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Preface

The Fermi level can be controlled in semiconductors via impurity doping or by applying an electric field.
Amorphous materials have distinct advantages over their crystalline counterparts in terms of processability and
homogeneity (i.e., ease of fabrication of large-sized homogeneous thin films at low temperatures). Amorphous
materials with good controllability of their Fermi level would be highly beneficial for large-area electronics, opto-
electronics, and flexible applications. These advantages are the major driving force for researching amorphous
semiconductors. However, controlling the Fermi level in amorphous semiconductors is impossible because of
high-density carrier traps arising from structural randomness. An exception is hydrogenated amorphous silicon
(a-Si:H), which is widely used in solar cells and thin-film transistors (TFTs) for liquid crystal displays (LCDs).
However, band conduction has not been attained in a-Si:H. Thus, the mobility of a-Si:H remains at ∼1 cm2/Vs,
which is less than that of polycrystalline Si by two orders of magnitude.

Transparent amorphous oxide semiconductors (TAOSs) are a novel class of amorphous semiconductors char-
acterized by their ionic bonding nature. In addition to high optical transparency to visible light, their mobility
is greater than that of a-Si:H by one order of magnitude and can be fabricated using conventional direct current
(DC) sputtering at low temperatures. Presently, TFTs with a channel layer of In-Ga-Zn-O (IGZO) are used to drive
pixels of high-definition and energy-saving LCDs in smartphones, tablets, PC monitors, and large-sized organic
light-emitting diode (OLED) TVs, and they are being studied for several more applications in X-ray imagers and
memory devices.

Although materials science and device physics of TAOS have rapidly advanced in the last decade, the under-
standing of science and technology is incomplete due to the short research history and the difference in chemi-
cal bonding between oxides and covalent-type semiconductors. Consequently, conventional processing used for
a-Si:H has caused serious degradation of the resulting devices, such as plasma treatment involving hydrogen. TAOS
is the only semiconducting material that can be fabricated by heating the precursor in the ambient atmosphere.
Solution-derived processing has been extensively studied for using this unique feature for flexible electronics.

This monograph provides a current understanding of amorphous oxide semiconductors with high mobility and
their application to electronics, especially TFTs for displays. The book presents introductory fundamentals and
discussions on TFTs and processing, circuits and device simulations, applications to displays and memory devices,
and new materials. The authors of each chapter are experts with distinct research achievements in their subject
area, and they describe state-of-the-art information along with some fundamental prerequisites for understanding.
For further study, some review articles and books are listed in the references.

Notwithstanding that the research history of TAOS and their TFT applications is rather short, they now lead the
backplane of advanced displays, with applications to memory devices and imagers soon to begin. Furthermore,
application to flexible electronics is expected to employ low-temperature processability. Unfortunately, no mono-
graph on TAOSs and TAOS-TFTs has been published to date. I intend to fill the gap between rapid research progress
in this field and the demand for relevant semiconductors and devices by researchers, engineers, and students. The
background of this book was the 77th Fujihara Seminar held in Hakone, Japan, in October 2019. We appreciate
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xvi Preface

the financial support from the Fujihara Foundation of Science and the contributors for presenting wonderful talks
and active discussions.

The planning of this book was first solicited by Dr. Ian Underwood, the publication committee chair of the
Society for Information Display (SID). I appreciate his guidance and patience. I acknowledge my colleagues at
Tokyo Tech for organizing the seminar and editing this book. Special thanks to Professors Hideya Kumomi, Jungh-
wan Kim, and Keisuke Ide. Finally, I dedicate this monograph to Dr. Kazunobu Tanaka, a pioneer in amorphous
semiconductors. When I was a PhD candidate, I was impressed by his enthusiastic talk on photostructural change
in amorphous chalcogenide. I am happy to be presented with the opportunity to publish this book on a novel class
of amorphous semiconductors with excellent colleagues.

June 2021 Hideo Hosono
Tokyo Institute of Technology
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Series Editor’s Foreword

Within the flat-panel display industry, most technological change has occurred in an incremental and evolutionary
manner, where developments in materials, processes, and precision have gradually improved products to provide
the outstanding performance and capability we see today. Against this background, there have been a small num-
ber of truly revolutionary innovations; the adoption of in-plane inductor–capacitor (LC) switching modes and
the introduction of organic light-emitting devices (OLEDs) provide examples in which a complete redesign of the
display was needed, which in turn provided outstanding advantages in panel performance.

Among these revolutionary changes, the use of transparent oxide semiconductors in place of amorphous or
polycrystalline silicon in active-matrix (AM) backplanes has been one of the most dramatic. Although oxide semi-
conductors have been known and studied for many decades, their use in thin-film transistor (TFT) channels was
regarded as impractical before the advances in understanding and materials design that were achieved toward the
end of the twentieth century. Once the underlying science was established, the pace at which these novel materi-
als have been introduced into a wide range of commercial products is exceptional. The lead editor of this volume,
Professor Hosono, may be regarded as the father of this renaissance in oxide semiconductor technology, due to his
decisive contributions to the basic science, technology, and exploitation of new oxide materials. Now, oxide TFTs
offer many advantages; they can be fabricated at low temperature and without costly laser annealing, while their
high mobility provides routes to higher-resolution displays, faster frame rates, and higher optical power efficiency.
The wide bandgap of oxide systems promotes extremely low leakage currents and allows fabrication of transparent
TFT arrays. The impact of oxide backplanes on the user’s experience of modern displays is also profound, including
a leap forward in image quality combined in many cases with reduced power drain.

The development of this new semiconductor class has brought many difficulties, some of which have been over-
come while others continue to provide challenges and opportunities to the community. Among the outstanding
issues, the difficulty of obtaining high performance in p-type oxide channels is of greater importance, as oxide
devices are applied to more complex circuitry for memory, logic, and processing tasks outside the display driver
array. Nevertheless, the advantages of oxide devices make such “system-on-panel” integration highly attractive. In
the present volume, the editors, Professors Hosono and Hideya Kumomi, have brought together a comprehensive
and authoritative collection of contributions from leading scientists in the field, which cover all the important
topics touching advanced oxide semiconductors—materials design, electronic properties, characterization and
modeling, device design, performance and stability, systems integration, new applications, and the challenges
of applying oxide components to new-generation devices on plastic and other flexible substrates. The chapters
go beyond the well-established applications of oxide systems to critically examine remaining challenges, such as
prospects for oxide-based complementary metal-oxide semiconductors (CMOSs) and alternative circuit architec-
tures as well as applications of oxide to other large-area electronic applications.

The trend to use oxide backplanes in displays is set to accelerate and broaden into new application areas that
will place more and more stringent demands on AM components and their peripherals. Oxide TFTs will also find
increased use in nondisplay devices. As these trends develop, this book will provide a ready and invaluable source
of reference for all those studying, applying, and exploiting oxide semiconductors.

Malvern, UK
2022

Ian Sage
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1.1

Transparent Amorphous Oxide Semiconductors for Display Applications
Materials, Features, Progress, and Prospects
Hideo Hosono

Material Research Center for Element Strategy, Tokyo Institute of Technology, Tokyo, Japan
National Institute for Materials Research, Tsukuba, Japan

1.1.1 Introduction to Amorphous Semiconductors as Thin-Film Transistor
(TFT) Channels

Condensed matter is classified into two categories, crystalline and amorphous materials, depending on whether
a unit cell exists or not. This discrimination is performed by X-ray diffraction. Amorphous materials have several
distinct advantages over crystalline materials. Large-sized and homogeneous (grain-boundary-free) thin films can
be easily fabricated at low temperatures. In addition, material properties may be tuned by varying the chemical
composition because there is no limitation to compound formations.

The essence of semiconductors is controllability of the Fermi level (EF) by intentional operations such as impu-
rity doping and biasing. If the advantage of amorphous materials and the essence of semiconductors could be
merged, the resulting amorphous semiconductor should be an ideal semiconductor for giant microelectronics
represented by flat-panel displays, as illustrated in Figure 1.1.1.

However, the amorphous semiconductors reported so far are far from this ideal owing to the high concentration
of defects (chemical disorders) and tail states (localized states induced by structural randomness). Figure 1.1.2
shows a schematic drawing of electronic states. Since these defects and tail states work as charge-trapping sites,
control of the Fermi level is generally impossible in amorphous semiconductors. As a consequence, charge
transport is restricted to hopping among localized state like amorphous chalcogenides and semiconducting oxide
glasses based on V2O5. The requirements for semiconductor thin-film transistor (TFT) channels are rather severe
compared with the conventional semiconducting nature. Although these amorphous semiconductors do not
work as TFT channels due to their high localized state density, amorphous hydrogenated Si (a-Si:H) is the first
amorphous semiconductor in which EF is controllable by biasing. This is the primary reason why a-Si:H has
attracted much attention. A large reduction of dangling bonds giving a midgap level by passivation with hydrogen
makes it possible to shift EF to band edges, but EF cannot exceed mobility edges. Thus, the mobility of a-Si:H
TFTs remains 0.5–1 cm2/(Vs), which is lower by two orders of magnitude than that of polycrystalline Si-TFTs.

Transparent amorphous oxide semiconductors (TAOSs) based on post transition metal (PTM) oxides are the first
category of amorphous semiconductors in which EF is controllable beyond the mobility edge in the conduction
band. As a result, TAOS-TFTs exhibit large mobility, >10 cm2/(Vs), which is comparable to that in the correspond-
ing polycrystalline thin films. What is the origin of such a favorable property of TAOSs? This is one focus of this
chapter.

Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory, First Edition.
Edited by Hideo Hosono and Hideya Kumomi.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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Figure 1.1.1 Ideal amorphous semiconductors.
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Figure 1.1.2 Electronic structure of amorphous semiconductors and material-dependent Fermi level controllability by
biasing gate voltage.

1.1.2 Historical Overview

The history of oxide semiconductors is rather long. Transition metal–based oxides were traditional semiconduc-
tors, and so many papers on this topic have been published to date. However, as far as the author knows, neither of
them works as the channel layer of TFTs. Transition metal cations have an open-shell structure in their d orbitals
and give visible absorption originating from a d-d transition. Since these vacant d levels give large densities of states
(DOSs) in the gap, it is hard to shift the EF to significantly exceed these DOSs. This is the reason why transition
metal–oxide semiconductors do not work as TFTs. As described in Section 1.1.1, requirements for semiconductors
in TFT channels are much more severe than those for p-n junction formation, because the EF is needed to shift to
valence band maximum (VBM) or conduction band maximum (CBM) by gate voltage. A representative example
is Cu2O, which is well known as a p-type semiconductor with high Hall mobility (∼100 cm2/Vs), but its TFT has
not operated well (even now) since the first attempt by William Shockley in 1949.

Figure 1.1.3 summarizes the history of oxide TFTs and their relevant TFT technology. The first TFT device
structure was proposed in 1926 by Julius Lilienfeld as a patent. Oxide semiconductor TFTs have a long history com-
parable to that of Si metal-oxide semiconductor field-effect transistors (MOSFETs). In the 1960s, the field effects
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Figure 1.1.3 History of oxide TFTs and relevant technology.

on current modulation in the thin films SnO2, In2O3, and ZnO, representative transparent oxide conductors, were
reported, but papers on these oxide TFTs almost disappeared from open domains until circa 2000. Research on
ZnO-TFTs was revisited extensively by many groups. Among them is a noteworthy paper in 2001 by Ohya et al.,
who reported on ZnO-TFTs that were prepared by solution process (i.e., drop-coating of Zn(CH3COO)2 solution
and subsequent heating in air) [1]. This is the first report on oxide TFTs fabricated by nonvacuum processes.
Since oxide semiconductors are chemically stable in an ambient atmosphere at elevated temperature, unlike con-
ventional semiconductors, this approach utilizing this intrinsic nature of material became a milestone in the
fabrication of solution-derived oxide TFTs, which is now an active subject. Many papers on ZnO-TFTs deposited
by sputtering or pulsed-laser deposition were reported [2], but serious issues—such as poor reproducibility and
large hysteresis, arising mainly from the complex grain-boundary nature—were pointed out.

