELEDIA@UniTN –
University of Trento)
DICAM – Department of Civil, Environmental,
and Mechanical Engineering
Trento
Italy

and

ELEDIA Research Center
(ELEDIA@TSINGHUA – Tsinghua University)
Haidian, Beijing
China

and

ELEDIA Research Center (ELEDIA@UESTC –
UESTC)
School of Electronic Science and Engineering
University of Electronic Science and
Technology of China
Chengdu
China

and

�

� �

�

List of Contributors xxiii

School of Electrical Engineering
Tel Aviv University
Tel Aviv
Israel

and

ELEDIA Research Center (ELEDIA@UIC –
University of Illinois Chicago)
Chicago, IL
USA

Kumar Vijay Mishra
Computational and Information Sciences
Directorate (CISD)
United States DEVCOM Army Research
Laboratory
Adelphi, MD
USA

Weicong Na
Faculty of Information Technology
Beijing University of Technology
Beijing
China

Vijaykrishnan Narayanan
School of Electrical Engineering and Computer
Science
The Pennsylvania State University
University Park, PA
USA

Indranil Nayak
ElectroScience Laboratory and Department of
Electrical and Computer Engineering
The Ohio State University
Columbus, OH
USA

G. Oliveri
ELEDIA Research Center (ELEDIA@UniTN –
University of Trento)
DICAM – Department of Civil, Environmental,
and Mechanical Engineering
Trento
Italy

Willie J. Padilla
Department of Electrical and Computer
Engineering
Duke University
Durham, NC
USA

Priyadarshini Panda
School of Engineering & Applied Science
Yale University
New Haven, CT
USA

Anna Pietrenko-Dabrowska
Faculty of Electronics, Telecommunications
and Informatics
Gdansk University of Technology
Gdansk
Poland

L. Poli
ELEDIA Research Center (ELEDIA@UniTN –
University of Trento)
DICAM – Department of Civil, Environmental,
and Mechanical Engineering
Trento
Italy

A. Polo
ELEDIA Research Center (ELEDIA@UniTN –
University of Trento)
DICAM – Department of Civil, Environmental,
and Mechanical Engineering
Trento
Italy

Simiao Ren
Department of Electrical and Computer
Engineering
Duke University
Durham, NC
USA

�

� �

�

xxiv List of Contributors

P. Rocca
ELEDIA Research Center (ELEDIA@UniTN –
University of Trento)
DICAM – Department of Civil, Environmental,
and Mechanical Engineering
Trento
Italy

and

ELEDIA Research Center
(ELEDIA@XIDIAN – Xidian University)
Xi’an, Shaanxi Province
China

José Luis Rojo Álvarez
Departamento de Teoría de la señal y
Comunicaciones y Sistemas Telemáticos y
Computación
Universidad rey Juan Carlos
Fuenlabrada, Madrid
Spain

Kaushik Roy
Elmore School of Electrical and Computer
Engineering
Purdue University
West Lafayette, IN
USA

M. Salucci
ELEDIA Research Center (ELEDIA@UniTN –
University of Trento)
DICAM – Department of Civil, Environmental,
and Mechanical Engineering
Trento
Italy

Wei Shao
School of Physics, University of Electronic
Science and Technology of China
Institute of Applied Physics
Chengdu
China

Jingbo Sun
School of Electrical, Computer and Energy
Engineering
Arizona State University
Tempe, AZ
USA

Fernando L. Teixeira
ElectroScience Laboratory and Department of
Electrical and Computer Engineering
The Ohio State University
Columbus, OH
USA

Yeshwanth Venkatesha
School of Engineering & Applied Science
Yale University
New Haven, CT
USA

Bing-Zhong Wang
School of Physics, University of Electronic
Science and Technology of China
Institute of Applied Physics
Chengdu
China

Haiming Wang
State Key Laboratory of Millimeter Waves
School of Information Science and Engineering
Southeast University
Nanjing, Jiangsu Province
China

and

Department of New Communications
Purple Mountain Laboratories
Nanjing, Jiangsu Province
China

Zhenyu Wang
School of Electrical, Computer and Energy
Engineering
Arizona State University
Tempe, AZ
USA

�

� �

�

List of Contributors xxv

Douglas H. Werner
The Pennsylvania State University
University Park, PA
USA

Qi Wu
State Key Laboratory of Millimeter Waves
School of Information Science and Engineering
Southeast University
Nanjing, Jiangsu Province
China

and

Department of New Communications
Purple Mountain Laboratories
Nanjing, Jiangsu Province
China

Li-Ye Xiao
Department of Electronic Science
Xiamen University, Institute of
Electromagnetics and Acoustics
Xiamen
China

Amir I. Zaghloul
Bradley Department of Electrical and
Computer Engineering
Virginia Tech
Blacksburg, VA
USA

Hualiang Zhang
Department of Electrical & Computer
Engineering
University of Massachusetts Lowell
Lowell, MA
USA

Qi-Jun Zhang
Department of Electronics
Carleton University
Ottawa, ON
Canada

Bowen Zheng
Department of Electrical & Computer
Engineering
University of Massachusetts Lowell
Lowell, MA
USA

Yi Zheng
School of Electrical Engineering and Computer
Science
The Pennsylvania State University
University Park, PA
USA

Dayu Zhu
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA
USA

�

� �

�

xxvi

Preface

The subject of this book is the application of the rapidly growing areas of artificial intelligence
(AI) and deep learning (DL) in electromagnetics (EMs). AI and DL have the potential to disrupt
the state-of-the-art in a number of research disciplines within the greater electromagnetics, optics,
and photonics fields, particularly in the areas of inverse-modeling and inverse-design. While a
number of high-profile papers have been published in these areas in the last few years, many
researchers and engineers have yet to explore AI and DL solutions for their problems of interest.
Nevertheless, the use of AI and DL within electromagnetics and other technical areas is only set to
grow as more scientists and engineers learn about how to apply these techniques to their research.
To this end, we organized this book to serve both as an introduction to the basics of AI and DL as
well as to present cutting-edge research advances in applications of AI and DL in radio-frequency
(RF) and optical modeling, simulation, and inverse-design. This book provides a comprehensive
treatment of the field on subjects ranging from fundamental theoretical principles and new
technological developments to state-of-the-art device design, as well as examples encompassing a
wide range of related sub-areas. The content of the book covers all-dielectric and metallo-dielectric
optical metasurface deep-learning-accelerated inverse-design, deep neural networks for inverse
scattering and the inverse design of artificial electromagnetic materials, applications of deep
learning for advanced antenna and array design, reduced-order model development, and other
related topics.

This volume seeks to address questions such as “What is deep learning?,” “How does one train a
deep neural network,?” “How does one apply AI/DL to electromagnetics, optics, scattering, and
propagation problems?,” and “What is the current state-of-the-art in applied AI/DL in electro-
magnetics?” The first chapters of the book provide a comprehensive overview of the fundamental
concepts and taxonomy of artificial intelligence, neural networks, and deep learning in order to
provide the reader with a firm foundation on which to stand before exploring the more technical
application areas presented in the remaining chapters. Throughout this volume, theoretical discus-
sions are complemented by a broad range of design examples and numerical studies. We hope that
this book will be an indispensable resource for graduate students, researchers, and professionals in
the greater electromagnetics, antennas, photonics, and optical communities.

This book comprises a total of 17 invited chapters contributed from leading experts in the fields
of AI, DL, computer science, optics, photonics, and electromagnetics. A brief summary of each
chapter is provided as follows.

Chapter 1 introduces the fundamentals of neural networks and a taxonomy of terms, concepts,
and language that is commonly used in AI and DL works. Moreover, the chapter contains a
discussion of model development and how backpropagation is used to train complex network
architectures. Chapter 2 provides a survey of recent advancements in AI and DL in the areas of

�

� �

�

Preface xxvii

supervised and unsupervised learning, physics-inspired machine learning models, among others
as well as a discussion of the various types of hardware that is used to efficiently train neural
networks. Chapter 3 focuses on the use of machine learning and surrogate models within the
system-by-design paradigm for the efficient optimization-driven solution of complex electromag-
netic design problems such as reflectarrays and metamaterial lenses. Chapter 4 introduces both
the fundamentals and advanced formulations of artificial neural network (ANN) techniques for
knowledge-based parametric electromagnetic (EM) modeling and optimization of microwave
components. Chapter 5 presents two semi-supervised learning schemes to model microwave
passive components for antenna and array modeling and optimization, and an autoencoder
neural network used to reduce time-domain simulation data dimensionality. Chapter 6 introduces
generative machine learning for photonic design which enables users to provide a desired trans-
mittance profile to a trained deep neural network which then produces the structure which yields
the desired spectra; a true inverse-design scheme. Chapter 7 discusses emergent concepts at the
interface of the data sciences and conventional computational electromagnetics (CEM) algorithms
(e.g. those based on finite differences, finite elements, and the method of moments). Chapter 8
combines DL with multiobjective optimization to examine the tradeoffs between performance
and fabrication process uncertainties of nanofabricated optical metasurfaces with the goal of
pushing optical metasurface fabrication toward wafer-scale. Chapter 9 explores machine learning
(ML)/DL techniques to reduce the computational cost associated with the inverse-design of
reconfigurable intelligent surfaces (RISs) which offer the potential for adaptable wireless channels
and smart radio environments. Chapter 10 presents a selection of neural network architectures
for Huygens’ metasurface design (e.g. fully connected neural networks, convolutional neural
networks, recurrent neural networks, and generative adversarial networks) while discussing
neuromorphic photonics wherein meta-atoms can be used to physically construct neural networks
for optical computing. Chapter 11 examines the use of deep neural networks in the design
synthesis of artificial electromagnetic materials. For both forward and inverse design paradigms,
the major fundamental challenges of design within that paradigm, and how deep neural networks
have recently been used to overcome these challenges are presented. Chapter 12 introduces the
framework of machine learning-assisted optimization (MLAO) and discusses its application to
antenna and antenna array design as a way to overcome the limitations of traditional design
methodologies. Chapter 13 summarizes the basics of uniform and non-uniform array processing
using kernel learning methods which are naturally well adapted to the signal processing nature of
antenna arrays. Chapter 14 describes a procedure for improved-efficacy electromagnetic-driven
global optimization of high-frequency structures by exploiting response feature technology
along with inverse surrogates to permit rapid determination of the parameter space components
while rendering a high-quality starting point, which requires only further local refinement.
Chapter 15 introduces four DL techniques to reduce the computational burden of high contrast
inverse scattering of electrically large structures. These techniques can accelerate the process of
reconstructing model parameters such as permittivity, conductivity, and permeability of unknown
objects located inside an inaccessible region by analyzing the scattered fields from a domain of
interest. Chapter 16 describes various applications of DL in the classification of radar images such
as micro-Doppler spectrograms, range-Doppler diagrams, and synthetic aperture radar images for
applications including human motion classification, hand gesture recognition, drone detection,
vehicle detection, ship detection, and more. Finally, Chapter 17 explores the use of Koopman
autoencoders for producing reduced-order models that mitigate the computational burden of
traditional electromagnetic particle-in-cell algorithms, which are used to simulate kinetic plasmas
due to their ability to accurately capture complicated transient nonlinear phenomena.

