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Preface

Certainty and trust are the hallmarks of prenatal
diagnosis where doubt and ambiguity are out-
laws. At no time was that more apparent than
when AM made his first prenatal genetic diag-
nosis over 50 years ago. “Are you sure?” were
that patient’s first words, intoned with deep anx-
iety. Those words underscored the still cogent
need for accuracy in prenatal diagnosis, where
mostly a single report would be final. That was
a time when prenatal diagnosis depended on
amniocentesis-based study, yielding an accuracy
rate exceeding 99 percent. Few laboratory tests,
then or now, concerned with profoundly important
decision-making equal this enviable accuracy. Vari-
ants of uncertain significance had not yet entered
the genetic lexicon.

Today, however, with the newer, beguiling, non-
invasive technology, amniocentesis and chorionic
villus sampling (CVS) use has declined dramati-
cally. On the altars of convenience and expediency,
women are choosing or simply encouraged to
have noninvasive prenatal testing, often blissfully
unaware that about half of all chromosomal abnor-
malities detectable through amniocentesis or CVS
and authoritatively discussed, would be missed.
There is room for concern given the current con-
sensus that all women should be offered either of
these two procedures.

Similarly, all women with risks of having off-
spring with a monogenic disorder and a known
pathogenic variant should be informed about
and offered the option of preimplantation genetic
testing (PGT). The extensive and long-established
experience of the authors with PGT enshrine this
recommendation. Expanded carrier screening
should make this a more frequently addressed
option. Couples should, however, be carefully
counseled about the limitations of such screening.
All the facts, figures, guidelines, and recommen-
dations have been updated in this edition, and will

assist the expanded healthcare team in providing
optimal care to all patients.

Coupled with remarkable advances in technol-
ogy, prenatal diagnosis has undergone a revolution.
Thus far, and continually increasing, more than
4,331 culprit genes and 6,739 associated pheno-
types for an extensive array of genetic disorders
have been identified. Consequently, since physi-
cians in all medical specialties encounter genetic
disorders for which a molecular diagnosis is avail-
able, awareness of the options for prenatal diagnosis
or PGT has become especially important.

Pari passu with these technical advances has
come the opportunity to avoid and prevent the
occurrence of many lethal and seriously disabling
genetic diseases. This progress means that physi-
cians in all specialties incur responsibility (and
inevitable liability) to acquire new knowledge of
genetic disorders and offer appropriate tests or refer
patients for evaluation and genetic counseling.

More than 60 million people worldwide are
estimated to have DNA studies in the next 5
years. Expanded carrier testing, maternal cell-free
plasma DNA testing, whole-exome sequencing,
next-generation sequencing, single-cell molecular
diagnosis, and advanced fetal imaging, all fully
presented in this volume, now complement the
well-established procedure for prenatal diagnosis
and PGT. Whole-genome analysis for prenatal
diagnosis (even if advisable) simply awaits further
technical advances.

Chromosomal microarrays and whole-exome
sequencing have propelled an even greater prenatal
diagnostic reach, especially in the face of fetal
structural, including skeletal, abnormalities, given
the advances in ultrasound and magnetic reso-
nance imaging, so expertly covered in this volume
by authors from three European countries.

The fetal anomaly scan has to an important
extent superseded amniotic fluid 𝛼-fetoprotein for

ix
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the diagnosis of neural tube defects. Nevertheless,
the significant worldwide prevalence of neural
tube defects makes maternal serum 𝛼-fetoprotein
screening a continuing vital test, critically evalu-
ated here by a pioneer. The diagnosis of neural tube
defects and their consequences, as well as the fre-
quently failed efforts at prevention, are thoroughly
detailed.

Knowledge of the common sex chromosome
aneuploidies and some of the rarer variants con-
tinues to expand. Up-to-date summaries of all
these disorders are presented with specific rec-
ommendations for genetic counseling. Molecular
prenatal diagnosis has now become routine and the
multiple technologies utilized, with their benefits
and limitations along with clinically based caveats
and considerations, are presented in a significantly
updated chapter.

The advent of next-generation sequencing has,
by targeting panels or whole-exome approaches,
resulted in more opportunities for avoidance and
prevention through prenatal diagnosis. These
widely available technologies not only address
previously diagnosed childhood-onset disor-
ders, but also those of adult onset, including
cardiomyopathies, malignancies, and neurologic
disorders.

Progress and refinement in the diagnosis and
management of a wide range of metabolic dis-
orders are fully and authoritatively updated, and
equally complemented by the detailed in-depth
advances in molecular diagnostics that include the
hemoglobinopathies, fragile X syndrome, cystic
fibrosis, disorders of folate metabolism, and the
immunodeficiency diseases.