A design concept and several examples of TAOSs with large electron mobility were proposed in 1996 [3]. As for
TFTs with amorphous oxides, in 1993 Adkins et al. examined field modulation on amorphous InOx and reported
a current on/off ratio of 2–3 [4]. Such a small on/off ratio comes from high carrier concentration. Suppression
and carrier concentrations and stabilization of a low carrier state in a-InOx are still challenging even now.
Good-performance AOS-TFTs were reported for IGZO [5] in 2004 and ZnSnOx [6] in 2005. Since then, a variety
of AOS-TFTs have been reported to date [7].

In contrast to n-channel AOS-TFTs, the progress in p-channel has been much slower, and no satisfactory devices
have been realized to date. Although a series of p-type transparent oxide semiconductors have been reported since
1997 [8], none of them works as a good TFT channel like Cu2O. The formation of high-density surface defects
arising from oxidation of Cu+ is likely responsible for this. P-channel oxide TFTs were first realized in SnO [9]
in 2008, and all complementary metal-oxide semiconductors (CMOSs) were reported [10] in 2011 utilizing the
ambipolar nature of SnO. The performance of SnO-TFTs is still insufficient for practical application [11]. As for
amorphous p-channel TFTs, very few have been reported [12] as far as the author knows. An amorphous oxide
p-n junction using p-ZnRhOx/n-IGZO exhibiting clear rectifying characteristics was reported [13] in 2003, but
amorphous ZnRhOx did not work as a p-channel TFT like a-vanadium-based oxides. High midgap state density
arising from a d orbital would hinder the smooth EF shift by gating.
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Figure 1.1.4 Comparison in chemical bonding and band formation between oxide and Si.

1.1.3 Oxide and Silicon

Oxide semiconductors made of typical metals are, in general, n-types except for several materials. This is a natu-
ral consequence of the chemical-bonding nature of oxides. Figure 1.1.4 shows schematic energy diagrams of ionic
oxides and silicon. In ionic oxides, the nature of the CBM, which works as an electron pathway, totally differs from
that of the VBM, which works as a hole pathway. The CBM in ionic oxides is primarily composed of unoccupied
s orbitals of cations, and the contribution of oxygen 2p orbitals is limited. The spatial spread of this unoccupied s
orbital is so large that direct overlap between the s orbitals of the neighboring cations is possible in PTM oxides;
therefore, an effective mass of electrons is small in these oxides. In fact, some ionic oxides satisfy such situations
with large electron mobilities of up to ∼100 cm2(Vs)−1 and are called transparent conductive oxides (TCOs) rep-
resented by In2O3, SnO2, ZnO, and Ga2O3. N-type material can be realized with a proper choice of metal cation,
but p-type material is difficult because oxygen 2p orbitals are generally localized at the VBM.

1.1.4 Transparent Amorphous Oxide Semiconductors

1.1.4.1 Electronic Structures

What happens if these TCO materials become an amorphous state? In an amorphous state, structural disorder
concentrates on an energetically weak structural unit. In most amorphous materials, structural disorder appears
prominently as the bond-angle distribution. When the bond angle has a large distribution, how is the effective mass
(i.e., the transfer rate between neighboring cation s orbitals or overlap integrals) modified for carrier electrons?
We considered the two cases: (i) covalent semiconductors and (ii) ionic semiconductors. In the former case,
the magnitude of the overlap between the unoccupied orbitals of the neighboring atoms is very sensitive to the
variation in bond angle. As a consequence, rather deep localized states would be created at somewhat high con-
centrations; thereby, the drift mobility would be largely degraded.

On the other hand, the magnitude of the overlap in the latter case is critically different depending on the choice
of metal cations; when the spatial spread of the s orbital is larger than the inter-cation distance, the magnitude
should be insensitive to the bond-angle distribution because the s orbitals are isotropic in shape. As a conse-
quence, we may anticipate that these ionic amorphous materials have large electron mobility comparable to that
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Figure 1.1.5 (a) Comparison in orbital constitution at the conduction band minimum (CBM) between covalent-type
semiconductors and post transition metal oxide semiconductors, and (b) a percolated conduction network at the conduction
band bottom of amorphous 2CdO⋅GeO2.

in the corresponding crystalline phase. In the case that the spatial spread of the metal s orbital is small, such a
favorable situation cannot be expected [3, 12]. The spatial spread of the s orbital of a metal cation is primarily
determined by the principal quantum number (n) and is modified by the charge state of the cation, as discussed
for the crystalline TCOs. Thus, candidates for high-mobility TAOSs are found in oxides of PTM cations with an
electronic configuration of (n−1)d10ns0, where n≥ 5 [3, 12] (for crystalline oxide semiconductors, this requirement
is relaxed to n ≥ 4, as exemplified by ZnO with the (3d)10(4s)0 configuration). Figure 1.1.5a shows the difference
in orbitals between Si and a PTM oxide and between crystalline and amorphous states. The drastic reduction of
the electron mobility in the amorphous state from c-Si may be understood intuitively from that figure, whereas
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mobility in c-PTM oxides is reserved even in the amorphous state. In a sense, the situation of the CBM in PTM
oxides is similar to that in amorphous metal alloys (conductivity is slightly lower than that in crystalline alloys),
because metal orbitals dominantly constitute the electron pathways. This simple idea is demonstrated quantita-
tively by observing the DOS by inverse photoelectron spectroscopy and analyzing the computed DOS on atomic
positions determined by a combination of X-ray radial distribution function with reverse Monte Carlo simulation.
Figure 1.1.5b illustrates the connectivity of Cd 5s orbitals at the CBM of amorphous 2CdO-GeO2 as an example of
TAOS. Here, Cd2+ with (4d)10(5s)0 meets the requirement for a PTM cation. Here, two Cd2+ ions were connected by
a line for visualization of orbital overlap when a 2×Cd 5s orbital radius (Slater) is larger than the interatomic sepa-
ration. It is clearly observed that the lines are 3D-connected throughout the sample, forming a percolated electron
pathway [12].

1.1.4.2 Materials

Due to the requirements discussed in this chapter for high-mobility oxides, major TAOS materials need to contain
In3+ or Sn4+, each of which have a (4d)10(5s)0 configuration, and its amount is required to be beyond the perco-
lation threshold of its 5s orbitals at the CBM. There is a distinct difference between In and Sn in oxide materials.
The valence state of In is stable at +3, while Sn takes two charge states, +4 and +2, depending on its environment.
Since the filled 5s states are located at above VBM, Sn2+ with a 5s2 configuration does not work, unlike Sn4+. TAOS
materials with many different compositions have been reported to date, and the materials that work as excellent
TFT channels are almost restricted to In- and/or Sn-containing systems.

Here, a-In-Ga-Zn-O (a-IGZO) [3, 14] is taken as a representative TAOS material. In a-IGZO, the In3+ ions con-
tribute to a large electron mobility, and thus are called “mobility enhancers.” Ga with larger ionic strength (ionic
charge/ionic radius) forms a stronger chemical bond with oxygen and suppresses the formation of oxygen defi-
ciency and the generation of conduction electrons, and thus it is called a “stabilizer” or “suppressor.” The role
of Zn taking tetrahedral coordination is not clear but is expected to stabilize amorphous structure; this is known
in glass science as a “network former.” Therefore, increasing the In content increases the electron mobility but
also increases residual electron density and tends to cause negative threshold voltage (Vth) in TFTs. Addition
of a suppressor like Ga reduces the electron density (Ne) if the same deposition condition is employed, but it
decreases the electron mobility. The decrease in mobility is caused by two factors: (i) reduction of the In con-
tent and (ii) reduction of electron mobility due to the small Ne, as will be explained further in this chapter. Pure
In2O3 and ZnO do not form stable amorphous structures, even if deposited at room temperature (RT) without sub-
strate heating. Mixing of two or more metal cations is thus necessary to stabilize the amorphous structure. TAOS
materials for TFT channels are made from a combination of mobility enhancers and suppressors. The first mate-
rial is a-IGZO with the nominal atomic ratio of In:Ga:Zn = 1:1:1 (called “111” composition), and also another
composition of In:Ga:Zn = 2:2:1 (“221” composition) has been examined. Oregon State University (OSU) and
the HP group [6] proposed Zn-Sn-O (ZTO) and Zn-In-O (ZIO) TFTs just after the first report of a-IGZO TFTs,
which exhibited high μTFT > 50 cm2/(Vs) by annealing at 600 ∘C. A variety of combinations have been reported
for TAOS-TFTs. TAOS materials containing In3+ and Sn4+ were also reported as ITZO (In-Sn-Zn-O). The advan-
tages of ITZO TFTs are high (μTFT > 30 cm2(Vs)−1), and they have good robustness and selectivity against wet
etching for backchannel etched TFTs. In contrast, ITZO requires high oxygen partial pressure during sputter-
ing to suppress the electron density so as to fit to normally off TFTs, but the high PO2 condition deteriorates
the deposition rate seriously. It is proposed that the addition of water to the sputtering atmosphere improves
this issue.

TFT mobility and stability are in a trade-off relationship in many cases. A typical example is a-IZO (ZnO content
10%) material. The amorphous structure of In2O3 is much stabilized by the incorporation of ZnO, and μHall does
not degrade. Conventionally sputtered thin films of this TAOS material are used as amorphous TCOs (transparent
metal), not semiconductors. When IZO is sputtered in highly oxidizing conditions, the thin films with low enough
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Ne to use as a TFT channel layer can be fabricated. TFTs based on such a thin film exhibit high μFE, such as
50 cm2/(Vs), and the off-current continuously increases with time and eventually loses device performance.

1.1.4.3 Characteristic Carrier Transport Properties

TAOS has several common and unique properties that are not seen in conventional amorphous semiconductors
[14]. First are their large electron mobilities > 10 cm2(Vs)−1, which are higher by 1–2 orders of magnitude than
those in a-Si:H. Second is that a degenerate state can be realized. This is totally different from the other amorphous
semiconductors. For instance, c-Si is easily changed to the degenerate state by impurity doping (∼1016 cm−3), but
no such state is attained in a-Si:H. That is, carrier conduction takes place by hopping through localized tail states
in conventional amorphous semiconductors. This is the reason why mobility in the amorphous state is so small
compared with that in the crystalline state. On the other hand, in TAOS, the EF can exceed the mobility gap easily
by carrier doping, leading to band conduction. It is considered that this striking difference originates from that
in the chemical-bonding nature between the materials (i.e., strong ionic bonding with spherical potential is very
favorable to forming a shallow tail state with a small DOS).

Hall effect measurements, which are a standard method in crystalline semiconductors, cannot be used for amor-
phous semiconductors. The reason is that the mean free path is so short, being comparable to or smaller than
interatomic separation. On the contrary, TAOS materials give distinct Hall voltages, and the evaluated Ne and
mobility of carriers are reliable because the mean free path is several nanometers, which is much larger than the
interatomic separation. Carrier transport properties of a-IGZO are shown in Figure 1.1.6 as an example of TAOS. It
is noted that mobility (μHall) largely depends on Ne due to the presence of potential barriers arising from structural
disorder. μHall increases with increasing Ne and finally exceeds 10 cm2(Vs) −1 if Ne exceeds ∼1018 cm−3. The acti-
vation energy of mobility is continuously decreased with Ne, and eventually the degenerate state is realized at
Ne = 1019–1020cm−3. This μHall versus Ne behavior is explained by the percolation conduction model, in which
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electron transport is controlled by distributed potential barriers above CBM (Figure 1.1.6c) [15–17]. If the TAOS
is very defective or with very low Ne, hopping conduction would be dominant.