�

� �

�

xxviii Preface

We owe a great debt to all of the authors of each of the 17 chapters for their wonderful contribu-
tions to this book, which we believe will provide readers with a timely and invaluable reference to
the current state-of-the-art in applied AI and DL in electromagnetics. We would also like to express
our gratitude to the Wiley/IEEE Press staff for their assistance and patience throughout the entire
process of realizing this book – without their help, none of this would be possible.

June 2023 Sawyer D. Campbell and Douglas H. Werner
Department of Electrical Engineering
The Pennsylvania State University
University Park, Pennsylvania, USA

�

� �

�

1

Section I

Introduction to AI-Based Regression and Classification

�

� �

�

�

� �

�

3

1

Introduction to Neural Networks
Isha Garg and Kaushik Roy

Elmore School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA

The availability of compute power and abundance of data has resulted in the tremendous success of
deep learning algorithms. Neural Networks often outperform their human counterparts in a vari-
ety of tasks, ranging from image classification to sentiment analysis of text. Neural networks can
even play video games [1] and generate artwork [2]. In this chapter we introduce the basic con-
cepts needed to understand neural networks. The simplest way to think of how these networks
learn is to think of how a human learns to play a sport, let’s say tennis. When someone who has
never played tennis is put on a court, it takes them just a few volleys to figure out how to respond
to an incoming shot. It might take a long time to get good at a sport, but it is quite magical that
only through some trial and error, we can learn how to swing a racquet to a tennis ball heading
our way. If we were to write a mathematical model to calculate the angle of swing, it would require
many complicated variables such as the wind velocity, the incoming angle, the height from the
ground, etc. Yet, we just learn from real-life examples that swinging a particular way has a partic-
ular impact, without knowing these variables. This implicit learning from examples is what sets
machine learning models apart from their rule-based computational counterparts, such as a calcu-
lator. These models learn an implicit structure of the data they see without any explicit definitions
on what to look for. The learning is guided by a lot of examples available with ground truth, and
the models learn what is needed from these datapoints. Not only do they learn the datapoints they
have seen, they are also able to generalize to unseen examples. For instance, we can train a model
to differentiate between cats and dogs with, say, 100 examples. Now when we show them new
examples of cats that were not present in the training set, they are still able to classify them correctly.
There are enormous applications of the field, and a lot of ever-evolving subfields. In Section 1.1,
we introduce some basic taxonomy of concepts that will help us understand the basics of neural
networks.

1.1 Taxonomy

1.1.1 Supervised Versus Unsupervised Learning

In the unsupervised learning scenario, datapoints are present without labels. The aim is to learn
an internal latent representation of data that catches repeated patterns and can make some deci-
sions based on it. By latent representations, we mean an unexposed representation of data that is
no longer in the original format, such as pixels of images. The hope is that repetition magnifies

Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning, First Edition.
Edited by Sawyer D. Campbell and Douglas H. Werner.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.

�

� �

�

4 1 Introduction to Neural Networks

the significant aspects of images, or aids in learning compressed internal representations that can
remove noisy artifacts or just learn lower dimensional representations for compressed storage, such
as in AutoEncoders [3]. An advantage of having a meaningful latent space is that it can be used
to generate new data. Most concepts covered in this chapter pertain to discriminatory models for
regression or classification. However, in models such as Variational AutoEncoders [4], the latent
space can be perturbed in order to create new data that is not present in the dataset. These mod-
els are called generative models. Unsupervised learning problems are harder and an active area of
research, since it removes the need to label data. In this chapter, we will stick to supervised learning
problems of the discriminatory kind.

1.1.2 Regression Versus Classification

The kind of output expected from a supervised learning discriminatory task dictates whether the
problem is one of regression or classification. In regression, the output is a continuous value, such
as predicting the price of a house. In classification, the task corresponds to figuring out which of the
predefined classes an input belongs to. For example, determining whether an image is of a cat or a
dog is a two-class classification problem. In this chapter, we will give examples of both regression
and classification tasks.

1.1.3 Training, Validation, and Test Sets

An important concept in deep learning is that of inference versus training. Training is the method
of determining the parameters of a model. Inference is making a prediction on an input once the
training is complete. When we have a dataset, we can have many different resulting models and
predictions for the same query, depending on initialization and the choice of some tunable param-
eters, which are called hyperparameters. This means we need a way of testing different models. We
cannot test on the same data as that used for training, since models with enough complexity tend to
memorize training data, leading to the problem of overfitting. Overfitting can be mitigated by using
regularization techniques, discussed later. To avoid memorizing data, there is a need to partition
the entire set of data into a training and a testing set. We choose a certain value of the hyperparam-
eters and train on the training dataset, get a trained model, and then test it on the testing dataset to
get the final reported accuracy. However, this is not the best practice. Let’s say a particular choice
of hyperparameters did not yield good testing accuracy, and hence we alter these hyperparameters
and retrain the model until we get the best testing accuracy. In this process, we are overfitting to
the testing set, because we, as the hyperparameter tuners, are exposed to the testing accuracy. This
is not a fair generalized testing scenario. Thus, we need a third partition of the data, called the val-
idation set, upon which the hyperparameters should be tuned. The testing set is shown only once
to the final chosen model, and the accuracy obtained on that is reported as the models final accu-
racy. A commonly used split percentage for the dataset is 70%-15%-15% for training, validation, and
testing, respectively.

The rest of this chapter is organized as follows. We first introduce linear regression models in
Section 1.2 and then extend them to logistic classification in Section 1.3. These sections make up
the base for the neurons that serve as building blocks for neural networks. In each section, we intro-
duce the corresponding objective functions and training methodologies. Changes to the objective
function to tackle overfitting are discussed in Section 1.4. We then discuss stacking neurons into
layers and layers into fully connected neural networks in Section 1.5. We introduce more com-
plex layers that make up convolutional neural networks in Section 1.5 and conclude the chapter in
Section 1.6.

�

� �

�

1.2 Linear Regression 5

1.2 Linear Regression

In this section, we consider a supervised regression problem and explore a simple technique that
makes the assumption of linearity in modeling. The canonical example often used to explain this is
that of predicting the price of a house. Let’s say that you are a realtor with a lot of experience. You
have sold a lot of houses and maintain a neat log of all their details. Now you get a new house to
sell and need to price it based on your experience with all the previous houses. If you were going
to do this manually, you might consider all your records and look for a house that is “similar” to
the one that you have sold and give an estimate close to that. This is similar to what a nearest
neighbor algorithm would do. But we are going to go a step further and use a linear model to fit a
high dimensional curve as best as we can to the data of the old houses, and then determine where
a new house would perform according to this model.

Being a diligent realtor, you noted all the features you thought were relevant to the price of a
house, such as the length of the house, the width of the house, the number of rooms, and the zip
code. Let’s say, you have D such features, and N such houses in your log. One can imagine each
house as a point in D dimensional space. We have N such points, and the problem of regression
essentially reduces to the best curve we can fit to this data. Since we are assuming a linear model,
we will try and fit a line to this data. The hypothesis underlying the model can be denoted as h(𝜽),
with 𝜽 being the parameters to be learned. The equation for this model for a single datapoint, x,
thus becomes:

ŷ = h(𝜽, x) = 𝜃0 + 𝜃1x1 + 𝜃2x2 + · · · + 𝜃DxD (1.1)

We can write this in abridged form using matrix or vector multiplication. Each house is rep-
resented as a D-dimensional vector, and all the N houses together can be concatenated into the
columns of an D × N matrix, X. Since 𝜃0 does not multiply with any input, it is known as the bias,
denoted by b. The remaining parameters are denoted by the matrix 𝜽.

ŷ = h(𝜽,X) = 𝜽TX + b (1.2)

We use parameters and weights interchangeably to refer to 𝜽. For the single point case, 𝜽 and X
are D-dimensional vectors and b and ŷ are scalar values. For multiple points, X ∈ RD×N, 𝜽 ∈ RD×𝟏,
b is a scalar repeated for each sample, and the output is a value for each sample, i.e. ŷ ∈ RN . Often,
for ease of notation, b is absorbed into 𝜽, with a corresponding 1 appended to each datapoint in X
so that the equation is simplified to ŷ = 𝜽TX. 𝜽 is the matrix that takes inputs from D-dimensional
input space to the output space, which in this case is one-dimensional, the price of the house. This
equation is shown pictorially as a single node, also called a neuron, in Figure 1.1.

Figure 1.1 A simple linear model that takes
as input a D dimensional feature vector and
predicts a single dimensional output, in this
case, price. The linear hypothesis is shown.