Pregnancy termination is a sad but fortunately
uncommon consideration following prenatal diag-
nostic studies. The techniques and complications
are fully discussed and complemented by insightful
senior experience with the management of grief
after pregnancy and perinatal loss. Discussion
about the care and management of mothers with
genetic disorders that affect fetal health and those
who transmit infection to the fetus is sharply
focused on diagnosis, prevention, avoidance, and
treatment. Fetal health is doubly important given
the known fetal origins of adult disease that go
far beyond hypertension, obesity, and diabetes,
to include the epigenetic phenomena induced by
the maternal pregnancy environment. A thorough

exposition on the importance of placental develop-
ment, structure, function, genetics, and pathology
on fetal growth and development is expertly pre-
sented in this edition. Steadily, but surely, fetal gene
therapy via hematopoietic stem cell transplantation
is taking root, while a remarkable chapter on fetal
surgery by a leader in the field points to new brave
surgical remedies.

While all authors acknowledge continuing
progress in molecular genetics, inconclusive
results due to variants of uncertain significance
are not infrequent. Laboratory conclusions can
be further compounded by a host of issues that
potentially befuddle interpretation. Commonly
encountered issues include delineation of normal
variation or polymorphisms, difficulty deter-
mining the pathogenicity of variants, depth of
sequencing coverage, regions of high GC content,
mosaicism, DNA contamination, digenic inheri-
tance, locus heterogeneity, and false-positive and
false-negative results. The concurrence of an inci-
dental (secondary) finding on fetal DNA analysis
will predictably arouse great parental anxiety.

Current laws and public policy regarding prena-
tal diagnosis and PGT in 16 countries are examined
in detail regarding international differences, with
special reference to the guidelines relevant to the
emerging technologies. A senior physician-lawyer,
in reviewing the important principles in the torts
of wrongful birth and wrongful life, focused on the
potential liability of those involved in reproductive
medicine. Professional ethics in obstetrics, with
emphasis on the ethical principles of beneficence
and autonomy and the ethical concept of the fetus
as a patient, receive in-depth discussion by doyens
in this field.

This volume is a major repository of facts about
prenatal diagnosis and provides a critical analysis
and synthesis of established and new knowledge
based on the long experience of the senior con-
tributing authorities in their respective fields.
In addition, a broad international perspective is
presented with contributions from recognized
international experts from nine countries. The
guidance provided and the insights and perspec-
tives of these authors make this volume a valuable
and indispensable resource for all those whose
focus is securing fetal health through prenatal
diagnosis or PGT.
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Preface xi

This text is very well referenced and replete
with evidence-based guidance and reflective of the
lifetime experience and wisdom of distinguished
senior authors. This edition encompasses 152
tables, 167 figures, and over 10,000 references. A
valuable index will facilitate the reader’s search for
specific information.

The major technologic advances in genetics have
made the requirement for preconception, prena-
tal, and perinatal genetic counseling of paramount
importance. Even though the underlying principles

and prerequisites are well established, the many
advances have introduced a panoply of new chal-
lenges discussed in detail in a comprehensive,
heavily referenced opening chapter. We are in the
golden era of human genetics, and through new
discoveries and insights have increased opportuni-
ties for the diagnosis, prevention, and treatment of
many serious and lethal genetic disorders.

Aubrey Milunsky and Jeff M. Milunsky
Cambridge
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1 Genetic Counseling:
Preconception, Prenatal, and
Perinatal
Aubrey Milunsky1,2 and Jeff M. Milunsky1,2
1Center for Human Genetics, Cambridge, MA, USA
2Tufts University School of Medicine, Boston, MA, USA

The time is fast approaching when virtually all
the culprit genes and their mutations for >7,000
rare monogenic disorders1 will be known. Thus
far, causal single genes and their mutations have
been determined for 5,673 genetic disorders,2

enabling preimplantation genetic testing or pre-
natal genetic diagnosis. These advances using
chromosomal microarrays, whole-exome sequenc-
ing and even whole-genome sequencing together
with fetal imaging and noninvasive prenatal test-
ing, expand the era in which all couples have the
option of avoiding or preventing having children
with irreversible, irremediable, crippling, or lethal
monogenic disorders. Primary care physicians, and
those in all medical specialties, will need to inform
their patients of this key option. This imperative
is already partly in current practice. Missing is the
requirement of physicians to request and obtain the
precise name of the genetic disorder in question
or an existing DNA report on a family member,
for prospective parents to benefit from available
options.

Increasingly, couples are seeking prenatal diag-
nosis for adult-onset genetic disorders in which
mutations have been determined. Huntington
disease prenatal diagnosis has been in the van-
guard for many years, but now there are requests
for adult-onset dominantly transmissible disor-
ders including breast and other malignancies,

frontotemporal dementia, neurodegenerative
disorders, and cardiomyopathies. The remarkable
advances in genetics provide a cogent need to
confer and refer. Physicians should not invite legal
purview for a failure to inform, offer, refer, or
provide genetic testing.

In context, couples at risk for having progeny
with abnormalities expect to be informed about
their risks and options, optimally during precon-
ception counseling. Their concerns are serious,
given the significant contribution of genetic dis-
orders to morbidity and mortality in children and
adults.