1.1.4.4 Electronic States

TFTs are devices in which source–drain current is modulated by applying a voltage to the gate insulator over several
to ten orders of magnitude, as shown in Figure 1.1.7. Thus, both the density of in-gap state and the tail state are
called subgap states hereafter; n-channel semiconductors are critical for TFT applications because these states
work as carrier traps. The dominant factor of μFE is partly different from that of μHall because μFE is expressed
roughly by μHall (N ind − N trap) / N ind, where N ind is the total electron density induced by the gate voltage and N trap
is the density of the induced electrons trapped by subgap defects and tail states. Therefore, low N trap is important
to obtain high μFE, and the low N trap is confirmed by TFT analyses, coefficient of variation (C-V) analyses, and
so on, as shown in Figure 1.1.8. These studies have revealed that these localized state densities in TAOSs are
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2–3 orders of magnitude smaller than that of a-Si:H where EF is close to CBM. This striking difference is the main
reason why the band conduction can be induced in TAOS but not in a-Si:H by biasing gate voltage. (Bob Street [18]
successfully explained why EF cannot exceed the mobility gap.) The low N trap is explained also by the electronic
structure specific to the high ionicity of TAOS; that is, since Coulombic potential is independent on angle, the
energy level is very insensitive to the variation in bond angle, which is the dominant randomness in amorphous
materials, compared with the potential in a covalent bond. Thus, tail state density in TAOS is much lower than
that in a-Si:H.

Figure 1.1.9 illustrates these electronic structures of a-IGZO [14]. Noteworthy is the presence of a large DOS
(1019–20cm−3) above the VBM. This DOS was first observed [19] for thin films by hard X-ray photoemission spec-
troscopy (HAX-PES) using a synchrotron radiation facility (6–8 keV). HAX-PES has two advantages over con-
ventional lab-PES; the first is to be bulk sensitive originating from the large escape depth of the photoelectron.
This makes it possible to get reliable information from as-prepared thin films without any surface treatment such
as sputtering. The other is large ionization cross-section for s-state electrons, which are associated with oxygen
vacancy, hydrogen anions, and low valence cations with ns2 electron configurations such as In+ and Ga+. Since
this DOS is located above the VBM and far below the EF, an n-channel TFT operation does not suffer from their
influence, fortunately. However, this DOS plays a critical role in energy saving of the devices and TFT degrada-
tion under the dominant operation mode (negative bias under illumination stress [NBIS]), which is called NBIS
instability. The EF cannot push down under negative gate voltage due to the presence of this large DOS (i.e., the
p-channel does not open when negative bias is applied). This feature makes a contrast with a-Si:H TFTs, which
show ambipolar operation (i.e., the drain current is increased when negative bias is further applied to the gate).
Since TFTs for LCDs dominantly stay in an off-state, the unipolarity of TAOS-TFTs leads to energy saving. This is
the reason why low off-currents of IGZO-TFTs are much lower than those of a-Si:H and low-temperature processed
polysilicon (LTPS)-TFTs.

This large DOS above the VBM works as the source of NBIS instability, which is induced by subgap light illumi-
nation under negative bias. The electron in the DOS is excited to the CBM by subgap illumination. The electron
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excited to the CBM is easily diffused away due to the high electron mobility at the CBM, while the remaining hole
drifts to the interface between the channel and the gate insulator and is trapped there to form a fixed positive
charge. As a result, the threshold voltage shifts to the negative voltage side. NBIS instability [20] was first reported
in polycrystalline ZnO-TFTs and was found in almost all of the n-type oxide TFTs, irrespective of whether they
were crystalline or amorphous. This suppression is an important issue for practical application of oxide-TFTs for
displays because the threshold voltage shifts result in output current changes, in particular for OLEDs, which are
driven by current.

Figure 1.1.10 summarizes the progress of IGZO-TFTs and their application to the backplanes of flat-panel dis-
plays in smartphones, tablet PCs, PC monitors, and OLED-TVs period. The first reported IGZO-TFTs were based on
epitaxial thin films, and their mobility was ∼80 cm2/(Vs) [21], which is comparable to that of poly-Si TFTs. Amor-
phous IGZO-TFTs fabricated on plastic substrates were published in 2004, and the mobility was ∼10 cm2/(Vs) [5].
It is obvious from Section 1.1.4.2 that the ratio of Ga to In controls the mobility and stability. A higher In fraction
enhances mobility while reducing the stability. A key reason why IGZO-TFTs are widely applied to displays is that
since this composition forms a stable crystalline phase, large-sized and dense ceramics can be obtained easily for
sputtering targets [22]. Large-sized OLED-TVs are driven by a-IGZO-TFTs. Two major features of a-IGZO-TFTs,
high mobility and excellent homogeneity over a large size, are fully utilized in these products.

1.1.5 P-Type Oxide Semiconductors for Display Applications

N-Type transparent oxide semiconductors can be designed by selecting metal cations with spatially spread
s orbitals that constitute the CBM and a crystalline structure with a smaller separation between metal cations, as
illustrated in Figure 1.1.11a. However, no guidelines for designing p-type semiconductors were presented until
1997 [8]. Needless to say, p-n junctions are the origin of various semiconductor functions; therefore, high-quality
p-type transparent semiconductors are essential for not only transparent oxide electronics but also all-solid
dye-sensitized solar cells. For wide-gap oxides, the VBM, which serves as the conduction path of holes, is mainly
composed of oxygen 2p orbitals, and the contribution of the orbitals of metal cations is generally small. Therefore,
the VBM is little dispersed (i.e., the effective mass of holes is large), and the energy level is deep to dope holes.
This is why p-type transparent oxide semiconductors are difficult to realize. Resolving this problem is a key
strategy in realizing p-type transparent oxide semiconductors. Three previously proposed approaches are given in
this section.

1.1.5.1 Oxides of Transition Metal Cations with an Electronic Configuration of (n−1)d10ns0

(n = 4 or 5)

Although transition metal cations have orbitals with energy levels close to those of oxygen 2p orbitals, most of them
absorb visible light owing to a d-d transition [23]. Therefore, oxides of cations with closed-shell d orbitals, such as
Cu+ and Ag+, are considered to have the potential to exhibit p-type conductivity. As shown in Figure 1.1.11b, for
such oxides, the antibonding orbital component of the bond composed of metal d orbitals and oxygen 2p orbitals
constitutes the VBM, and the holes doped into the VBM are delocalized to realize p-type conductivity. A typical
example is delafossite CuMO2 (M = Al3+, Ga3+, and In3+) with dumbbell-type O−Cu−O bonds as the building
block. Although several p-type transparent semiconductors have been found to date, no good TFT operation based
on Cu+ has been reported to date like the Cu2O case by Shockley. The high concentration of hole traps at the surface
associated with oxidation of Cu+ would be the most plausible cause of these results.

1.1.5.2 Oxides of Metal Cations with an Electronic Configuration of ns2

Cations with an electronic configuration of ns2 have lone pairs similar to those of anions [9]. For the oxides of
such metal cations, the VBM is mostly occupied by s orbitals, as shown in Figure 1.1.11c. Lone pairs occupy the
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Figure 1.1.11 Schematic energy diagram: (a) n-type SnO2, (b) p-type Cu2O, and (c) p-type SnO. The right is an orbital
drawing of the VBM. Sn 5s electrons with large spread occupy the VBM.

spatially dispersed s orbitals, which overlap with the s orbitals of adjacent cations via the oxygen, forming a largely
dispersed band above the oxygen 2p band. Oxides of Sn2+ with an electronic configuration of 5s2 are typical and
exhibit p-type conductivity in Hall effect measurements. In addition, the first-ever oxide TFT that can operate as
a p-channel TFT was realized using SnO for the active layers [9].

The realization of CMOS based on an oxide semiconductor was a long-standing issue in oxide electronics. This
objective was first attained in 2011 using SnO [9]. Although much improvement has been reported [11, 24], the
CMOS performance is still insufficient for applications. Low-temperature processing as well as improvement of
mobility are strongly required for display applications.

It has been reported that chalocogenides and oxides of Pb2+ and Bi3+, both with an electronic configuration of
6s2, cannot be used to enhance hole transport properties because the energy level of 6s electrons is much deeper
than that of the VBM. Although oxides of Sb3+ with an electronic configuration of 5s2, similar to that of Sn2+, are
expected to exhibit p-type conductivity, no examples of such oxides have been reported to date.

1.1.5.3 Oxides of Metal Cations with an Electronic Configuration of nd6

For oxides of Rh3+ and Ir3+, both with an electronic configuration of 4d6 or 5d6, these cations stabilize in the
low-spin-state octahedral configuration, where electrons occupy the three orbitals dxy, dyz, and dzx [25]. 4d and 5d
orbitals are spatially spread, and the state in which two electrons occupy each of the three d orbitals is similar to that
in Section 1.1.5.2, that is, a pseudo s orbital with a large spread. When doped with holes, these oxides are expected
to exhibit p-type conductivity. A typical example is ZnRh2O4, which has a normal spinel structure [25]. Similar to
the case of ZnO, the Zn2+ ions in this material are coordinated in tetrahedra, which are not continuously connected
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and do not exhibit n-type conductivity. ZnRh2O4 is the only oxide that is known to exhibit p-type conductivity even
in the amorphous state, and it has been reported to form p-n diodes on plastic substrates [26] when combined with
TAOS. Subsequently, p-type conductivity was reported for ZnCo2O4 as an extension of this series to the 3d6 system.

These materials work as p-type semiconductors for the p-n-junction but not as p-channel material in TFTs
because of the high concentrations of vacant d levels, which serve as hole trapping in the band gap.

1.1.6 Novel Amorphous Oxide Semiconductors

Recently, two novel-type AOSs toward display applications were reported based on rather different design con-
cepts: an amorphous electride (a-C12A7:e−) and amorphous ZnO-SiO2 (a-ZSO).

Electrides are materials in which electrons serve as anions [27]. This conceptionally novel material was first
synthesized in organic crystals. Although these attracted attention as an exotic material, almost no information
had been obtained on the physical properties because they are extremely sensitive to heat, O2, and H2O.

In 2003, an inorganic electride material derived from 12CaO⋅7Al2O3 crystal (C12A7) was reported [28]. C12A7
is a wide-gap insulator composed of densely packed, subnanometer-sized cages with a positive charge, and it is
thermally stable with a melting point of 1415 ∘C. The unit cell includes two molecules and 12 cages that have a free
inner space of∼0.4 nm in diameter and can be represented as [Ca24Al28O64]4+ + 2O2–. The former denotes the cage
framework, and the latter is called “free oxygen ions” that compensate for the positive charge of the framework.
These oxygen ions are loosely bound to the cages because the cage diameter is ∼50% larger than the O2− size
(0.28 nm). They succeeded in extracting this free O2− ion, regarded as the counter anion to the giant framework
cation, by a chemical reduction method and injected electrons instead. Since the resulting material (hereafter,
C12A7:e−) with the composition of [Ca24Al28O64]4+

•(4e−) may be regarded as electride, this material became the
first RT-stable electride.

Amorphous C12A7:e− thin films were successfully fabricated by conventional sputtering of a C12A7:e− ceramic
target in O2-free atmosphere, and the resulting thin films contain a high anionic electron concentration compa-
rable to that in crystalline C12A7:e− [29]. Anionic electrons exist in subnanometer-sized space coordinated by 2
Al3+ or a Ca2+ and an Al3+. The work function of a-C12A7:e− is ∼3.0 eV, which is larger than that of c-C12A7:e−
(2.4 eV) but still rather lower than that of conventional transparent oxide semiconductors (comparable to metal
Ca), and it is chemically inert and optically transparent as shown in Figure 1.1.12. There are two types of OLEDs
with different stacking, normal type (cathode top) and inverted type (cathode bottom). An inverted type is better
than a normal one, as the device structure emitting light can radiate upward through a cathode of transparent
electrode (indium tin oxide [ITO]). However, the fabrication of an inverted structure was practically hard due to
the lack of an appropriate electron injection layer (EIL) because a combination of LiF and Al does not work for this
structure (deposition sequence Al followed by LiF). An inverted structure of OLEDs with comparable performance
to a normal structure was realized by using a-C12A7:e− with a low work function and high optical transparency
as the EIL.