1

Size

#bedrooms

Zip code

Wealth

.

.

.

x1 θ1

θ0 = b

y (price)ˆ

y = h(θ)ˆ

θD

θ2

θ3

x2

x3

xD

= θ1x1 + θ2x2 + ... + θDxD + b

�

� �

�

6 1 Introduction to Neural Networks

5000

50

100

150

200

250

1000 1500 2000

hθ(x) = θ0 + θ1x

Linear regression with one variable.

Price ($1000)

2500

1650 ft.2

$170k

Figure 1.2 Linear Regression with one variable for
visualization purposes. The task of regression can be
viewed as fitting the best curve to the data. Since we
assume linear models, we show the best fit line. Inference
of a single point is shown; when a new data point comes
in, we can predict its price by seeing where it lies on the
line.

Since D dimensional space is really hard to imagine and pictorially represent, for the sake of
visualization, we assume D= 1 in Figure 1.2. This means that we have only one feature: that of,
say, square feet area. We can imagine all the points laid out on the 2D space with the X-axis being
the area feature value, and the Y -axis representing the price that the house sold for. The true data
distribution might not be linear, and hence the datapoints might not match the best fit line as
shown in the figure. The mismatch between these points from the line is called the training error,
also referred to as cost or loss of the model. The error between the testing points and their true value
is correspondingly referred to as testing error. Note that during inference, the parameters are held
constant and Eq. (1.2) can be written as a function of X alone. However, we need to train this model,
i.e. we need to learn the parameters 𝜽 such that the predicted output matches the ground truth. In
order to find such𝜽, we employ objective functions which minimize the expected empirical training
error.

1.2.1 Objective Functions

An objective function, as apparent from the name, is a mathematical formulation of what we want
to achieve with our model. The objective function is also called the loss function or the cost func-
tion, since it encapsulates the costs or losses incurred by the model. In the linear regression model
shown above, we want the prediction to align with the ground truth price of the house. In the case
of classification, the objective would be to minimize the number of misclassifications.

In the example of predicting the house price, a possible objective function is the distance between
the best fit curve and the ground truth. The distance is often measured in terms of norm. The
Lp-norm of an n-dimensional vector is defined as:

||x||p = (|x1|p + |x2|p + · · · |xn|p)1∕p (1.3)

Commonly used norms are p = 1 and p = 2, which translate to Manhattan (L1) and Euclidean
(L2) distance, respectively. Let’s assume our objective is to minimize the L2 distance between the
predicted house price ŷi and the ground truth value yi for all the N samples of houses in our log.
The datapoint specific cost is averaged into the overall cost, depicted by J(𝜽).

ŷi = 𝜽
Txi + b (1.4)

J(𝜽) = 1
n

N∑
i=1

||ŷi − yi||22 (1.5)

where for any vector a, ||a||2 =
√∑

j
a2

j (1.6)

�

� �

�

1.2 Linear Regression 7

where datapoints are indexed by the subscript i. Note that the cost is a scalar value. If the cost is
high, the model does not fit the data well. In Section 1.2.2, we discuss how to find the parame-
ters to obtain the best fit to the training data, or minimize the cost function, J(𝜽). This process is
called optimization and the commonly used method for performing this optimization is Stochastic
Gradient Descent (SGD).

1.2.2 Stochastic Gradient Descent

In Section 1.2.1, we introduced the cost function that captures the task we want our model to per-
form. We now discuss how this cost function is used in training, to find the right parameters for the
task. Most cost functions used in neural networks are much more complicated and non-convex,
and we used Stochastic Gradient Descent to minimize them. Hence, even though the cost function
we discussed for linear regression is convex and can be minimized analytically, we explore how to
utilize gradient descent to minimize it. The analogy used to understand gradient descent is usually
one of a hiker finding themselves blindfolded on a hill, and trying to find their way to the bottom
of the hill. In this analogy, the hill refers to the landscape of the loss function such that the height
corresponds to the cost. At the bottom of the hill lies the minima, corresponding to the optimized
set of weights that minimize the cost function and achieve the objective. The hiker in question,
which represents the set of current weights, desires to move down the hill iteratively, until they
reach the minima or close enough to it. A two-dimensional loss landscape (with two weights) is
shown in Figure 1.3.

–3
–2
–1
0
1
2
3

–3
–2
–1
0
1
2
3

J(θ0, θ1)

J(θ0, θ1)

θ0

θ1

00.10.20.30.40.50.60.70.80.91

θ0 00.10.20.30.40.50.60.70.80.91

0
0.2

0.4
0.6

0.8
1

θ1

0
0.2

0.4
0.6

0.8
1

Figure 1.3 A non-convex loss landscape with multiple different local minimas. Different initializations and
hyperparameters can result in convergence to different minimas.

�

� �

�

8 1 Introduction to Neural Networks

The hiker has two immediate questions to answer: in which direction should they step, and how
long should the step be (or equivalently, how many steps) in that direction. The latter is called the
learning rate, denoted by 𝛼. Right away, it is easy to see that too small a step will take too long
to get to the minima, and if too large, it is possible to completely miss the minima and instead
diverge away as shown in Figure 1.4. In addition, the landscape may not be convex and too small a
learning rate can get stuck in local minimas, which can be hard to get out of. The learning rate is a
hyperparameter, and is often decayed over the course of learning to smaller values to trade off the
number of iterations and the closeness to minima. The final minima that the algorithm converges
to is also dependent on the initialization, and hence the entire process is stochastic in nature, and
we can get many different sets of weights (corresponding to different local minimas) upon training
the same model multiple times, as shown in Figure 1.3.

Now, let’s consider the direction of descent. The quickest way to the bottom is via the direction
of steepest descent, which is the negative of the gradient at that point. Let’s take a deeper look at
the gradient, also known as the derivative. Assume x is single dimensional, and the loss is always
a scalar value, and hence f (x) is a function from R → R. The derivative of f (x) with respect to x:

df (x)
dx

= lim
h→0

f (x + h) − f (x)
h

(1.7)

It essentially captures the sensitivity of the function to a small change in the value of x. When
x is multi-dimensional, f maps from Rd → R. In this case, we use partial derivatives, that show
the sensitivity of f(x) with respect to each dimension of x (xi), denoted by 𝜕f (x)

𝜕xi
. This computation,

however, is difficult to approximate as the change needs to be infinitesimal to calculate correctly.
The final expression for the weight update in each iteration is given by:

𝜽
(i+1) = 𝜽(i) − 𝛼 𝜕L

𝜕𝜽
(i) (1.8)

Henceforth, for clarification, the iterations will be shown as a superscript, and each sample is
shown as subscript. Let’s make this clearer with an example. Let’s return to the case of the linear
model shown in Equation (1.2), used for regression to predict house prices. Let’s assume the loss
function is a simple L2 loss, shown below.

ŷi = 𝜽
(i)T xi + b (1.9)

J = 1
2N

N∑
i=1

||ŷi − yi||22 (1.10)

In each iteration, we take the derivative of the total loss with respect to the weights, and take a
direction in the negative of the derivative, scaled by the learning rate 𝛼. The iterative weight update
can be calculated using the chain rule of derivatives, shown below:

𝜕f
𝜕x

=
𝜕f
𝜕g
𝜕g
𝜕x

(1.11)

J(θ1) J(θ1)

θ1 θ1

Figure 1.4 A pictorial representation of the role of learning
rate in convergence to a minima. Too small a step takes a long
time to reach the minima, and too big a step can diverge and
miss the minima altogether.

�

� �

�

1.3 Logistic Classification 9

We put all this together to get one iteration of weight update for the linear regression case with
L2 loss:

𝜕J
𝜕𝜽

(i) =
𝜕J
𝜕ŷi

𝜕ŷi

𝜕𝜽
(i) =

1
N

N∑
i=1

(ŷi − yi)xi (1.12)

𝜽
(i+1) = 𝜽(i) − 𝛼 1

N

N∑
i=1

(ŷi − yi)xi (1.13)

Here, N is the size of the entire training dataset. In practical scenarios, N is usually large, which
means that we cannot take a step until we have parsed all the data. In practical settings, we partition
the training dataset into minibatches of size 32, 64, 128, or 256 and take one step per minibatch. This
is called Batch Gradient Descent and helps us converge to the minima faster. The extreme case of
updating after every single data point, i.e. minibatch size = 1, is called Stochastic Gradient Descent.
This is because the underlying operations of batched gradient descent are matrix multiplications,
which can be implemented by general purpose hardwares, such as GPUs, very efficiently. The mini-
batch size is upper-bounded by the GPU memory, since the GPU has to hold the entire matrix in its
memory to perform the matrix multiplication. We generally refer to updates with minibatches as
SGD in the literature, and optimize the batchsize as a hyperparameter. Ruder [5] provides a more
detailed discussion. Advanced versions of SGD introduce concepts such as momentum to recall
past gradients, and automatically tuned parameter-specific learning rates, such as in Adagrad [6].

The standard practice also involves normalizing the input data, so that the values of all features
have similar impact. For the housing price example, the number of rooms will often be values
between 1 and 9 and area might be values in the hundreds to thousands of square feet. If the raw
values are used in the hypothesis, the area will dominate the house price, or the weight assigned to
the number of rooms would have to be really large to have a similar impact as area. To avoid this,
the features are first normalized to values between 0 and 1, and then centered by subtracting the
mean. They are also then scaled by dividing by the variance, q, a process referred to as mean-std
normalization. In practical scenarios, the input data matrix can be very high dimensional in terms
of features. This adds significant computational expense to the learning procedure. In addition, a
lot of features are correlated to each other and do not offer additional information for learning. For
example, if the features are in terms of length, width, and area, just the area is enough to capture the
concept of size. To counter this, a standard practice is feature selection, by say, Principal Component
Analysis [7], which will remove redundant features.

1.3 Logistic Classification

In Section 1.2, we considered a regression problem, that of predicting the price of a house, which is
a real valued output. Now, we look at a classification problem, with C = 2 classes. Let’s consider a
tumor classification example. Given some input feature of a tumor, one classification task could be
to predict whether the tumor is malignant (y = 1) or benign (y = 0). Let’s assume the input data,
as before, is D-dimensional. Our model is thus a mapping from RD → RC, where each of the C
parameters of the output corresponds to a score of the input belonging to that class. Let’s assume
that the same linear model still applies,

h(𝜽, xi) = 𝜽
Txi + b i = 1, 2..… ,N (1.14)

where, as before, N is the number of datapoints, x ∈ RD is the input, and the output ŷ ∈ RC. The
predicted output, ŷi, is distinct from the ground truth label, yi. The weight matrix, 𝜽, is a D × C

�

� �

�

10 1 Introduction to Neural Networks

0 (No)

Malignant?

1 (Yes)

Prediction y

tumor size x

hθ (x) = θTx

y = 1ˆ
y = 0ˆ

Figure 1.5 The linear classification model: data
with ground truth 0 shown in light gray, and for
ground truth 1 shown in dark gray. In the
classification case, the learned line, shown as the
dotted gray line, serves as a boundary, delineating
regions for each class.

matrix that takes us from the input space of data to the output space of class scores. Now, instead of
drawing the best-fit line, the task is to find the best linear boundary delineating space for each class
as shown in Figure 1.5. Additionally, we have a vector of biases, b ∈ Rc, one for each class. The
predicted output yi consists of C values and can be interpreted as the score of each class. Hence a
simple classification decision can be based on thresholding. If the output is greater than 0.5, predict
class 1; otherwise, predict class 0, as shown below:

ŷi =

{
0 if h(𝜽, xi) < 0.5

1 if h(𝜽, xi) ≥ 0.5

The single node discussed until now, also known as a neuron, is the form of the earliest percep-
tron, introduced in 1958 by Frank Rosenblatt in [8]. We mentioned that the output is interpreted as
the scores allotted to each class. A better way to understand the output is if we interpreted them as
probabilities. To do this, we have to normalize the scores to lie between 0 and 1. There are two pop-
ular ways of doing this, one via the sigmoid function, which turns linear regression/classification
into logistic regression/classification, and another via the softmax function. The sigmoid function
for a scalar value x is shown below, with the corresponding graph plotted in Figure 1.6.

𝜎(x) = ex

1 + ex = 1
1 + e−x (1.15)

The sigmoid function acts independently on each output score, and squashes it to a value between
0 and 1. While it ensures that each score lies between 0 and 1, it does not ensure that they sum
to 1. Hence, it is not strictly a probability metric. However, it comes in handy in case of classifi-
cation problems where the labels are not mutually exclusive, i.e. multiple classes can be correct
for the same sample. The pre-normalized outputs are referred to as logits, often denoted by z. The
corresponding changed hypothesis function now becomes

zi = 𝜽
Txi (1.16)

h(𝜽, xi) = 𝜎(zi) (1.17)

Sigmoid function

0.5

0

1 g(z)

Z

Figure 1.6 The graph of the sigmoid function that squashes
outputs into a range of 0 to 1.

�

� �

�

1.4 Regularization 11

The softmax function is an extension of the sigmoid. It normalizes the score of each class after
taking the scores of other classes into account. It ensures that the resulting scores sum to 1, so each
value can be interpreted as the confidence of belonging to that class. It is useful when the labels are
exclusive, i.e. only one class can be present at a time. The equation for softmax is shown below for
a vector x of dimension D:

softmax(x) = ex∑D
j=1 exj

(1.18)

where xj corresponds to the jth element in the vector x. Similar to the case with sigmoid, the new
hypothesis function now becomes:

zi = 𝜽
Txi (1.19)

h(𝜽, xi) = ŷi = softmax(zi) (1.20)

We no longer need to threshold, since the output is directly the score of the class, and the class
with the maximum probability can be predicted as the classification output. Softmax is a commonly
used last layer for typical classification problems with more complex models as well. The probability
outputs available from softmax are often used in an information-theoretic objective function, called
the cross entropy loss function. Since the outputs function as probabilities, a way of measuring the
distance between them is the Kullback–Liebler (KL) divergence [9], and is closely related to cross
entropy. For two distributions p(x) and q(x), where p is considered the true distribution, and q is
the distribution that approximates p, the cross entropy is defined by:

H(p, q) = −
∑

x
p(x) log q(x) (1.21)

In the case of a C class classification, we want to measure the error between the true distribution
yi, which is a just point mass on the correct class and zero elsewhere, and the predicted distribution
ŷi. Hence the loss for the datapoint becomes:

li = − log ŷi,yi
(1.22)

where ŷi,yi
is the predicted score of the ground truth class for sample i. To optimize this objective

function, we employ gradient descent in the direction of the derivative of this cost with respect to
the parameters, with a tunable learning rate, similar to logistic regression example.

1.4 Regularization

Let’s return to the example of predicting house prices. In Section 1.2, we tried to fit a linear line to
the data. It is possible that the best fit of the line may not fit the data well. It could be because the
underlying distribution was not linear or the linear model did not have the sufficient complexity
to fit the data. This problem is referred to as underfitting, also known as a high bias problem. One
way to fix this is to use a more complex model, such as a polynomial of degree 2. Let’s say in the
example of house price prediction, we only had length and breadth of the house of features. Having
second-degree polynomials would allow us to multiply them and have area (length × breadth) as
well as one of the features, which might give us a better fit. Taking this further, we can fit an increas-
ingly higher degree polynomial to our data, and it will in most cases end up fitting our training data
near perfectly. However, this near-perfect fit of training data to the complex hypothesis means that

�

� �

�

12 1 Introduction to Neural Networks

θ0 + θ1x θ0 + θ1x + θ2x2 θ0 + θ1x + θ2x2 + θ3x3 + θ4x4

Under fitting (high bias) Over fitting (high variance)“Good” fitting

Price y Price y Price y

Size x Size x Size x

Figure 1.7 Different complexity models can fit the data to different degrees. Too simple a model cannot
explain the data well and underfits. Too complex a model memorizes the data and overfits the training set.

the model is memorizing the data, in which case it would not generalize well to the testing or the
validation set. This is shown as overfitting in Figure 1.7, also referred to as a high variance problem.

The cost functions used in practical scenarios are highly non-convex, which means there are
many local minimas and non-unique sets of weights that the optimization process can converge
to, as shown in Figure 1.3. We can encode preferences for certain kinds of weights by expanding
the cost function. Since complex models often overfit the data, hurting their generalization per-
formance, we wish to encode a preference for simpler models. By simpler models, we mean those
in which no one weight or parameter has the capability to largely effect the cost by itself. A sim-
ple way to achieve this is to minimize the Lp norm of all the weights [10]. This means that as any
weight grows large, a large value is added to the cost function, which is not preferred since the
objective is to minimize this cost function. Thus, the minimization procedure would naturally pre-
fer smaller weights. A common form is to add the L2 norm of weights as a regularization objective
to the original cost function, as shown below.

L = 1
2N

[∑
i

li + 𝜆||𝜽||22
]

(1.23)

where 𝜆 is the tradeoff parameter that decides the strength of regularization. Note that the regu-
larization function is independent of the data samples, and is just a function of the weights. Let’s
derive the weight update rule in case of the linear regression problem discussed earlier.

ŷi = 𝜽
(i)T xi (1.24)

J = 1
2N

[N∑
i=1

||ŷi − yi||22 + 𝜆||𝜽(i)||22
]

(1.25)

𝜕J
𝜕𝜽

(i) =
1
N

[N∑
i=1

(ŷi − yi)xi + 𝜆𝜽
(i)

]
(1.26)

The corresponding weight update rule is given by:

𝜽
(i+1) = 𝜽(i) − 𝛼 𝜕J

𝜕𝜽
(i) (1.27)

𝜽
(i+1) = 𝜽(i)

[
1 − 𝛼 𝜆

N

]
− 𝛼

[
1
N

N∑
i=1

(ŷi − yi)xi

]
(1.28)

�

� �

�

1.5 Neural Networks 13

1.5 Neural Networks

In Section 1.4, we introduced polynomial functions as an alternative to linear functions in order
to better fit more complex data. However, data can be high dimensional and polynomial models
suffer from the curse of dimensionality. Let’s return to the house prediction example one last time,
and assume we have D = 100 features in our input data. Let’s take a very reasonable hypothesis,
that of polynomial functions with a degree of 2. We now have O(D2) combinations in the input,
in this case, 5000. Hence, the model will also have that many extra parameters. It is common to
have millions of parameters in the input, such as images that are made of D = 224 × 224 × 3 pixels,
and this is significantly computationally prohibitive. If we expand the hypothesis to a kth order
polynomial, the features would grow by O(Dk). We would also need correspondingly larger number
of data samples that can be quite expensive to obtain. Clearly, we need different model structures
to process such complex data.

Neural networks (NNs) were introduced to counter this explosion in input dimensionality, yet
enable rich and complex learning. They stack together multiple perceptrons (or neurons) in a layer
together to aid in complex data mapping. In order to aid non-linear mapping, multiple layers are
stacked together, with non-linearities in the middle. Training NNs is a simple extension of the
chain rule of gradient descent, a process known as backpropagation. NNs have shown astound-
ing amounts of success in all forms of data ranging from images, texts, audio to medical data. We
will now discuss their structure and training in detail via the example of training on images. We
borrow a lot of the concepts from linear models to build our way up to the final neural network
structure.

The basic neuron of the NNs remains the same as in the linear regression model from the house
prediction model, shown in Figure 1.8. The input, x, multiplies with a weight represented by an
edge in the figure and denoted as before by 𝜽. The output of the neuron is 𝜽Tx.