Second is a-ZSO, ZnO-SiO2. A ZSO thin film has a low work function (≈3.5 eV), which is lower by ∼1 eV than
ZnO and also enables relatively higher mobility (0.3–1.0 cm2/(Vs)) than those of the n-type organic semiconduc-
tors [30]. In addition to high visible transparency and good chemical stability, a-ZSO can form ohmic contact
with various metals irrespective of the work function of partner metals. These properties almost completely meet
the requirements to be electron injection/transport layers in OLEDs and perovskite LEDs. The effectiveness of
this semiconductor was demonstrated by the realization of high-performance perovskite LEDs [31], as shown
in Figure 1.1.13, and efficient tandem OLEDs [32]. These exceptional properties originate from a characteristic
nanostructure composed of ZnO nanocrystals separated by thin amorphous zinc silicate layers with larger ion-
ization potential and smaller electron affinity than ZnO. This nanostructure makes it possible to confine wave
function in ZnO nanocrystals, which in turn widens the band gap due to the quantum size effect. Since EF is
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Note that the emission intensity goes up to 50,000 cd/cm2 at 5 V.
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located at the CBM, this wide gap widening results in lower work function. ZnO nanocrystals in the material are
conducting, due probably to the incorporation of Si to the Zn site, and they are not continuously connected by a
thin insulating zinc silicate layer. Thus, mobility observed by hopping conduction through localized levels in the
insulating zinc silicate layer is amply large compared with that of organic semiconductors used as the electron
transport layer. This X-ray AOS is a kind of nanocomposite material utilizing the optical confinement effect of
ZnO nanocrystals and electrically connected conducting ZnO nanocrystals connected by hopping conduction via
a thin insulating ZnO-SiO2 layer.

1.1.7 Summary and Outlook

This chapter outlines the background, fundamental understanding, and recent progress of AOSs for display appli-
cations in comparison with crystalline oxide semiconductors and amorphous silicon. An emphasis was placed
on the electron transport and electronic structure of TAOSs represented by a-IGZO. Throughout this chapter, the
author described design concepts based on a simple consideration of chemical bonding. The tremendous success
of Si-based semiconductors has created splendid science and technology. Oxide semiconductors have a longer his-
tory than silicon semiconductors, but this had not led to practical device applications. IGZO-TFTs would be the
first visible device application of oxide semiconductors. High-mobility TFTs using amorphous semiconductors
are based on the intrinsic nature of p-block metal cation-based transparent oxides. Crystalline Si cannot meet the
requirements for display technology, which needs large-sized thin films. Transparent amorphous oxide semicon-
ductors have huge potential as backplane transistors for high-precision and energy-saving large-sized LCD panels.
Application to electron transport/injection layers, which is hard to overcome with the existing technology, may be
expected by developing new oxide semiconductors. Oxide is only one semiconductor material that is stable in air
at high temperature. Thus, fabricating oxide semiconductors derived from solution is a process allowed for only
oxide material. Although the resulting devices are still insufficient in stability and performance, further technical
progress would lead to new applications. Review articles [23, 24] are helpful to compensate for the lack of this
discussion in the present chapter.

Finally, the author would like to raise two technical challenges in transparent amorphous semiconductors:

1. High-mobility p-channel TFTs: Oxides are unfavorable as p-type semiconductors. The deep energy level and
highly localized nature of O 2p dominating the VBM make it hard to have high-mobility p-type conduction.
Recently, transparent amorphous semiconductors with high mobility (∼10 cm2/Vs) were reported in the
Cu-Sn-I system [33]. As shown in Figure 1.1.14, filled I 5p orbitals constituting the VBM with Cu 3d orbitals
may be regarded as the vacant s orbital of PTM cations in n-type TAOSs. The hole concentration in these
materials is too high to operate as TFTs with enough current on/off ratio. Reduction of carrier concentration
without degrading mobility is the current issue. If this issue could be overcome, good-performance transparent
CMOS devices are possible with a combination with n-TAOS TFTs.

2. High-mobility and high-stability TAOS-TFTs: Amorphous IGZO-TFTs are now widely applied to flat-panel
displays, replacing a-Si:H-TFTs. However, higher mobility TAOS-TFTs are demanded for circuit applications.
It is well known that there is a phenomenological observation between mobility and stability (to various
stresses) in oxide TFTs. Higher mobility TFTs are obtained in In-rich and/or In-Sn-based TAOSs such as InOx
and In-Sn-Zn-O, but each of these TFTs is sensitive to stress (voltage, light, heat, and their combinations).
Elucidation of the origin for this trade-off should give an effective clue to resolve the issue.

Materials science of TAOSs has greatly advanced in both fundamentals and device applications in the last two
decades. A strong demand for new applications will be the engine to facilitate breadth in this area. There are
several excellent review articles and monographs [34–39] on this subject, including those already cited in this
chapter. The author encourages the reader to check these reviews if necessary. Very recently, a model from the
trade-off described above was proposed and high mobility-highly stable a-ITZO TFTs were reported [41].
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Figure 1.1.14 Amorphous Cu-Sn-I. (a) Crystal structure of γ-CuI zinc blends and schematic band structure. (b) Schematic
orbital drawing of the CBM in crystalline and amorphous transparent conductive oxides (TCOs) based on a PTM cation with
an electronic configuration (n–1)d10ns0, where n > 4. (c) Schematic orbital drawing of the VBM in CuI. Three I 5p orbitals
with a large spatial spread may be regarded as a pseudo s orbital similar to the 5s orbital with a large spread and a spherical
shape.
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Transparent Amorphous Oxide Semiconductors
What’s Unique for Device Applications?
Hideya Kumomi

Tokyo Institute of Technology, Tokyo, Japan

1.2.1 Introduction

After a long incubation of half a century, the first product of an active-matrix liquid-crystal display (AM-LCD)
driven by backplane circuits composed of oxide semiconductor thin-film transistors (TFTs) [1] was commer-
cialized in 2012. Although the manufacturer did not disclose this detail, a small number of the high-resolution
(264 ppi) 9.7-inch-diagonal AM-LCD panels on their tablet PC devices (Apple iPad 3) [2] was driven by back-
plane circuits driven by AOSs, amorphous In-Ga-Zn-O (a-IGZO) TFTs. After that, the a-IGZO-TFTs were suc-
cessively commercialized in the AM-LCD screens of smartphones, PC monitors, laptop PCs, and active-matrix
organic light-emitting diode (AM-OLED) displays for smartwatches and large-area (up to 88 inches diagonally)
and high-resolution (8k×4k) television (TV) screens. Furthermore, even flexible and rollable AM-OLED TVs were
launched in October 2020, and a-IGZO-TFT-based TVs dominate the AM-OLED TV market. Nowadays, AOS-TFTs
have become indispensable component devices for driving active-matrix flat-panel displays (AM-FPDs), along
with conventional hydrogenated amorphous Si (a-Si:H) TFTs and low-temperature polycrystalline Si (LTPS) TFTs.

It is noteworthy that, even after a half-century incubation of oxide TFTs, a-IGZO-TFTs had been commercialized
by rapid research and development in a short period of eight years from their first demonstration. It is generally
difficult for such a novel and exotic oxide material composed of ternary metal cations to be thrust into an existing
industry of established Si-based technologies and to replace a part of them with AOS-TFTs due to both technical
and business issues. There are some reasons for the success of a-IGZO-TFTs, and these are discussed and elucidated
in this chapter based on the technical requirements of electronics industries, along with a historical review of oxide
semiconductor–based TFTs and their uniqueness.

1.2.2 Technical Issues and Requirements of TFTs for AM-FPDs

1.2.2.1 Field-Effect Mobility

AM-LCDs at their dawn can be sufficiently driven by a-Si:H TFTs that have a small field-effect mobility of 𝜇FE
∼0.1 cm2V−1s−1 because of their low resolutions (i.e., large pixel size), small panel dimensions, and slow frame
rates. The 𝜇eff had been enhanced up to ∼1 cm2V−1s−1 by improving a-Si:H materials, device structures, and fab-
rication processes to meet the requirements of increasing these specifications and creating greater color depth.
However, much higher mobility was required from the beginning of the twenty-first century, when screens larger
than 50 inches diagonally and with a higher frame rate than 60 Hz for smooth rendering of movies were demanded
by markets. Total capacitance, C, of parasitic capacitance of switching TFTs (TSW) is mainly caused by source–drain

Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory, First Edition.
Edited by Hideo Hosono and Hideya Kumomi.
© 2022 John Wiley & Sons Ltd. Published 2022 by John Wiley & Sons Ltd.
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Figure 1.2.1 Dependence of the least mobilities of switching TFTs to drive a 50-inch-diagonal AM-LCD model with a
5-μm-wide Cu gate-line wiring, calculated by Y. Matsueda in 2010 [3]. Source: Kamiya, T., Nomura, K., & Hosono, H. (2010).
Present status of amorphous In–Ga–Zn–O thin-film transistors. Science and Technology of Advanced Materials 11(4): 044305.
doi:10.1088/1468-6996/11/4/044305.

and gate electrodes overlapping, and the storage capacitors in all pixels and so on are parallelly hung on gate
(scan)-line metal wirings. Signal transmission from the starting to the ending pixels on a single gate-line must be
accompanied by delays with a time constant of RC, where R represents a finite resistance of gate-line wiring deter-
mined by the wiring metal materials and their length and cross-sectional areas. This gate-line delay cannot exceed
the inverse of the frame rate (i.e., the interval to scan the next gate-line). It is necessary to more rapidly charge
the pixel capacitance by enhancing the current driving performance of TSW in order to reduce the gate-line delay.
Figure 1.2.1 is a historical plot showing dependence of the least mobilities of TSW to drive a 50-inch-diagonal
AM-LCD model with 5-μm-wide Cu gate-line wiring, calculated by Yojiro Matsueda in 2010 [3]. It is estimated
here that at least a mobility of ∼10 cm2V−1s−1 is required to drive 8k×4k panels by a single scan at 120 Hz, which
cannot be achieved by the latest high-end a-Si:H TFTs. LTPS-TFTs exhibit high mobilities of ∼50–100 cm2V−1s−1

even when their polycrystalline grain size is far smaller than the TFT channel dimensions to suppress the spatial
variety of the TFT properties caused by grain-boundary effects. However, LTPS-TFTs still have difficulties with
both short- and long-range uniformity.

In cases of current-driving light-emitting diode (LED) devices like AM-OLEDs, the requirements for driving
TFTs (TDR) are added to those for TSW. Various estimations suggest that a mobility of∼10 cm2V−1s−1 is required for
TDR to provide sufficient current to the directly connected LED component for sufficient visual brightness indepen-
dent of FPD resolution and size. This cannot be achieved by a-Si:H TFTs, and thus AM-OLEDs had been produced
only for the small-sized panels of smartphones using LTPS-TFT backplanes. Active-matrix electrochromic (EC)
displays also happen to require TFTs with a mobility of ∼10 cm2V−1s−1 to rapidly charge the EC cells, although
they have not been commercialized so far.

Monolithic implementation of peripheral circuits (composed of TFTs like shift-registers for scanning gate-lines
and demultiplexers for dividing data signals into RGB subpixels) becomes necessary if the aim is super-high resolu-
tion in small panels when it becomes difficult to implement Si-based integrated circuit (IC) chips on the peripherals
of AM-FPDs and connect them to the backplane circuits. Especially in mobile devices, the footprint of TFT-based
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peripheral circuits should be as small as possible to realize narrow-border frame configurations, and a TFT mobility
of ∼10–50 cm2V−1s−1 is required to reduce the channel width of the TFTs.

1.2.2.2 Off-State Leakage Current and On/Off Current Ratio

The TSW of AM-FPDs stays in the off-state for most of a frame time after completing the scanning of the gate-line
that the TSW is hung on, until the scanning of the gate-line restarts for the next frame. For example, in 8k×4k panels,
the TSW remains off for 3,839/3,840 of the time under a relatively high depletion gate bias. Leakage current of the
TSW in the off-state should be suppressed to be lower than the reduction of charges in the storage capacitor in one
pixel, so as to suppress a change of tone within one bit of color depth. LTPS-TFTs usually exhibit high off-state
leakage current and also suffer from inversion operation at a high depletion gate bias; therefore, researchers have
attempted to solve this problem by improving their device structures and circuit designs. However, some recent
mobile devices try to suppress their power consumption by reducing their frame rate lower than 30 Hz and their
power consumption in their peripheral circuits. The lowest frame rate achieved by the LTPS-TFT backplane is only
10 Hz, while AOS-TFTs can easily realize lower than 1 Hz owing to their extremely low off-state leakage current,
as described later in this chapter. This feature of low off-state current in AOS-TFTs is actually applied to some
mobile products such as smartphones and smartwatches.

Both high mobility and low off-state leakage current lead to enhancement of the on/off current ratio of TFTs.
The on/off current ratio should be as large as needed to express necessary color depth if the imaging components
are driven by analog control of bias or current. The current standard color depth of eight bits for each primary color
has been achieved by conventional Si-based TFTs. However, when higher color depth or a wider color gamut is
required, TFTs with a higher on/off current ratio become necessary.

1.2.2.3 Stability and Reliability

TFTs driving AM-FPDs must be stable and reliable against electrical (and thermal) stresses caused by their oper-
ation, in addition to thermal, mechanical, and chemical stresses from the environment in electrical devices. The
TSW and TDR mainly suffer gate-voltage bias stress and source-to-drain current stress, respectively, and they dete-
riorate with shifts of TFT characteristics such as threshold voltage, on/off current, and subthreshold swing. TFTs
in peripheral circuits are also exposed to various stresses. Some of these shifts can be canceled by special com-
pensation circuits, although the compensation range is limited. Especially in a pixel circuit of AM-OLEDs, char-
acteristics of the OLED component also shift with light-emitting operation, and it is necessary to compensate the
characteristic shifts of both TFTs and OLEDs by the compensation circuit composed of the same TFTs. It is very
difficult to drive AM-OLEDs with a backplane circuit based on unstable a-Si:H TFTs, in addition to the difficulty in
driving OLEDs with their small mobilities. Therefore, early products of AM-OLED displays were driven by back-
plane circuits composed of stable LTPS-TFTs, which limit mother-glass sizes (smaller than generation 6 [Gen. 6])
in mass production and thus final panel sizes up to several inches in diagonal.

1.2.2.4 Uniformity

Characteristics of TFTs driving AM-FPDs should be uniform over their panel dimension to guarantee uniform
brightness, colors, and tone rendering. Spatial variations of characteristics of LTPS-TFTs are relatively large due
to the in-plane inhomogeneity of polycrystalline grain boundaries, where carrier transfer is hindered by high
potential barriers, and the short-range uniformity among neighboring TFTs is not good. Neither is the long-range
uniformity between distant TFTs over panel dimensions because of the inhomogeneous formation process with
scanning a line-shaped and short-pulsed excimer-laser annealing (ELA) for the melting and recrystallization pro-
cess of a-Si thin films. On the other hand, a-Si:H TFTs show good uniformity in both short and long ranges owing
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to their amorphous nature, with no grain boundaries or film formation by plasma-enhanced chemical-vapor depo-
sition (PECVD). Therefore, middle- and large-area (≳10 inches in diagonal) AM-FPDs have been driven by a-Si:H
TFT–based backplanes.

1.2.2.5 Large-Area Devices by Large-Area Mother-Glass Substrates

In addition to the uniformity issues in LTPS-TFTs that have been discussed so far in this chapter, there is another
reason for difficulty in enlarging mother glasses beyond Gen. 6, and thus in enlarging the final panel size over
several inches in diagonal in mass production. In the fabrication processes of LTPS-TFTs, a-Si:H thin films are
formed over glass substrates by PECVD first, and then the high-density hydrogens in the films have to be removed
(dehydrogenation) before the subsequent ELA process to avoid explosion of the films by hydrogen vaporization.
The dehydrogenation requires thermal annealing for several hours at a temperature higher than ∼450 ∘C. The
high-temperature annealing demands special and expensive glass substrates with very small thermal deformation,
but these are not available for mother glasses larger than Gen. 6. Furthermore, it is also difficult to expand the
length of line-shaped excimer-laser beams in ELA beyond the dimension of the Gen. 6 mother glasses. Because
the cost of an AM-FPD panel is most strongly determined by the number of panels cropped from one mother glass,
AM-FPD panel products based on LTPS-TFTs are limited to small-sized (a few to several inches in diagonal) ones,
such as those for smartphones.

Mother-glass substrates larger than Gen. 6 (up to >10) had been available to a-Si:H TFTs, because the highest
process temperature is ∼350 ∘C in PECVD of a-Si:H thin films and gate-insulator films, and there is no limitation
to substrate sizes in PECVD. Large-sized AM-FPDs had been supplied exclusively with backplanes based on a-Si:H
TFTs. As mentioned in this chapter, however, there are many AM-FPDs that cannot be driven by a-Si:H TFTs, and
these had not been commercialized.

1.2.2.6 Low-Temperature Fabrication and Flexibility

A far lower fabrication-processing temperature than ∼350 ∘C is indispensable if substrates are not heat-resistant.
Most of the substrates based on polymer plastic sheets for flexible devices cannot endure thermal stresses at
temperatures higher than ∼200 ∘C. Some emerging semiconductor materials, such as organic molecules, carbon
nanotubes, graphene, transition metal dichalcogenide, halide perovskite, and so on, could be fabricated at low
temperatures down to room temperature, but none of them can meet the other requirements mentioned here.

Characteristics of TFTs on flexible devices also have to be stable under fixed or repeated mechanical stresses
of bending. Curved or foldable AM-OLED panels driven by LTPS-TFTs are commercialized on smartphones, but
further flexible products with rollable panels have not been launched until recently.

1.2.3 History, Features, Uniqueness, Development, and Applications of
AOS-TFTs

1.2.3.1 History

In 1939, William Shockley attempted a demonstration of transistors using Cu2O [4], which is regarded as the ear-
liest challenge to oxide semiconductor–based active devices. Unfortunately, the Cu2O transistor never operated,
so he changed the semiconductor material to germanium (Cu2O TFTs still do not operate, even in 2021). The first
TFT was demonstrated in 1962 using a chalcogenide semiconductor, CdS [5]. The first TFTs using oxide semicon-
ductors, SnO2 and In2O3, appeared in 1964 [6], which was two years earlier than the appearance of polycrystalline
Si–based field-effect transistors (FETs) in 1966 [7]. FETs based on single-crystalline ZnO followed these pioneers
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as a demonstration of oxide semiconductor–based transistors in 1968 [8]. However, further followers have not
appeared for more than three decades since then. This was probably due to a lack of killer applications of TFTs dur-
ing that era. On the other hand, a-Si:H thin films emerged in the 1970s [9], and many researchers rushed into them
because of their potential applications in backplane circuits for AM-FPDs and in photosensitive and photovoltaic
devices, and because of scientific interest in their local and electronic structures. Since the first AM-LCD with an
a-Si:H TFT backplane was proposed in 1981 [10], Si-based TFTs including polycrystalline Si TFTs dominated the
commercialization of AM-FPDs for decades until quite recently. Thus, oxide TFTs had fallen into oblivion for a
long time, while oxide semiconductors such as In-Sn-O have played an important role to date as conductors in
applications with transparent electrodes.

What re-ignited interest in oxide semiconductors was a working hypothesis, proposed in 1996, about candi-
date materials for high-mobility amorphous oxides [11]. The hypothesis predicts that oxides of post transition
metals with an electronic configuration of (n−1)d10s0 could exhibit high electron mobility, even in amorphous
phases. The actual material used in the operation of high-performance TFTs was demonstrated several years
later. Meanwhile, oxide semiconductor–based TFTs were revived by aiming at AM-FPD applications via a demon-
stration of solution-processed polycrystalline ZnO-TFTs in 2001 [12], which was followed by sputter-deposited
ZnO-TFTs by many researchers. However, ZnO-TFTs have not been commercialized so far because they cannot
escape serious technical issues caused by polycrystalline grain boundaries, and a superior alternative appeared
later. In 2003, Nomura et al. demonstrated that a multicomponent oxide TFT showed a high field-effect mobil-
ity of 𝜇FE ∼80 cm2V−1s−1, using c-axis-oriented crystalline InGaO3(ZnO)5 (IGZO) thin films formed by reactive
solid-phase epitaxy at high temperature [13]. During exploration of the candidates predicted by the working
hypothesis [12], with an insight into electronic configurations and the role of Ga cations, this material system
was discovered to be a high-mobility oxide semiconductor. Actually, the first AOS-TFTs were demonstrated in
2004 with 𝜇FE ∼9 cm2V−1s−1, using amorphous In-Ga-Zn-O (a-IGZO) thin films deposited on plastic substrates at
room temperature [14].

AOS-TFTs have attracted keen attention, mainly because their channel mobilities are ∼10 times higher than
those of conventional a-Si:H TFTs. After a few years since the first demonstration of a-IGZO-TFTs, an explo-
sive increase in their research and development started, with numerous publications [15]. Finally, in 2012, after
remaining in obscurity for over half a century since the first demonstration, the first commercial product based
on AOS-TFTs was launched in the worldwide market in a small number of mobile electronic devices. Since then,
a-IGZO-TFTs have been mainstreamers of oxide semiconductors commercialized in electronic device products
due to their useful nature.

1.2.3.2 Features and Uniqueness

As mentioned in Section 1.2.3.1, the choice of complicated quaternary compounds like IGZO—rather than sim-
ple binaries like ZnO, SnO2, and In2O3—is based on a working hypothesis for high-mobility amorphous oxides
[11]. In these binary compounds, it is difficult to control oxygen deficiencies and to reduce intrinsic carrier den-
sity to suppress the off-current and instability of their TFTs. Furthermore, the choice of quaternary compound is
based on insight into the coordination number of Ga in IGZO, where Ga3+ does not replace Zn2+ taking fivefold
coordination to suppress excess carrier generation, while Ga3+ doped into ZnO replaces Zn2+ taking fourfold coor-
dination to generate carriers. Thus, a-IGZO was selected as a model compound of candidates for channel materials
of high-performance TFTs.

AOS thin films and their TFTs like a-IGZO have the following features and uniqueness:

1. Most AOS materials are n-type semiconductors.
2. Carrier mobility increases with carrier density via a percolation transport mechanism, unlike conventional

crystalline semiconductors with covalent bonding.
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3. Films are transparent to the light in a range of visible wavelengths due to wide band gaps (Eg ≳ 3 eV).
4. It is possible to form the channel layers over noncrystalline substrates at low temperature by sputtering depo-

sition, molecular–organic chemical vapor deposition, atomic layer deposition, and solution process coating.
5. Various conventional gate-insulator materials are available with low densities of interfacial trap states, which

warrant sufficiently high breakdown voltages for various applications.
6. It is easy to form good ohmic contact to various source–drain electrodes.
7. Uniformity in both short and long ranges is excellent because the films are free from crystalline grain bound-

aries.
8. Operation mechanisms are relatively simple so that TFT models for device and circuit simulations are simple.

See Chapter 16 for some examples.
9. The features in (4)–(8) enable us to adopt methods and facilities for device and circuit designs and manufac-

turing, which have been used for Si-based TFTs.
10. A lower tail-state density beneath the conduction band minimum than a-Si:H TFTs by a few orders of magni-

tude makes large band vending possible to push up the Fermi level into the conduction band by field effect at
low voltages of a forward gate bias. This leads to operations with band-like transport exhibiting over 10 times
higher channel mobilities and low threshold voltages.

11. A low-subgap deep-level density of states (DOS) above the midgap level enables fast switching with a small
subthreshold swing (∼0.1 V⋅dec−1).

12. A large occupied DOS below the midgap level and above the valence band maximum hinders band vending
to pull down the Fermi level into the valence band under a backward gate bias. It also prohibits an inversion
operation, which leads to very low off-current.

13. The feature of (12) also suppresses a kink effect in the output characteristics of TFTs.
14. Hot-carrier effect and short-channel effect are also small, and source-to-drain breakdown voltages are high.
15. Stability and reliability under electric or mechanical stresses are much better than those of a-Si:H TFTs and

comparable to those of LTPS-TFTs.

Furthermore, especially for a-IGZO:

16. TFT performance is good around metal cation compositions of crystalline single phases such as
In:Ga:Zn:O=1:1:1:4 or 2:2:1:7, and it slowly changes with composition around these single phases.

17. Large-area, stable, polycrystalline sputtering targets with single-phase crystalline compositions are available
due to (16).