Many of these neurons are stacked together in one layer, with each input connecting to each neu-
ron for now. This connectivity pattern results in what is referred to as a fully connected layer, as
all neurons are connected to all inputs. We will explore more connectivity patterns when we dis-
cuss convolutional neural networks. Let’s assume we have s1 such inputs and the data, as before,
is D dimensional. Therefore, the weight matrix dimensions change, 𝜽 ∈ RD×s1 . Let’s call the out-
put of each neuron as its activation, since it represents how active that neuron is, represented by
ai, i = 1, 2… s1. We can represent all activations as a vector T(j) ∈ RN

1 , corresponding to a the jth
layer.

Till now, we described the first layer, i.e. j = 1. We can stack together multiple layers, as shown in
Figure 1.9. The layers Tj, j = 1, 2 are called the hidden layer representations of the neural networks.
In each layer j, neuron i produces activation a(j)

i . Each layer gets a bias, with the corresponding
input set to 1, represented by the subscript 0. Each layer’s weight matrix, connecting layer j to j + 1

Figure 1.8 Each neuron in a Neural Network essentially performs
regression.

Bias

Inputs

x0 = 1

x1

x2

x3

hθ (x)

�

� �

�

14 1 Introduction to Neural Networks

Neurons network: computation

Layer 1

input

layer

Layer 2

hidden

layer

Layer 3

output

layer

If network has sj units in layer j, sj+1 units in layer j + 1,

Then θ (j) will be of dimension sj+1 × (sj + 1)

Bias Biasx0
(2)a0

= “Activation” of unit i in layer j
(j)a
i

function mapping from layer j to layer j + 1

= Matrix of weights controlling
(j)θ

(2)a1

(3)a1
(2)a2

(2)a3

x1

x2

x3

= g ((2)a1 +(1)θ1,0
x0

(1)θ1,1
x1 + (1)θ1,2

x2 + (1)θ1,3
x3)

= g ((2)a2 +(1)θ2,0
x0

(1)θ2,1
x1 + (1)θ2,2

x2 + (1)θ2,3
x3)

= g ((2)a3 +(1)θ3,0
x0

(1)θ3,1
x1 + (1)θ3,2

x2 + (1)θ3,3
x3)

= g (+(2)θ1,0
a0

(2)θ1,1
a1 + (2)θ1,2

a2 + (2)θ1,3
a3)

(3)a1hθ(x) =

Figure 1.9 A three-layer neural network with the corresponding activation shown.

is denoted by 𝜽(j) ∈ Rsj×sj+1 . The equation for the two hidden-layered NN shown in Figure 1.9, is
expressed by:

T(1) = 𝜽(1)Tx (1.29)

T(2) = 𝜽(2)TT(1) (1.30)

= (𝜽(2)T ⋅ 𝜽(1)T)x (1.31)

= 𝜽(3)Tx (1.32)

where 𝜽(3) = 𝜽(1)𝜽(2) (1.33)

Equation (1.32) implies that stacking two layers with s1 and s2 adds no extra complexity than a
single layer with just s2 neurons. This is due to linearity of matrix multiplications: sequential multi-
plication with two matrices can be denoted as multiplication with a different matrix. We avoid this
by adding a non-linearity after each neuron. As discussed earlier, this linearity could be sigmoid,
or the more commonly used ReLU, a Rectified Linear Unit. ReLU returns 0 for all inputs less than
0, and passes the input unaltered after 0, and became the default choice for non-linearity after its
success in [11]. Let’s represent the choice of non-linearity by g(.), and Equations (1.29)–(1.33) are
updated as follows:

T(1) = g(𝜽(1)Tx) (1.34)

T(2) = g(𝜽(2)TT(1)) (1.35)

= g(𝜽(2)Tg(𝜽(1)Tx)) (1.36)

≠ g(𝜽(3)T)x, for some 𝜽(3) (1.37)

The forward pass of the input through all layers, generating activations at each neuron and rep-
resentations at each layer, right up to the cost is called a forward pass or forward propagation. Let’s
explore this with the multi-class classification example shown in Figure 1.10. In this case, we get an
input image and have to predict which class the image belongs to: pedestrian, car, motorcycle, or
dog. Earlier we had binary classification, and we only need a single neuron to perform that, since
we can threshold on its output. But if we have C classes, we need C neurons in the last layer, cor-
responding to the C scores for each class. The ground truth labels are now interpreted as one-hot
vectors, i.e. yi ∈ RC, where all elements of yi are 0 except the true label, which is a 1 as shown in
the figure. Each neuron still performs a one versus all binary classification. For example, the last

�

� �

�

1.5 Neural Networks 15

Pedestrian

Pedestrian ?
When pedestrianWant hθ (x) =

hθ (x) ∈ ℝ4

Want hθ (x) =

Want hθ (x) =

1

1

1

0
0
0
0

0
0
0
0

0

When car

When motorcycle,

,

,

Car ?

Dog ?

Car Motorcycle

Motorcycle ?

Each output neuron performs a binary classification task.

Dog

Figure 1.10 Using a NN to perform a 4 class classification task. Source: Sergey Ryzhov/Adobe Stock;
Moose/Adobe Stock; brudertack69/Adobe Stock.

neuron in the last layer corresponding to truck class essentially predicts the confidence of the image
containing a truck versus not containing a truck. In this form, all the layers of the NN until the last
layer perform some sort of feature extraction. This feature vector corresponding to each input is fed
into the last layer, which serves as the classifier.

Let’s look at the cost function for this example. Let’s assume there are L layers in the NN. Each
layer has sl l = 1, 2,…L neurons. There are N training samples shown as pairs of input and ground
truth labels: (xi, yi), i = 1, 2, .…N. The previous equations showed how to forward propagate the
input to all layers. The activation of layer l is represented by T(l). The last layer logits are therefore
T(L). Similar to logistic classification, the logits represent unnormalized scores for classes and will
be passed through a softmax function for a cross entropy objective function.

ŷi = softmax(T(L)
i) (1.38)

J(𝜽) =
C∑

c=1
yi log ŷi,c (1.39)

= − log ŷi,yi
(1.40)

The ground truth label yi is one-hot encoded; hence, it only has one non-zero element corre-
sponding to the ground truth class, getting rid of the sum in equation 1.39. The regularization
term, if included, would be the L2 norm of all the weights for all layers in the neural network.

We now show how to train all the layers simultaneously. We discussed how the forward pass
generates activations at all the intermediate layers, and the loss to be optimized as the objective
function. The gradient of the loss for optimization is first calculated at the last layer which has
direct access to the cost function, and then flows backward to each parameter using the chain rule.
This process is called a backward pass or backward propagation. The weight update rule remains
the same for all neurons as earlier with their respective gradients. Let’s look at the gradient for the
weights in layer j, represented by 𝜽(j). For ease of notation, we return to the case of three layers and
revisit the corresponding forward pass that was described in equations 1.36 for an input xi.

T(𝟏)
i = g(𝜽(1)Txi) (1.41)

T(𝟐)
i = g(𝜽(2)TT(𝟏)

i) (1.42)

�

� �

�

16 1 Introduction to Neural Networks

ŷi = softmax(T(𝟐)
i) (1.43)

J(𝜽) = − log ŷi,yi
(1.44)

For each of these equations, we can write the gradient rule and then string them together to get
the required gradients.

𝜕J
𝜕𝜽

(1) =
𝜕J
𝜕ŷi

×
𝜕ŷi

𝜕T(𝟐)
i

×
𝜕T(𝟐)

i

𝜕T(𝟏)
i

×
𝜕T(𝟏)

i

𝜕𝜽
(1) (1.45)

This means that NNs avoid the curse of dimensionality in input features and are able to be trained
using SGD. Stacking many such layers allows us to achieve more complex learning. This stacking
is what gave rise to the term “deep learning.” In practice, the softwares used for training NNs use
automatic differentiation, a powerful procedure that can calculate gradients quickly. Calculation of
gradients is basically matrix–vector or matrix–matrix multiplications, something GPUs are really
good at. Combining this computational power with the advent of big data has made NNs very
powerful. A particular kind of NN, called the Convolutional Neural Network, allows us to take this
even further, and we will discuss that in detail next.

1.6 Convolutional Neural Networks

The NNs introduced in section 1.5 had all layers fully connected. Since these networks regularly
deal with high dimensional data, the weight matrices for the fully connected layers can grow quite
large. To counter this, we utilize a special class of NNs, called Convolutional Neural Nets, or CNNs,
which are particularly useful for extracting features from image and audio data. Additionally, each
pixel in the image domain does not form a feature by itself. Quite often a group of neighboring
pixels form features relevant to concepts in images that might help make classification decisions,
for examples. This informs the connectivity pattern shift from fully connected into convolutional
styles

Convolutional neural networks were first introduced in [12] for document character recogni-
tion. This network, called Le-Net, performed really well on a handwritten digit dataset, known
as MNIST [13]. Since then, there have been many complex networks and datasets introduced.
The dataset used for characterizing real-life images is made of millions of 224 × 224 × 3 resolu-
tion images, known as ImageNet [14]. The state-of-the-art performance on this dataset is held by
powerful networks like ResNets [15] and Vision Transformers [16]. These networks are trained and
follow the same inference methodology as NNs, discussed in Section 1.5. However, they differ in the
structure of layers. An example of one such CNN structure is shown in Figure 1.11. The first layer
in this example is a convolutional layer, made up of convolutional kernels that act on the input.
The output of this layer is referred to as feature maps. Often, convolutional layers are followed
by subsampling layers to reduce the dimensionality of the maps. The [conv-maxpool] struc-
ture repeats for a while, ending with one or more fully connected layers. The last layer is the fully
connected classifier, which acts upon the extracted features to make the classification decision.

An important concept is that of the receptive field. The receptive field of a kernel is the size
of input it accesses. Hence, for the first layer, it is directly the size of the kernel. But as shown
in Figure 1.11, each layer takes as input the output of the previous layer, and hence each layer’s
receptive fields translate backward into larger areas of input. This implies that the receptive field
grows as we go deeper into the network. In Section 1.6.1, we discuss some of the layers that make
up CNNs, and their functionality.