The features of (10) and (11) just meet the technical requirements for field-effect mobility (see Section 1.2.2.1).
The features of (10) and (12) satisfy the requirements for off-state leakage current and on/off current ratio (Section
1.2.2.2). The features of (13), (14), and (15) fulfill the conditions for stability and reliability (Section 1.2.2.3). The
feature of (7) meets the needs for uniformity (Section 1.2.2.4). The features of (9) (i.e., (4)–(8)), (16), and (17)
satisfy the requirement for large-area devices by large-area mother-glass substrates (Section 1.2.2.5). The features
of (4) and (15) fulfill the requirement for low-temperature fabrication and flexibility (Section 1.2.2.6). These are
the reasons that AOS-TFTs have been actively researched, developed, and commercialized.

While the features and uniqueness of AOS thin films and their TFTs give great advantages to their applications,
there are still two major issues remaining to be solved. The first one is instability under light illumination, even in
a range of visible wavelength with energy smaller than Eg despite transparency. The illumination of light shorter
than half of Eg excites the deep occupied states below the midgap (featured in (11)) and generates electron–hole
pairs to cause persistent photoconductivity and shift threshold voltage, V TH, to the negative direction. Further-
more, when the TFT is stressed by a negative gate bias simultaneously with an illumination stress, V TH largely
shifts to the negative direction. This phenomenon is called instability under negative-bias-illumination stress
(NBIS) and explained by the following mechanism: The positive charge carriers like holes are drifted toward the
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interface to the gate insulator through a band bending by the negative gate bias and finally trapped by the interfa-
cial states, and as a result, the effective gate-bias voltage is shifted in the positive direction and V TH moves in the
negative direction. The NBIS instability is a serious problem, especially for a switching TFT in a pixel circuit of an
AM-LCD, which is biased by a large negative gate voltage for most of a frame time and always illuminated with the
bright LCD backlight. The instability issues under illumination have been so far solved in commercial products
by introducing some light-shielding structures into TFT device layers. Essential solutions to these problems have
been proposed, such as adopting much wider Eg AOS materials [16], but they have not satisfied all of the other
properties shown in the features of (1)–(17) that are required for AM-FPD applications.

The second one is a much higher 𝜇FE than ∼10 cm2V−1s−1. As mentioned in Section 1.2.2.1, dimensions of
peripheral circuits in AM-FPDs depend on the width of channels of implemented TFTs. Higher 𝜇FE reduces the
channel width and the width of the peripheral circuits to realize narrower borders of AM-FPDs. It is estimated
that 𝜇FE ≳30 cm2V−1s−1 is necessary to design the border width narrower than a few millimeters. Many challenges
have been made, such as In-richer compositions in a-IGZO or amorphous In-Sn-Zn-O (ITZO), and some of them
have started to be adopted in commercial products.

1.2.3.3 Applications

After their revival in the twenty-first century, active research of oxide semiconductor–based TFTs aiming at
potential applications started with intense motivation due to their advantages, as described in Section 1.2.3.2.
Figure 1.2.2 shows the emergence, evolution, and transition of application targets in the first decade, starting
with the first demonstration of a-IGZO-TFTs in 2004.

Initially, early challengers attempted to apply AOS-TFTs for AM-FPD backplane circuits of electric papers using
electrophoretic display (EPD) devices on flexible polymer substrates, especially for low-temperature fabrication

Evolution and transition of application targets

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Flexible EPD/E-paper on low-heat-resistant substrates (low T fabrication)

Canon, Toppan

Canon, Samsung, LG, AUO

Large area/high resolution high FR AMLCD (high μ, low lOFF)

Samsung Sharp, AUO, SEL

Samsung

Memory (low T, low leakage, stacking ability)

Samsung, Yonsei U, KAIST, NCSU, NCTU, imec, NSYSU, NTU, ETRI, SEL

Logic/RF circuits/BOEL (high μ, stability, low T)

Canon LG Samsung, Hoseo U Hitachi, imec, SEL

Printed electronics by solution processes

Yonsei U, FCU, UCB, NCKU, imec, KTU, NTU, KAIST, SNU, Samsung

Image sensors (high μ, low lOFF)

Samsung, PARC

Sony, SEL, Toshiba

Renesas, Toshiba

AMOLED (high μ, stability, and uniformity)

Low-cost AMLCD on soda-lime substrate (low T)

Figure 1.2.2 Emergence, evolution, and transition of application targets in the first decade of the twenty-first century,
starting with the first demonstration of a-IGZO-TFTs in 2004.



�

� �

�

28 1.2 Transparent Amorphous Oxide Semiconductors

processes. However, no commercial products have been launched because high-mobility TFTs are not always nec-
essary for EPDs that are not able to show movies and full-color pictures due to their slow response and low contrast,
and the market for electric papers has not grown.

Applications to AM-OLED backplanes also started from the early days, taking advantage of high mobility,
high stability, and high uniformity. As mentioned in Section 1.2.2, it is difficult to drive and fabricate large-sized
AM-OLED panels by a-Si:H and LTPS-TFTs, respectively, and new, more competent TFTs have been long desired.
AOS-TFTs only recently met the demands of large-sized AM-OLEDs, and commercial TV products appeared in
2015. Applications to advanced AM-LCDs with higher pixel resolutions, frame rate, and color depth followed those
of AM-OLEDs, utilizing various advantages of AOS-TFTs, and the first commercial product was launched in 2012.
The current leading research is introduced in Chapters 15 and 18.

There were some challenges to apply AOS-TFTs to low-cost AM-LCDs fabricated at low temperatures on low-cost
soda-lime glass substrates that cannot suffer high-temperature processes, instead of expensive and heat-resistant
alkaline-free glass substrates. These challenges have failed to date, because it was found that post-annealing at
≥300 ∘C was necessary to reduce defect densities of AOS thin films for TFT backplanes of AM-FPDs.

Low-power-consumption AM-FPDs, which can reduce frame rates when displayed pictures are immobile, also
have been proposed based on the extremely low off-leakage current of AOS-TFTs. The lower the frame rate is,
the lower the power consumption in the peripheral circuits is. The low frame rate driving by AOS-TFTs has been
commercialized in mobile devices such as smartphones and smartwatches.

There have been many challenges except applications to AM-FPDs. The high mobility and low-temperature
fabrication of AOS-TFTs facilitate their applications to logic and radiofrequency circuits on flexible polymer
substrates for wireless communications. The state-of-the art research is introduced in detail in Chapter 17. High
breakdown voltage and low-temperature fabrication encourage engineers and scientists engaged in Si-based
ultra-large-scale integration (ULSI) circuits to apply AOS-TFTs to the peripheral back-end-of-line circuits of
ULSI. The leading research is described in Chapter 20. Volatile and nonvolatile memory devices comprise one of
the most promising candidates for AOS-TFT applications, and they have been investigated utilizing low leakage
current and low-temperature fabrications. The details are described in Chapters 19, 20, and 21. Neuromorphic
applications based on AOS thin-film devices have also attracted attention, and they are described in Chapter 22.
Application of AOS-TFT-based active-matrix backplanes to X-ray image sensor arrays is described in Chapter
23. These post-AM-FPD applications are expected to be commercialized soon, taking advantage of accumulated
technologies for materials, designs, and fabrications developed in AM-FPD applications.

1.2.3.4 Development and Products of AM-FPDs

Through active research on applications (mentioned in Section 1.2.3.3), many prototype AM-FPDs have been
demonstrated using backplanes composed of oxide semiconductor TFTs. Three small panels initially appeared
in the same year of 2006: (i) Ito et al. demonstrated a color EPD driven by transparent a-IGZO-TFTs formed over
color filter arrays on a polymer substrate at room temperature [17], (ii) Hirao et al. demonstrated a transparent
AM-LCD panel driven by ZnO-TFTs [18], and (iii) Park et al. demonstrated a transparent AM-OLED panel driven
by ZnO-TFTs [19]. These pioneering works were then followed by worldwide activities in academies and indus-
tries to demonstrate more sophisticated prototype panels mainly using a-IGZO-TFTs with enhancement of panel
size, resolution, color rendering, and flexibility.

During this prototyping period, the remaining technical problems of stability, device structures, and mass pro-
duction had been solved. Finally, in 2012, the first commercial product was launched into market in a small
number of shipping tablet PC products (Apple iPad 3) with high-resolution (264 ppi) 9.7-inch-diagonal AM-LCDs
for their screen panels driven by the a-IGZO-TFT-based backplane circuits. Since then, high-resolution AM-LCDs
driven by a-IGZO-TFTs have been adopted by some smartphones, PC monitors, laptop PCs, and tablet PCs. In 2015,
LG launched the first AM-OLED product, a 55-inch-diagonal full-high-definition (FHD; 2k) TV with a curved
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Figure 1.2.3 Market-leading product of a 65-inch-diagonal 4k AM-OLED TV, donated by the manufacturer to the inventor
of a-IGZO-TFTs.

panel driven by a-IGZO-TFTs. The AM-OLED TV products have evolved to a larger size (up to 88 inches diagonal)
and a higher resolution (up to ultra-high-definition [UHD]; 8k), and they are more flexible with rollable screens
through 2021 (Figure 1.2.3). Hybrid backplanes composed of both LTPS- and a-IGZO-TFTs (called “LTPO-TFTs”)
have also been proposed to partially use AOS-TFTs for frame-rate reduction, and they have been adopted in
AM-OLED panels of smartwatch products (since the Apple Watch Series 4 in 2018), where power-consumption
savings are critical due to the watches’ small batteries and the panels display motionless pictures very often. The
LTPO-TFT-based AM-OLED panels also will soon be adopted by smartphones to boost the highest frame rate
over 120 Hz and enhance user experiences in motion pictures, gaming, and artificial/virtual-reality content by
suppressing response delays.

It is expected that AOS-TFTs will drive emerging and promising AM-FPDs such as halide perovskite LED
(PeLED) and micro-LED (μLED) displays. Requirements for backplane TFTs from PeLED displays are almost the
same as and rather simpler than AM-OLEDs. Current AOS-TFTs will readily meet the needs of high-performance
PeLED displays when they are developed to acquire sufficient stability. On the other hand, μLED displays are
composed of arrays of discrete GaN-based LEDs that have too steep a turn-on threshold to control by an analog
driving scheme with continuous variation of injected current, and they have to be controlled by digital driving of
pulse-width modulation (PWM). The PWM requires very abrupt changes in currents and very high mobilities for
driving transistors. Therefore, much higher mobility AOS-TFTs than the current a-IGZO are required.

1.2.4 Summary

After incubation for over a half century, oxide semiconductor TFTs were commercialized by research and devel-
opment of AOS-TFTs for only eight years from the emergence of a-IGZO-TFTs. Such relatively quick commercial-
ization is due to not only the excellent properties of AOSs and their fortunate and timely fit with the technical
requirements of applications, but also low barriers to entry into AOS-based technologies and commercializa-
tion, which are protected by fundamental intellectual properties licensed nonexclusively to everyone. AOSs have
become one of the platform materials for semiconductor devices today.
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There are still remaining issues in AOSs, as briefly mentioned, but it is expected that, after solving them, AOSs
will become much more important in AM-FPD technologies and be used in other applications.
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2.1 Introduction

Structural disorder has been known to suppress carrier concentration and carrier mobility in common covalent
semiconductors, such as silicon, by orders of magnitude. The lack of periodicity and bond irregularities in the
amorphous phases with strong directional bonding reduces the orbital overlap of the neighboring atoms and give
rise to the formation of localized defect states near the band edges that may cause electron trapping, carrier scat-
tering, and subgap absorption. In striking contrast to the covalent semiconductors, oxides of posttransition metals
with ionic bonding are known to remain transparent in the visible range and exhibit not only crystalline-like elec-
tron mobility upon amorphization, but also 1–2 orders of magnitude higher carrier concentration in the disordered
phases as compared to their crystalline counterparts [1–10].