�

� �

�

1.6 Convolutional Neural Networks 17

Input image
Feature Maps

F. Maps

F. Maps

F. Maps
Output

Convolution
Convolution

Subsampling
Subsampling

Figure 1.11 A simple CNN structure made of convolutional, subsampling and fully connected layers.

1.6.1 Convolutional Layers

Convolutional layers derive their name from the convolutional operation in signal processing, with
the exception that the kernel is not flipped as it passes over the input (and hence, it is actually
performing correlation instead of convolution). Let’s first consider the simplified one-dimensional
convolution operation that occurs between a kernel and a single channel input. A convolutional
kernel acts on a patch of the input the same size as the kernel. This is shown in Figure 1.12. The
input image, I, and the kernel, K, both have a single channel in this example. Let’s assume we have
a kernel of size 3 × 3, shown using binary values. The full input is larger sized, but only a 3 × 3
patch is taken, as highlighted. A dot product is performed between the image patch and the kernel,
which is just element-wise multiplication as expanded above the arrow. The resulting value of 2
is the first pixel of the output feature map. The next patch that convolves with the kernel happens
when the highlighted 3 × 3 slides over to the right. The amount of pixels it moves to the right is
known as stride. A stride of 1 is shown in the figure. The same dot product repeats on the slided
patch to give the next output of 1. This 3 × 3 window slides over the entire image, giving rise to the
entire feature map shown on the right in Figure 1.12.

(I * K) =

1.0 + 1.0 + 1.1
+1.1 + 0.0 + 0.0
+1.0 + 0.1 + 0.1

1 1 1 1 1 1

1 1 1 1

Image

Convolutional

Kernel Feature map1 1

=

1 0 0 0 0
0 0 1

12 21

01 20

01 20

23 32

1 0 0

0 1 1

1

1 0 0 0 0 1

1 0 0 0 0 1

1 0 0 0 0 1

Toy example (3 × 3 kernel)

Figure 1.12 The operations involved in convolution are shown. The highlighted part of the input is the
patch the kernel convolves with to give a single output in the feature map. This window then slides over
the entire image resulting in the whole feature map. Source: DAVID CARREON/Adobe Stock.

�

� �

�

18 1 Introduction to Neural Networks

Image
Input channels

C(1,1)Cr(1,1)
∑

f(C(1,1))

Output feature maps

Kernels

Cg(1,1)Cb(1,1)

Figure 1.13 One input patch of the image of the same size as the kernel convolves with all channels of
one kernel to give rise to a single pixel in the output feature map. Source: DAVID CARREON/Adobe Stock.

Now let us look at what happens with multi-channeled inputs and multiple kernels. Figure 1.13
shows the first convolutional layer. In this case the input, X, is an RGB image, and hence, has 3
channels, 1 for each color. Let’s assume the image height and width are Hi and Wi respectively.
Hence X ∈ RHi×Wi×3. The kernels are usually square, let’s say of size Ki × Ki × 3. In Figure 1.13,
the image is shown expanded into its 3 different channels. Correspondingly 4 different kernels
are shown stacked one upon the other, with the 3 channels for each kernel expanded vertically.
The first kernel, with its 3 channels, convolves with a similarly sized 3 × 3 patch of the input, and
the resulting convolution outputs one pixel. As shown in the image, each channel of the kernel
convolves with the corresponding channel of the input. The kernel then slides over by the value of
stride to the next patch in the input, creating the next pixel in the feature map. This computation
can be performed in parallel for each kernel, with different kernels adding pixels to the depth of the
feature map. Hence, if there are M kernels in the layers (M = 4 in this example), the output feature
map will have a depth of M. This convolution process repeats for later layers, where the input is
now the feature maps from previous layers.

Ultimately when the learning is complete, the convolutional kernels learn features relevant to
recognizing objects in images. The early layer filters respond to edges and color blobs, but later
layers build upon these simpler features and learn more complex features, responding to concepts
like faces and patterns. The intuition behind sliding the same kernel across the image is that in
images, a feature could be located at any part of the image, such as the center or the bottom left
or top right. This connectivity pattern encodes a preference for feature location invariance into
the CNN. The size and number of convolutional filters, along with the stride are hyperparameters,
along with the total number of layers.

1.6.2 Pooling Layers

Pooling layers, also known as subsampling layers, are useful to reduce the size of the feature maps
resulting from convolutions. There are two typical pooling types: max pooling and average pooling.
Let’s say we have pooling kernels of size 2 × 2. Similar to the convolutional kernels, pooling kernels
will slide over the image in blocks of size of size 2 × 2, with the prescribed stride. Each block will
result in one output. For max pool the output would be the maximum of the 4 values in the 2 × 2

�

� �

�

1.6 Convolutional Neural Networks 19

Toy example (2 × scaling)

Max pooling

2

2 21 1

1 20 0

1 20 0

3 32 2
1 5/4

2

Average pooling

Figure 1.14 The output of max and average pooling applied to blocks of size 2 × 2.

block, and for average pooling, it would be the average of all 4 values, as shown in Figure 1.14. This
subsampling introduces some robustness or slight invariance to the feature extraction as well: if a
feature is detected at a particular location or a slightly shifted location (with a receptive field of the
surrounding 3 values), the output is the maximum or average detection in that region.

1.6.3 Highway Connections

The first CNNs were made of repeating blocks of convolutional layers followed by pooling layers.
However, many such blocks were needed to learn complex features. Going too deep results in the
problem of vanishing gradients. As gradients backpropagate from the classifier backwards through
all the layers, they tend to shrink in magnitude such that the earlier layers get very small gradients
and hence, may not be able to learn much. To solve this problem, ResNet [15]-style architectures
were introduced that utilize shortcut, highway, or residual connections between the outputs of
multiple layers. The output of normal convolution and the highway convolution get concatenated.
Hence, when the gradient flows backward, there is a strong gradient flowing back to the earlier
layers via the means of these highway connections.

1.6.4 Recurrent Layers

Until now, we have only introduced feedforward layers, layers that only pass an input in one direc-
tion. Sometimes, it is useful for layers to have recurrent connections [17], that is layers that are also
connected to themselves. This helps a lot in sequential learning, where any output is dependent
on the previous outputs, such as in text or video frames. Recurrent networks were introduced to
hold some memory of previous inputs by introducing self-connected layers. To train them, how-
ever, backpropagation had to unroll the network “in time,” resulting in a very large network. This
unrolling causes RNNs to suffer from the same problem of vanishing gradients that very deep net-
works suffered from without highway connections. To counter such problems, Long Short Term
Memory Networks (LSTMs) [18] were introduced, which have proven successful at sequence learn-
ing tasks. An emerging paradigm of networks that incorporate inherent recurrence are networks
that mimic the spike-based learning that occurs in mammalian brains, known as spiking neural
networks (SNNs) [19, 20]. They operate on spikes, which can be thought of events that occur when
something changes. They accumulate spikes over time to make any inference and use integrate and

�

� �

�

20 1 Introduction to Neural Networks

fire neurons. Each neuron activates spikes when the accumulated spikes crosses a threshold. These
are particularly useful in the case of event-driven sensors that naturally emit data as a time series
of spikes. However, they can be used with static data such as images as well, by encoding the pixel
intensity in say, the number of spikes over a certain time or the time between subsequent spikes.

There have been many more networks that have grown to billions of parameters in size. They are
being utilized for a plethora of tasks, outperforming humans at quite a few of them. A lot of ongoing
research focuses on making networks more accurate, making training faster, introducing more
learning complexity and generalizability across a range of tasks and newer application domains.
We encourage readers to seek out some interesting state-of-the-art challenges or domains of interest
and explore state-of-the-art methods in those areas.

1.7 Conclusion

In this chapter, we endeavored to introduce some concepts of machine learning that help us
build an intuition for understanding the nuts and bolts of neural networks. We introduced neural
networks and convolutional neural networks that have shown tremendous success in many deep
learning applications. We showed objective functions that encapsulate our learning goals and
how backpropagation can be used to train these networks to achieve these objective. This is a
fast-evolving field with applications in nearly every domain. We encourage readers to utilize this
as a base and find their application of choice and dive into how deep learning can be utilized to
revolutionize that area.

References

1 Mnih, V., Kavukcuoglu, K., Silver, D. et al. (2013). Playing Atari with deep reinforcement learn-
ing. CoRR, abs/1312.5602. http://arxiv.org/abs/1312.5602.

2 Ramesh, A., Dhariwal, P., Nichol, A. et al. (2022). Hierarchical text-conditional image genera-
tion with clip latents. https://arxiv.org/abs/2204.06125.

3 Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www
.deeplearningbook.org.

4 Kingma, D.P. and Welling, M. (2013). Auto-encoding variational bayes. https://arxiv.org/abs/
1312.6114.

5 Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747.

6 Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research 12 (7): 2121–2159.

7 Karl Pearson, F.R.S. (1901). LIII. On lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2 (11):
559–572. https://doi.org/10.1080/14786440109462720.

8 Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organi-
zation in the brain. Psychological Review 65 (6): 386.

9 Kullback, S. and Leibler, R.A. (1951). On information and sufficiency. The Annals of Mathemati-
cal Statistics 22 (1): 79–86.

10 Ng, A.Y. (2004). Feature selection, L1 vs. L2 regularization, and rotational invariance. Proceed-
ings of the 21st International Conference on Machine Learning, p. 78.

http://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2204.06125
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://doi.org/10.1080/14786440109462720

�

� �

�

References 21

11 Nair, V. and Hinton, G.E. (2010). Rectified linear units improve restricted Boltzmann machines.
ICML.

12 LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86 (11): 2278–2324.

13 Deng, L. (2012). The MNIST database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine 29 (6): 141–142.

14 Deng, J., Dong, W., Socher, R. et al. (2009). ImageNet: a large-scale hierarchical image database.
2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE.