The weak ionic bonding between posttransition metals and oxygen atoms makes the structural description of the
amorphous oxide semiconductors (AOSs) challenging. In marked contrast to the Si- or Ge-based semiconductors
or SiO2-based glasses (composed of the main-group metal oxides) that have strong covalent bonding responsible for
distinct symmetry-defined nearest-neighbor polyhedra, the weak ionic metal–oxygen (M-O) bonds in AOSs allow
for large bond length and angle deviations resulting in strong distortions in the M-O polyhedra and, therefore, in
significant disorder within the short-range (nearest-neighbor) structure. These deviations must be carefully quan-
tified in order to determine their role in the electronic properties of AOSs. For this, theoretical and experimental
characterization that involves statistical averaging, although instructive in predicting some macroscopic proper-
ties such as optical band gap and electron effective mass using established solid-state theories, will miss important
information hidden in the distribution and its tails. It might seem reasonable to assume that the structural outliers
are key to understanding carrier generation and carrier scattering in AOSs; the larger the structural deviation from
an average or a crystalline value, the more localized the defect should be. However, there is a second important
consequence of the weak bonding in AOSs that must be taken into account in order to understand the resulting
electronic properties: An undercoordinated atom or a strongly distorted polyhedron may trigger significant bond
reconfiguration not only in the immediate vicinity, but also throughout the weakly bound disordered network
via a ripple effect. As a result, the AOS’s susceptibility to long-range structural rearrangement is beneficial for
carrier transport: It may not only improve hybridization of different constituents (e.g., in a multi-cation oxide) in
the conduction states, but also reduce the electron scattering via extensive structural reconfiguration near defects,
dopants, or impurities [11–13]. The latter is not possible in crystalline oxides where the translational periodic-
ity of the well-defined lattice limits structural relaxation around a defect to its nearest or next-nearest neighbors.

† In loving memory of my father, Evgeny Medvedev, who gave me boundless support and encouragement.
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Therefore, structural outliers in AOSs should be considered along with their environment—a disordered, random
structure—that requires a systematic description in order to gain insights into carrier generation and mobility
in AOSs.

Traditionally, the structural characterization of disordered oxides focuses on the M-O and M-M distributions;
however, it is critical to understand how disorder affects the oxygen environment. Owing to the directional nature
of the O--p-orbitals, the distortions in the O-M polyhedra are expected to have a more pronounced effect on the elec-
tronic properties of AOSs as compared to the symmetry-indifferent spherical s-orbitals of the posttransition metals
[14]. Indeed, the differences in the orbital sensitivity to disorder are manifested in the characteristic asymmetry
of the electronic localization of the tail states near the band edges in AOSs: The top of the valence band formed
from the O--p-states exhibits strongly localized states, whereas the s-p-hybridized conduction states are gener-
ally delocalized in stoichiometric or nearly stoichiometric amorphous oxides and may feature shallow or weakly
localized defects associated with metal undercoordination, even in highly sub-stoichiometric oxides [11]. The
localized tail states near the top of the valence band arise from nonbonding O--p-orbitals for the oxygen atoms that
are undercoordinated or in a highly distorted nearest-neighbor (metal) environment. These localized O--p-states
were shown to contribute to the visible-range absorption in stoichiometric amorphous In2O3 [11] and play a key
role in H defect formation and H mobility in amorphous In-Ga-O doped with hydrogen [12, 13]. While the most
advanced X-ray scattering techniques for short-range structural characterization are not sensitive enough to probe
the coordination environment of lightweight oxygen atoms, ab initio modeling combined with X-ray photoelec-
tron spectroscopy (XPS) O1s or with oxygen nuclear magnetic resonance (NMR) measurements should provide
valuable insights into oxygen coordination distribution and its role in the electrical and optical properties of AOSs.

Many important aspects of AOSs have been addressed theoretically. The first molecular dynamics (MD) simula-
tions of amorphous indium oxide appeared in 2009 [15], followed by models of electron transport in multi-cation
AOSs [16–21], density functional theory (DFT) calculations of defect formation [22–29], and statistical descrip-
tions of amorphous networks [30–32]. Despite the tremendous progress, the structural randomness that leads to
an intricate interplay between bond distortions, coordination morphology, and electron (de)localization in AOSs
is far from being understood.

In this work, computationally intensive ab initio MD simulations, comprehensive structural analysis, and hybrid
density-functional calculations are employed to accurately describe the peculiarities in short- and medium-range
structures of amorphous In2O3, SnO2, ZnO, and Ga2O3 and their role in the resulting electronic properties. In
addition to carefully considering the statistical distributions of the nearest- and next-nearest-neighbor structural
characteristics for both metal and oxygen atoms, we examine the individual M and O features and compare the
results to the corresponding values in the crystalline oxides. To establish rigorous structure–property relationships,
we calculate a so-called effective coordination number (ECN) for every atom based on a weighted average distance
in the given polyhedron [33]. This approach provides a significant improvement of the structural description of
the ionic AOSs as compared to the typical cutoff-based calculations that neglect bond distribution in individual
polyhedra and hence may under- or overestimate the coordination for a large fraction of atoms. Similarly, we avoid
the traditional electronic structure tools, such as atom-resolved density-of-states calculations that also rely on a
fixed cutoff radius neglecting nonspherical charge density distribution near low-coordinated atoms or those in
highly distorted environments. Instead, we employ Bader charge analysis that assigns charge values based on the
carefully calculated gradients in the charge density distribution around each atom [34, 35]. Relating the structural
peculiarities of each individual atom to its Bader charge contribution in the valence and conduction band helps us
establish the microscopic origins of the electron (de)localization in the disordered oxide materials—and develop
a framework for an accurate description of complex AOSs’ behavior. In addition to the four binary oxides that
are common constituents in the AOS phase space, we extend our analysis to multicomponent In-Ga-O (IGO) and
In-Ga-Zn-O (IGZO) to highlight how metal composition affects the intricate structure–property relationships of
AOSs with tunable properties.
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2.2 Brief Description of Methods and Approaches

2.2.1 Computational Approach

All amorphous oxide structures were obtained using an ab initio MD liquid-quench approach, as imple-
mented in the Vienna Ab Initio Simulation Package (VASP) [36, 37]. The calculations are based on DFT with
periodic boundary conditions and employ Perdew–Burke–Ernzerhof (PBE) exchange–correlation functionals
[38] within the projector augmented-wave method [39, 40]. An initial stoichiometric oxide structure with
specific density was melted at 3000 K to eliminate any crystalline memory and randomize the composition.
The melting step was followed by quench cycles with a specific cooling rate and an equilibration MD step
at room temperature to stabilize the amorphous structure. Next, each atomic configuration was fully relaxed
using DFT-PBE at 0 K. For optimization, the cutoff energy of 500 eV and the 4×4×4 Γ-centered k-point mesh
were used; the atomic positions were relaxed until the Hellmann–Feynman force on each atom was below
0.01 eV/Å. The electronic and optical properties of amorphous In-based oxides were calculated using the
hybrid Heyd–Scuseria–Ernzerhof (HSE06) approach [41] with a mixing parameter of 0.25 and a screening
parameter μ of 0.2 Å−1.

To obtain adequate statistical distributions in the structural and, consequently, the electronic properties, 10–20
separate MD liquid-quench realizations with the same parameters and conditions (density, composition, stoi-
chiometry, initial temperature, quench rate, equilibration, and relaxation) were obtained for each system. The
density of an amorphous structure is an important factor and must be carefully determined. A set of independent
MD liquid-quench simulations were performed for 4–5 different density values for each composition, resulting in
over 300 MD realizations performed for this work. Upon room-temperature equilibration, the DFT total energy
was calculated as an average over the final 500 MD steps to remove thermal fluctuations and plotted as a function
of density for each oxide.

To validate the MD simulated structures, we calculate the extended X-ray absorption fine-structure (EXAFS)
spectra for all amorphous models [42, 43] to directly compare the results with available experimental EXAFS
measurements that capture the changes in the M-O bond lengths as well as in the second-shell M-M characteristics
responsible for the medium-range structure at different densities.

Structural randomness in amorphous oxides is then quantified by analyzing the characteristics of individual
atoms. For this, the effective average distance (lav) for the M-O (O-M) first shell for each M-O (O-M) polyhedron
was calculated using a weighted average, where each M-O (O-M) bond distance is compared to the shortest M-O
(O-M) distance in each given polyhedron [34, 35]. Next, the ECN for individual M and O atoms was calculated as a
sum of the first-shell distances weighted with respect to the effective average length obtained for each polyhedron.
In addition, we calculate the distortion of each M-O (O-M) polyhedron σ2, characterized by the standard deviation
of the individual M-O bond lengths from the effective average M-O bond length for the given polyhedron. As
mentioned in Section 2.1, this approach provides a significant improvement for the structural analysis of the ionic
AOSs as compared to the typical approach that uses a single cutoff distance for all polyhedra, thus neglecting bond
distribution in individual polyhedra, and hence may under- or overestimate the coordination of a large fraction of
atoms in AOSs.

In addition, the total and partial vibrational density-of-states (VDOS) calculations were performed for the
optimized structures to provide crucial information about local bonding and the dynamical stability of a model.
The vibrational inverse participation ratio (VIPR) was calculated from the normalized displacement vectors
to determine the localization of different vibrational modes. Finally, optical absorption was derived from the
frequency-dependent dielectric function calculated within independent particle approximation using the elec-
tronic transitions of the hybrid functional (HSE06) solution. The atomic structures and charge densities were
plotted using VESTA software [44].
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2.2.2 Experimental Approach

Amorphous binary oxide thin films were grown by pulsed-laser deposition (PLD) from dense hot-pressed indium
oxide, zinc oxide, tin oxide, or gallium oxide targets (25 mm diameter). PLD was accomplished with a 248 nm KrF
excimer laser with 25 ns pulse duration and operated at 2 Hz. The 200 mJ/pulse beam was focused onto a 1 mm
× 3 mm spot size. The target was rotated at 5 rpm about its axis to prevent localized heating. The target–substrate
separation was fixed at 10 cm. Both the amorphous and crystalline films were grown at O2 ambient pressure of
7.5 mTorr. The silica substrates were attached to the substrate holder with silver paint and grown at a specific
deposition temperature to ensure the films are amorphous. Films grown above 25 ∘C were attached to a resistively
heated substrate holder; films grown below 25 ∘C were attached to a liquid nitrogen–cooled substrate holder. The
amorphous In2O3, SnO2, and Ga2O3 films were grown at −25 ∘C. The amorphous ZnO film was grown at −100 ∘C.
All crystalline films were grown at +600 ∘C.

X-ray absorption spectroscopy (XAS) was performed at the 5-BMD (bending-moment diagram) beam line of
DND-CAT (the DuPont–Northwestern–Dow Collaborative Access Team) at the Advanced Photon Source (APS)
of Argonne National Laboratory (Argonne, IL). Metal k α fluorescence emissions from the metal-oxide thin films
were measured using a four-element Si-drifted detector (SII) with the incident X-ray angle θ at about 45∘ with
respect to the sample surface. The data were Fourier transformed with a Hanning window over multiple k ranges,
where one-shell and three-shell fits were examined. The k ranges of the EXAFS data used in the analyses were
k = 2.5 to 11.972 Å−1 (ZnO), 2.0 to 15.5 Å−1 (In2O3), 1.0 to 14.0 Å−1 (Ga2O3), and 2.3 to 15.8 Å−1 (SnO2), with a
k-weight of 3.

2.3 The Structure and Properties of Crystalline and Amorphous In2O3

First, the total pair-correlation functions for crystalline (bixbyite) and amorphous stoichiometric In2O3 with dif-
ferent densities are shown in Figure 2.1a. Both crystalline and amorphous results were obtained from the MD
simulations at 300 K (equilibration with 3,000 MD steps or 6 ps) to include possible temperature fluctuations. The
results for amorphous structures represent an average over at least 10 separate MD realizations to provide bet-
ter statistics. Structural disorder slightly shifts the first-shell peak toward longer In-O distances; in addition, the
In-O distance distribution widens to include a small fraction of the In-O bonds with longer distances, between 2.3
Å and 2.6 Å (Figure 2.1a). This behavior is common to other semiconductors such as Si. More striking changes
occur in the O-O and In-In distance distributions, with both the O-O peak at 2.8 Å and the In-In peak at 3.4
Å—as well as the longer range peaks—suppressed in the amorphous case. The disorder-induced changes in the
O-O distribution set the ionic AOSs apart from the covalent silica-based glasses, where the O-O peak is preserved,
signifying that the oxygen environment around the main-group metals (with well-defined O-O distances in the
highly symmetric Si-O polyhedra) is maintained upon amorphization. Because the strength of the M-O bonding
determines the rigidity of the local polyhedral structure, indium oxide, having the weakest bonding among the
posttransition metal oxides considered in this work, features the largest average distortions in the first-shell M-O
polyhedra (Table 2.1). Therefore, despite seemingly unchanged first-shell In-O distribution upon amorphization,
the short-range (nearest-neighbor) disorder should be expected from the distortions associated with the loss of
symmetry and significant bond deviations within individual In-O polyhedra. In the medium range, at ∼3.2 Å and
above (Figure 2.1a), the broader In-In distance distribution suggests that sharing of the neighboring In-O poly-
hedra changes significantly upon amorphization, as indeed can be seen from the structural comparison given in
Figure 2.1c and 2.1d. The changes in In-O polyhedra sharing will be quantified in Section 2.7.