15 He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition.
CoRR, abs/1512.03385. http://arxiv.org/abs/1512.03385.

16 Dosovitskiy, A., Beyer, L., Kolesnikov, A. et al. (2020). An image is worth 16x16 words: trans-
formers for image recognition at scale. CoRR, abs/2010.11929. https://arxiv.org/abs/2010.11929.

17 Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). Learning internal representations
by error propagation. Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Vol. 1: Foundations MIT Press Cambridge, MA, USA. 318–362.

18 Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation 9 (8):
1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.

19 Pfeiffer, M. and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities and chal-
lenges. Frontiers in Neuroscience 12. https://doi.org/10.3389/fnins.2018.00774.

20 Roy, K., Panda, P., and Jaiswal, A. (2019). Towards spike-based machine intelligence with
neuromorphic computing. Nature 575: 607–617.

http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2010.11929
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3389/fnins.2018.00774

�

� �

�

�

� �

�

23

2

Overview of Recent Advancements in Deep Learning and Artificial
Intelligence
Vijaykrishnan Narayanan1, Yu Cao2, Priyadarshini Panda3, Nagadastagiri Reddy
Challapalle1, Xiaocong Du2, Youngeun Kim3, Gokul Krishnan2, Chonghan Lee1, Yuhang Li3,
Jingbo Sun2, Yeshwanth Venkatesha3, Zhenyu Wang2, and Yi Zheng1

1School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, USA
2School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
3School of Engineering & Applied Science, Yale University, New Haven, CT, USA

Symbols and Acronyms

AE autoencoders
BPTT backpropagation through time
CTMC continuous time Markov chain
CNN convolutional neural network
DTMC discrete-time Markov chain
DCSM distinct class based splitting measure
GNN graph neural network
GAE graph autoencoders
HBPL hierarchical Bayesian program learning
LSTM long-short term memory
ML machine learning
MCMC Markov chain Monte Carlo
MLE maximum likelihood estimation
MLP multi-layer perceptron
NAS network architecture search
OSL one-shot learning
PCA principal component analysis
RNN recurrent neural networks
RL reinforcement learning
RBL restricted Boltzmann machine
STDP spike-timing-dependent plasticity
SNN spiking neural network
SGD stochastic gradient descent
SVM support vector machine
VPRSM variable precision rough set model
ZSL zero-shot learning

Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning, First Edition.
Edited by Sawyer D. Campbell and Douglas H. Werner.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.

�

� �

�

24 2 Overview of Recent Advancements in Deep Learning and Artificial Intelligence

2.1 Deep Learning

Artificial intelligent (AI) systems have made profound impact on the entire society in the recent
years. AI systems have achieved parity or even exceeding capabilities of humans in specialized
tasks such as extracting visual information from images through object detection [1], classification
[2, 3], and caption generation [4, 5]. The rapid adoption of machine learning (ML) approaches has
been driven by the availability of large data sets available for training and the access to increased
computational power provided by a new generation of machine learning hardware. Consequently,
deep neural networks have become almost synonymous with AI systems in common parlance.
The word cloud in Figures 2.2 and 2.3 emphasizes this trend where deep neural networks have
emerged as the dominant. However, AI techniques and models are much more diverse than deep
neural networks and were typically studied in the context of signal processing systems before the
advent of deep neural network era. The word cloud in Figure 2.1 from work prior to 2016 shows
this diversity.

This chapter will review the different styles of machine learning approaches. Figure 2.4 shows the
taxonomy of machine learning showing different techniques. Intelligence cannot be measured by

Figure 2.1 Wordcloud from 1990 to 2016.

Figure 2.2 Wordcloud from 2017 to 2021.

�

� �

�

2.1 Deep Learning 25

Figure 2.3 Wordcloud from 2020 to 2021.

Machine

learning

Conventional

SVM

MLE

MLP

CNN

RNN

LSTM

GNN

Unsupervised

Clustering

PCA

Autoencoders

Gaussian

potential

function

Kohonen

maps

Reinforcement

learning

Supervised

Markov

chains

Decision

trees

Boltzmann

machine

Simulated

annealing

Random walk

Deep

learning

Reservoir

computing

Memory
augmented
networks

Neural turing

machines

Evolutionary
machine
learning

Figure 2.4 Taxonomy of machine learning showing different techniques. Broadly machine learning is
classified into supervised and unsupervised learning.

�

� �

�

26 2 Overview of Recent Advancements in Deep Learning and Artificial Intelligence

how well a machine performs a single task or even several tasks. Instead, intelligence is determined
by how a machine learns and stores knowledge about the world [6], enabling it to handle unan-
ticipated tasks and new environments [7], learn rapidly without supervision [8], explain decisions
[9], deduce the unobserved [10], and anticipate the likely outcomes [11]. Consequently, we will
first review the category of supervised and unsupervised learning approaches. Unsupervised learn-
ing approaches are able to better adopt to novel situations without the need for large, annotated
training sets. Supervised techniques include various statistically [2, 3] and biologically inspired
models [12, 13]. Among biologically inspired models, neural network models have been a domi-
nant approach. However, neural networks also lend themselves to unsupervised learning such as
spike-timing-dependent plasticity inspired by spiking in human brain.

Recent advances in machine learning have involved the ability to learn continuously, rather than
learn all possible cases. Consider a system that needs to learn to distinguish between 1000 possible
classes to a system that is incrementally introduced to the 1000 classes. A key challenge in current
machine learning approaches is catastrophic interference when learning a new class, making the
system forget the ability to distinguish the earlier known classes [14]. Such incremental learning
approaches clearly resonate with human behavior and is also key to deployment of AI systems in
unsupervised and novel environments.

Neural machine translation approaches have enhanced the power of neural networks by
evaluating an entire sequence rather than individual elements [15]. This quest drove interest in
generative networks [16], autoencoders [17], and graph neural networks [18]. They also enabled
rapid developments in sequence to sequence translation capabilities [19]. Graph networks have
also been central to approaches that attempt to reason about machine inference [20]. This chapter
covers some of these advances.

Due to the distribution of data sources and compute resources across different nodes, AI systems
are becoming increasingly distributed [21]. The distributed nature of AI systems brings along
unique challenges in concerns such as privacy of shared data [22], security of shared models [23],
resource availability constraints at different nodes [24], and fairness in allocation of resources [25].
In this chapter, we introduce some of these distributed computing challenges.

Finally, we provide insights to the hardware advances that are enhancing the efficiency of
machine learning approaches. The chapter contains resources to tools and data repositories to
complement the learning of the topics covered here.

2.1.1 Supervised Learning

2.1.1.1 Conventional Approaches
Markov Chains A Markov chain or Markov process is a stochastic model describing a sequence of
possible events in which the probability of each event depends only on the state attained in the
previous event [26]. Two types of Markov chains exist, discrete-time Markov chain (DTMC) and
continuous-time Markov chain (CTMC). Markov chains utilize a probability distribution that is
determined by the current and past events. Hence, Markov chains possess the unique property of a
memoryless system. The probability distribution in a Markov chain is represented as a N × N matrix
with N events. Each entry (i, j) in the matrix represents the probability of the transition from the ith
to jth event. Additionally, a Markov chain also has an initial state vector, represented as an N × 1
matrix (a vector), that describes the probability distribution of starting at each of the N possible
states. Entry i of the vector describes the probability of the chain beginning at state i. Markov chains
have been used for multiple machine learning applications such as Markov chain Monte Carlo
(MCMC) [27]. MCMC models are utilized when the model does not assign a zero probability to

�

� �

�

2.1 Deep Learning 27

any state. Therefore, such models are employed as techniques for sampling from an energy-based
model [28]. But, MCMC models require a theoretical guarantee on a case-by-case basis for accurate
behavior. Other notable applications include anomaly detection [29] and time-series prediction [30]
among others.

Decision Trees Decision trees are sequential models that combine a sequence of simple tests. Each
test compares a numeric/nominal attribute against a threshold value/set of possible values [31].
Decision trees provide a more comprehensible model as compared to black-box models such as
neural networks. For a given data point, a decision tree classifies it based on the proximity to the
most frequently used class in the given partitioned region. The error rate is defined as the number of
misclassified data points to the total number of data points. The problem of constructing optimal
binary decision trees is an NP-complete problem and thus prior work has explored the efficient
heuristics for constructing near-optimal decision trees.

There are two major phases in the induction of decision trees: (i) growth phase and (ii) pruning
phase. The growth phase involves recursive partitioning of the training data resulting in a decision
tree such that either each leaf node is associated with a single class or further partitioning of
the given leaf would result in at least its child nodes being below some specified threshold. The
pruning phase aims to generalize the decision tree. The tree generated in the growth phase is
pruned to create a sub-tree that avoids over-fitting to the training data [32–34]. In each iteration,
the algorithm considers the partition of the training set using the outcome from a discrete function.
The choice of the function depends on the measure used to split the training set. After the selection
of an appropriate split, each node further subdivides the training set into smaller subsets, until
no split gains sufficient splitting measure or a stopping criterion is satisfied. Some examples of
splitting measures include information gain, gain ratio, and gini value among others [31, 35, 36].
At the same time, Wang et al. [37] presented an approach for inducing decision trees by combining
information entropy criteria with variable precision rough set model (VPRSM) and a node splitting
measure termed as distinct class-based splitting measure (DCSM) for decision tree induction [38].
The complexity of the decision tree is controlled by the stopping criteria and the pruning method
employed. Some of the common stopping criteria include all instances in the training set belonging
to a single value of y, reaching the maximum tree depth, and number of cases in the terminal node
being less than the minimum number of cases for parent nodes.

Support Vector Machine (SVM) Support vector machines (SVMs) utilize a function that separates
observations belonging to one class from another based on the patterns extracted (features) from
the training set [39]. The SVM generates a hyperplane that is used to determine the most probable
class for the unseen data. Two main objectives of an SVM include low error rate for the classification
and generalization across unseen data.