To determine the optimal density of amorphous In2O3, at least 10 independent MD liquid-quench simulations
were performed for five different density values. Upon equilibration of each configuration at 300 K for 6 ps, the
DFT total energy was calculated as an average over the final (stable) 500 MD steps to remove thermal fluctuations.
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Figure 2.1 General structural properties of In2O3. (a) Total pair-correlation function for crystalline (bixbyite) and amorphous In2O3 with different densities. Both
crystalline (dashed line) and amorphous (solid lines) results were obtained from MD simulations at 300 K (equilibration with 3,000 MD steps = 6 ps). The results
for amorphous structures represent an average over at least 10 separate MD realizations at each density. (b) The energy–density curve for amorphous In2O3
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represented by a star symbol. (c,d) Crystalline and amorphous atomic structures with In-O polyhedra highlighted. In and O atoms are represented by large and
small spheres, respectively. (e) Experimental extended X-ray absorption fine structure (EXAFS) for an In K edge in bulk powder, crystalline film, and amorphous
film samples of In2O3. (f) Calculated EXAFS for an In K edge in amorphous In2O3 models with different densities (solid line) as compared to experimental spectra
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solid line.
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Table 2.1 First-shell effective coordination number (ECN), effective average distance, and distortion for metal and oxygen
atoms for crystalline and amorphous binary oxides at different densities.

Metal–Oxygen Oxygen–Metal

Density, g/cm3 ECN lav,Å 𝛔2, ×104 Å2 ECN lav, Å 𝛔2, ×104 Å2

c-In2O3 7.20 5.84
5.73

2.17
2.17

33
57

3.84 2.17 50

a-In2O3 7.30 5.38 2.19 124 3.65 2.20 126
7.20 5.38 2.20 121 3.64 2.20 126
7.10 5.35 2.20 127 3.62 2.20 132
7.00* 5.32 2.21 132 3.60 2.21 135
6.90 5.14 2.18 141 3.50 2.19 136

c-SnO2 6.95 5.90 2.05 19 2.95 2.05 19
a-SnO2 6.81 5.50 2.09 119 2.80 2.09 97

6.48* 5.41 2.09 117 2.76 2.09 98
6.17 5.26 2.09 116 2.70 2.09 91
5.88 5.14 2.09 118 2.72 2.10 91

c-ZnO 5.61 3.91 1.98 25 3.91 1.98 24
a-ZnO 5.78 3.80 2.00 104 3.80 2.00 106

5.50 3.70 2.00 99 3.70 2.00 96
5.23* 3.64 2.00 96 3.65 2.00 106
4.98 3.53 1.99 102 3.50 2.00 108

c-Ga2O3 6.44 3.93
5.59

1.84
1.98

16
75

3.46
2.89
2.83

1.96
1.87
1.90

139
38
55

a-Ga2O3 6.12 4.67 1.93 123 3.19 1.94 115
5.80 4.50 1.92 115 3.10 1.94 110
5.50 4.34 1.92 97 2.94 1.92 96
5.23* 4.26 1.92 87 2.85 1.92 90
4.97 4.16 1.91 79 2.77 1.91 87

Note: The values represent an average over all metal or oxygen atoms in the supercell and over 10 separate MD realizations at the
given density. Bixbyite, rutile, wurtzite, and monoclinic β-phase structures are considered for crystalline In2O3, SnO2, ZnO, and
Ga2O3, respectively.

The results, shown in Figure 2.1b, suggest that (i) the formation energy of different MD realizations varies within
at least 0.02 eV/atom, and the variation is largest for the lowest density case, most likely due to differences in mor-
phology; (ii) several MD realizations (or bigger cells) are required to predict the optimal density; and (iii) there is
a substantial overlap between the total energy for the configurations with different densities, giving an extremely
shallow minimum in the energy–density plot. The latter signifies that amorphous indium oxide samples with
density values within a wide range (7.00–7.30 g/cm3) could be grown. Different deposition techniques and pre- or
postdeposition conditions are likely to affect the density of amorphous In2O3 oxide. Moreover, we speculate that
the density of amorphous In2O3 may change long after the sample was deposited, making the structural charac-
terization challenging. In the discussion here, amorphous indium oxide structures with a density of 7.00 g/cm3

are used; this optimal density is slightly lower than the crystalline density of 7.19 g/cm3.
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To validate the theoretical amorphous models, the EXAFS is calculated for the In K edge for amorphous In2O3
models with different densities. From experimental EXAFS (Figure 2.1e), the peak that corresponds to the indium
first shell (In-O) is maintained, whereas the second-shell (In-In) peak is significantly suppressed upon amor-
phization, in accordance with our pair-correlation function results (Figure 2.1a). Overall, an excellent agreement
between the theoretical and experimental EXAFS is obtained (Figure 2.1f). Moreover, the results further corrob-
orate the crucial effect that density has on the In-In distances and coordination (Figure 2.1f).

Next, total and partial VDOSs were calculated for crystalline and the most stable amorphous In2O3 structures
to verify the dynamical stability of the latter structure and to identify disorder-induced changes. In addition, the
VIPR was calculated from the normalized displacement vectors to determine the localization of different vibra-
tional modes. The results, shown in Figure 2.1e and 2.1f, demonstrate that disorder not only makes the VDOS
featureless by smearing and suppressing the well-defined peaks within the entire range of frequencies, but also
leads to a notable overlap between the In and O VDOSs. The overlap occurs primarily due to a shift of the oxygen
VDOS toward the lower frequencies. Similarly, the In VDOS develops low-frequency modes that do not exist in
bixbyite In2O3. The VDOS shifts toward lower frequencies for both oxygen and indium are characteristic of amor-
phous phases. At the same time, several oxygen atoms that oscillate at normal modes with high frequencies of
around 550–650 cm−1 (with the largest VIPR value of 0.6) and several In atoms that oscillate with low frequen-
cies of 50 cm−1 (the largest VIPR value of 0.1) appear in the amorphous phase, whereas the remaining frequencies
show low VIPR values, comparable to those in the crystalline mode and suggesting an evenly distributed vibration
among different atoms within most of the spectrum.

Our comprehensive structural analysis begins with a comparison of the ECN distributions for the first-shell
In-O and O-In polyhedra for the crystalline and amorphous indium oxide with perfect stoichiometry (i.e., for
the oxygen-defect-free structures; Figure 2.2a). To account for room-temperature atomic fluctuations, the ECN is
calculated for each individual In and O atom as a time average obtained from MD simulations at 300 K for 3,000
steps (6 ps). For amorphous phases, we analyzed 10 independent MD realizations at the optimal density; Figure 2.2
combines the results for the 10 realizations.

In bixbyite In2O3, there are two non-equivalent In sites, 8b and 24d; the former represents a perfect octahedron
with six oxygen neighbors located at a distance of 2.17 Å and an ECN of 6.00, whereas the latter is a distorted
octahedra with two O neighbors at 2.13 Å, two at 2.20 Å, and two at 2.23 Å, making the average In-O distance
to be 2.18 Å and ECN = 5.91 for the 24d site. At room temperature, the atomic vibrations reduce the ECN of the
two In types to 5.84 and 5.73, respectively, and the effective average In-O distance is slightly reduced to 2.17 Å
for the 24d site (Table 2.1). Importantly, the temperature effects make the two types of In atoms indistinguishable,
representing both with a single-peaked broad distribution of ECN (Figure 2.2a). Oxygen atoms in crystalline In2O3
are four-coordinated with In neighbors. At room temperature, the average effective coordination of oxygen atoms
is 3.84.

ECN distributions for crystalline and amorphous In2O3 are shown in Figure 2.2a. Clearly, both indium and oxy-
gen distributions become nearly two times wider upon amorphization. The number of “fully” coordinated In and
O atoms is suppressed; moreover, secondary peaks at ECN(In) = 5 and ECN(O) = 3 become visible. Thus, despite
the similarities in the nearest-neighbor indium–oxygen distance distributions in the crystalline and amorphous
phases (Figure 2.1a), disorder leads to significant bond deviations in individual polyhedra, reducing the coordi-
nation numbers for a large fraction of In-O and O-In. The average ECN values for different densities are given in
Table 2.1.

As can be expected, the angle distributions for both O-In-O and In-O-In also widen and become more uniform
in the amorphous In2O3 (Figure 2.2b). As mentioned in Section 2.1, the distortions in the O-In polyhedra are
expected to have a more pronounced effect on the electronic properties of AOSs due to the directional nature of
the O--p-orbitals as compared to the symmetry-indifferent spherical In-s-orbitals [14]. It should be noted here
that the In-O-In angle also can be viewed as a measure of the mutual alignment of neighboring InO polyhedra.
In bixbyite In2O3, the peak at about In-O-In = 128∘ corresponds to the corner-shared InO6 polyhedra; this peak
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Figure 2.2 Structural randomness: The properties of individual In-O and O-In polyhedra in In2O3. (a) Distribution of the
effective coordination number of In and O in crystalline (dashed line) and amorphous (solid line) phases. (b) Distribution of
the O-In-O and In-O-In angles in crystalline (dashed line) and amorphous (solid line) phases. The results for amorphous
structures represent an average over at least 10 separate MD realizations at optimal density. (c) Effective coordination
number of individual In and O as a function of the effective average distance or distortion for the given atom in crystalline
(triangles and shaded region) and 10 amorphous (circles) phases. All results are calculated based on the MD simulations at
300 K (equilibration with 3,000 MD steps = 6 ps).

is strongly suppressed in the amorphous phase, suggesting a significant disorder in the medium-range structure
even though the density of the amorphous structure is only 3% lower than that in the crystalline oxide.

The remarkable difference between crystalline and amorphous In2O3 can be best visualized when the
time-averaged ECN values for the individual In and O atoms are plotted as a function of their time-averaged
effective distance and distortion (Figure 2.2c). Strikingly, despite the similarity of the In-O distance distributions
for crystalline and amorphous oxides (Figure 2.1a), only four In atoms out of 540 within the 10 MD realizations
have structural values that are similar to those in bixbyite In2O3 (i.e., 5.70 < ECN < 6.00 and σ2

< 0.0060),
although all four have the effective average In-O distance of 2.20 Å, which is above the corresponding average
crystalline distance of 2.17 Å. Importantly, the amorphous oxide features a notable fraction of In atoms that are
undercoordinated (ECN < 5.0) and have low distortions (σ2

< 0.01 Å2) as well as those that are overcoordinated
(ECN > 6.0) (Figure 2.2c). Similar observations can be done for oxygen atoms. For the majority of atoms, however,
there are two clear correlations: (i) the lower the ECN value, the larger the distortions in the polyhedral are; and
(ii) the reduction in ECN value is generally associated with shorter average bond length, as should be expected
for an ionic material. While the spherical symmetry of the In s-states makes the In atoms indifferent to the exact
direction in which the oxygen neighbors are located (the distribution of the O-In-O angles is wide and uniform;
Figure 2.1b), the overlap between the spherical s-orbital of In and the p-orbitals of O atoms may be affected by
changes in the In-O distances. This situation will be discussed in the electronic localization section of this chapter
(Section 2.7).

Thus, disorder leads to significant bond deviations and reduced effective coordination numbers for individual
In and O atoms, even though the density of amorphous oxide is lower by less than 3% as compared to that in the