There are three stages in SVM analysis: (i) feature selection, (ii) training and testing the
classifier, and (iii) performance evaluation. A pre-requisite for training an SVM classifier includes
the transformation of the original raw training data into a set of features. The feature selection
methods can be divided into three main types, embedded methods, filter methods, and wrapper
methods. Embedding methods incorporate the feature selection into the classifier and the selection
is performed automatically during the training phase of the SVM [40, 41]. Filter methods perform
feature reduction before classification and compute the relevance measure on the training set to
remove the least important elements. The feature reduction reduces redundancy in the raw data to
increase the proportion of sample training data relative to the dimensionality of the features, aids
the interpretation of the final classifier, and reduces computational load and accelerates the model.

�

� �

�

28 2 Overview of Recent Advancements in Deep Learning and Artificial Intelligence

Finally, within wrapper methods, the classifier is trained repeatedly using the feedback from every
iteration to select a subset of features for the next iteration. The training of the SVM involves a
labeled dataset wherein each training data point is associated with a label. The training process
aims at optimizing w and b within the decision function y = w × x + b. The final stage of the
SVM analysis, performance evaluation, is done by evaluating the sensitivity, generalization, and
the accuracy. To jointly evaluate accuracy and reproducibility, permutation testing is performed,
where a hyperplane is estimated iteratively with randomly permuted class labels, across a window
of hyperparameter values, for several resampled versions of the dataset. Applications of SVMs
include neuroimaging [42, 43], cancer genomics [44], and forecasting [45] among others.

Maximum Likelihood Estimation (MLE) Maximum likelihood estimation (MLE) is the method of
estimating the parameters of a probability distribution function for observed data. To achieve
this, the likelihood function is maximized under the given probability distribution function such
that the observed data is most probable. Consider a set of k examples X = {x(1),… , x(k)}, drawn
from an independent probability distribution pdata(x). Let pmodel(x; 𝜃) be the family of probability
distributions over the same space as that of 𝜃. pmodel(x; 𝜃) maps the configuration of x to a real
number estimating the true probability of pdata(x) [28]. The maximum likelihood estimator for 𝜃
is defined as shown below:

𝜃ML = argmax
𝜃

pmodel(X; 𝜃) (2.1)

Through this, the MLE algorithm minimizes the dissimilarity between the empirical distribution
and p∗

data defined by the training set and the model distribution, by using KL divergence to mea-
sure the dissimilarity between the two. The minimization of the KL divergence is performed by
minimizing the cross-entropy between the two distributions. As the number of samples increases,
the MLE estimator becomes better in terms of the rate of convergence. Some of the properties of
MLE include, the true distribution pdata must lie within the model pmodel and the true distribution
must correspond to one value of 𝜃. Applications of MLE include linear regression and logistic
regression.

Boltzmann Machine A Boltzmann machine is defined as a network of symmetrically connected,
neuron-like units that make stochastic decisions about whether to be on or off [46]. Boltzmann
machines utilize a simple learning algorithm [47] that allows them to discover interesting fea-
tures that represent complex regularities in the training data. Boltzmann machines are used for
two diverse computational problems. For a search problem, the weights on the connections are
fixed and are used to represent a cost function. For a learning problem, the Boltzmann machine
utilizes a set of binary data vectors and the machine learns to generate these vectors with high
probability. To achieve this, the machine learns the weights on the connections by making small
updates to the weights to reduce the cost function.

Learning within a Boltzmann machine can be classified into two, with hidden units and with-
out hidden units. Consider the case without hidden units. Given a training set of state vectors or
data, the learning within the Boltzmann machine aims at finding weights and biases to define a
Boltzmann distribution in which the training vectors have high probability. To update the binary
state for a given unit i, first, the Boltzmann machine computes the total input to the unit as shown
below

Zi = bi +
∑

j
sj × wi,j (2.2)

�

� �

�

2.1 Deep Learning 29

where wi,j is the weight on the connection between i and j, and sj is 1 if unit j is on and 0 otherwise.
Next, unit i turns on with a probability given by the logistic function as shown below:

P(si = 1) = 1
1 + e−zi

(2.3)

A sequential update of the units in any order does not depend on their respective total inputs.
Eventually, the network reaches an equilibrium state or a Boltzmann distribution in which the
probability of the state vector is solely determined by the energy of the state vector relative to
the energy of all possible binary state vectors. At the same time, learning in the presence of hid-
den units that act as latent variables (features). The features allow the Boltzmann machine to
model distributions over visible state vectors that cannot be modeled by direct pairwise interac-
tions between the visible units (input and output). The learning rule remains the same even in
the presence of hidden units. Other types of Boltzmann machines include higher-order Boltzmann
machine, conditional Boltzmann machine, and mean-field Boltzmann machines. Another variant
of the Boltzmann machine is the restricted Boltzmann machine (RBL) [48]. RBL consists of a layer
of visible units and a layer of hidden units with no visible–visible or hidden–hidden connections.
Through this, the hidden units are conditionally independent given a visible vector. Hence, unbi-
ased samples from ⟨si, sj⟩ data can be obtained in a single parallel step. Sampling from the ⟨si, sj⟩
model still requires multiple iterations that alternate between updating all the hidden units and
the visible units in parallel.

2.1.1.2 Deep Learning Approaches
Convolutional Neural Networks In this section we will discuss the recent advancements in con-
volutional neural networks (CNNs) with focus on CNN structures, training methods, execution
efficiency for both training and inference operations, and finally, open-source tools that help get
started with implementation.

Background CNNs have been extensively used due to their ability to perform exceedingly well for
a variety of machine learning tasks such as computer vision, speech recognition, and healthcare.

Model Structure Conventional CNNs consist of a set of layers connected in a sequential manner or
with skip connections. In addition to convolutional layers, ReLU, pooling, batch-normalization are
utilized for better performance. Figure 2.5 shows the typical structure of a convolution and fully

Input feature map Output feature map

Kernel

Hidden

layer

Input

layer
Output

layer

(b)(a)

Figure 2.5 (a) Convolution operation within a CNN consisting of the IFM, kernel, and the OFM. The kernel
window slides over the IFM to generate the OFM, (b) fully connected (FC) layer operation in a CNN. Each
neuron within the FC layer is connected to a neuron in the subsequent layer. The edges represent weights
of the FC layer.

�

� �

�

30 2 Overview of Recent Advancements in Deep Learning and Artificial Intelligence

connected layer. The sequential layers typically consist of a stack of convolutional (conv) layers
that perform feature extraction from the input. Examples of conv layer kernels include 7 × 7, 5 × 5,
3 × 3, and 1 × 1. In addition, depth-wise convolutions proposed in MobileNet [49] break down a
given N × N convolution into two parts. First, a N × 1 is performed and the result is then run
through a 1 × N convolution. Depth-wise convolution results in better accuracy and lower hard-
ware complexity. Pooling layers are utilized periodically to reduce the feature map size and in
turn truncate noisy input. Finally, a set of classifier layers or fully connected (FC) layers are uti-
lized to perform classification on the extracted features. The conv and FC layers consist of a set of
weights that are trained to achieve best accuracy. Popular CNN structures include AlexNet [50],
GoogleNet [51], ResNet [52], DenseNet [53], and SqueezeNet [54]. CNNs such as DenseNet and
ResNet consist of skip connections from prior layers that result in a highly branched structure.
Furthermore, the skip connections aim to improve the feature extraction process and are present
within the conv layers only. But, conventional CNNs suffer from a wide range of drawbacks such
as over-parameterization [55], higher hardware training and inference cost, difficulty in improving
performance through wider and deeper networks, and vanishing gradient problem among others.

To address this, network architecture search (NAS) was introduced to automatically search for
the most optimal neural network architecture based on the target design point. Design point is
determined by the target application. For example, higher accuracy, better generalization, higher
hardware efficiency, and lower data precision are some of the popular design points using NAS.
The training methodology utilized by NAS is explained in the following section (“Training Meth-
ods” section). The training process removes the need for human intervention and the uncertainty
associated with the choice of the hyperparameters utilized during the deep neural network (DNN)
training process. The objective of NAS is to develop an optimized architecture by utilizing a set
of building blocks. The building blocks include 1 × 1 conv, 3 × 3 conv, 5 × 5 conv, depth convolu-
tions, skip connections with identity mapping, and maximum or average pooling. The blocks are
chosen based on the NAS method to build the networks. Some of the popular techniques proposed
include NasNet [56], FBNet [57], AmoebaNet [58], PNAS [59], ECONas [60], and MNasNet [61]
among others.

Training Methods The process of training CNNs results in the optimal weight values that maximize
the accuracy for the given task at hand. CNNs utilize a wide variety of training methods. The
most popular training method is stochastic gradient descent (SGD). The training process utilizes
backpropagation of the gradients of the loss function with respect to the trainable variables in the
CNN. The backpropagation process utilizes chain rule within conventional calculus to perform
the partial derivative evaluation [28]. The backpropagation methodology is utilized such that the
loss function is approximated to be a convex function in a piecewise manner that can be optimized
using the SGD process. With deeper and wider CNNs, the backpropagation algorithm suffers from
the vanishing gradient problem. To address this, activation functions such as ReLU are utilized to
remove the effect of small gradients within the CNN. Furthermore, architectures such as ResNet
and DenseNet employ skip connections from earlier layers, thus allowing for gradient propagation
through them. Other techniques such as dropout and regularization are employed to further
improve the performance of CNN training. Finally, hardware-aware training methods have been
introduced to further enhance the accuracy of the DNN model [62–66].

Other examples of CNN training methods include zero-shot learning (ZSL) [67], one-shot learn-
ing (OSL) [68], and evolutionary algorithms [58, 60]. ZSL is the ability to detect classes not seen
during training. The condition is that the classes are not known during the supervised learning pro-
cess. The attributes of an input image are predicted in the first stage, then its class label is inferred by
searching the class that has the most similarity in terms of attributes. But most ZSL works assume