The burden of genetic disorders
and congenital malformations

A conservative estimate for the world population
prevalence of rare diseases (71.9–80 percent con-
sidered as genetic) is 3.5–5.9 percent, equating to
263–446 million individuals affected at any point in
time.3, 4 In India, which has a quarter of the world’s
neonatal deaths (an estimated 753,000 in 2013),
about 9 percent were due to congenital anomalies.5

An estimated 7.9 million infants worldwide are
born each year with a major congenital malforma-
tion according to a report in 2013.6 The likelihood
of having a child with a congenital malformation
varies from 2 to 10 percent7 due to multiple factors

1
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that complicate efforts to accurately diagnose and
determine the incidence or prevalence of con-
genital anomalies or genetic disorders. Box 1.1
lists the majority of known etiologic categories,
discussed below, which help explain sometimes
striking differences among major studies. It is
almost impossible to account for all these poten-
tially confounding factors in a study, and rarely
has any one study come close. Of the >7,000
rare genetic disorders, about 1 in 12 to 1 in 16
individuals are affected,1 aware or unaware. Given
a world population of 7.6 billion, an estimated
473 million are likely to have a rare disease.1

Box 1.1 Factors that influence estimates of the incidence or prevalence in the newborn
of a congenital malformation (CM) or genetic disorder

• Availability and use of expertise in prenatal
diagnostic ultrasound and MRI
• Accuracy of diagnosis
• Age at diagnosis
• Case selection, bias, and ascertainment
• Congenital hypothyroidism
• Consanguinity
• Definitions of major and minor congenital
anomalies
• Diagnostic DNA analysis
• Duration of follow-up
• Economic level in developed or developing
world
• Environmental toxins
• Family history
• Frequency, inclusion, and exclusion of still-
births, fetal deaths, and elective pregnancy
termination
• Frequency of certain infectious diseases
• Frequency of de novo gene mutations
• History of recurrent spontaneous abortion
• In vitro fertilization
• Incidence and severity of prematurity
• Infertility
• Intracytoplasmic sperm injection
• Later manifestation or onset of disorder
• Maternal age
• Maternal alcohol abuse
• Maternal diabetes and gestational diabetes
• Maternal diet
• Maternal epilepsy, lupus erythematosus and
other illnesses

• Maternal fever or use of hot tub in the first 6
weeks of pregnancy
• Maternal folic acid supplementation
• Maternal grandmother’s age
• Maternal obesity
• Maternal serum screening for chromosome
abnormalities
• Maternal smoking
• Maternal-specific susceptibility genes
• Maternal use of medication
• Mortality rates decreasing
• Multiple pregnancy rate
• Necropsy
• Noninvasive prenatal testing using cell-free
fetal DNA for chromosomal abnormalities and
monogenic disorders
• Parent with a congenital abnormality or genetic
disorder
• Paternal age
• Previous affected child
• Previous maternal immunization/vaccination
• Season of the year
• Training and expertise in examination of new-
borns
• Use of chromosomal analysis
• Use of chromosomal microarray
• Use of whole-exome sequencing
• Use of whole-genome sequencing
• Use of death certificates
• Use of registry data

More than 4,331 genes with phenotype-causing
mutations have been identified, including 6,739
phenotypes with a known molecular basis.2 Severe
intellectual disability is considered to be largely
genetic in origin8, 9 with a global prevalence
between 0.5 and 1.0 percent.10 Despite continuing
progress in the discovery of genes causally related
to neurodevelopmental delay,11 in less than 40
percent of cases is there a definitive recognition
of cause. The European Organization for Rare
Diseases maintained that about 30 percent of all
patients with a rare disease died before the age
of 5 years.12 In the United States in 2013–2014,
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congenital malformations, deformations, and
chromosomal abnormalities accounted for the
most infant deaths – 4,746 (20.4 percent) out of
23,215 – in any category of causation.13

Incidence and prevalence
of genetic disorders and
congenital malformations

Estimates of aneuploidy in oocytes and sperm
reach 25 percent and 3–4 percent, respectively.14, 15

Estimates, especially for oocytes, vary widely (see
Chapter 2). The effect of maternal age, among other
factors, is important. At 25 years, early thirties, and
>40 years of age, the rate of aneuploidy approxi-
mates 5 percent, 10–25 percent, and 50 percent,
respectively.15–19 Estimates of aneuploidy and
structural chromosomal abnormalities in sperm
vary from 7 to 14 percent.20 Not surprisingly, then,
about one in 13 conceptions results in a chromo-
somally abnormal conceptus,21 while about 50
percent of first-trimester spontaneous abortions
are associated with chromosomal anomalies.22 One
study of blastocysts revealed that 56.6 percent were
aneuploid. Moreover, these blastocysts produced
in vitro from women of advanced maternal age
also revealed mosaicism in 69.2 percent.23 Similar
results have been reported by others.24 Clinically
significant chromosomal defects occur in 0.65
percent of all births; an additional 0.2 percent of
babies are born with balanced structural chromo-
some rearrangements that have implications for
reproduction later in life (see Chapters 11 and 13).
Between 5.6 and 11.5 percent of stillbirths and
neonatal deaths have chromosomal defects.25

Congenital malformations with obvious struc-
tural defects are found in about 2 percent of all
births.26 This was the figure in Spain among 710,815
livebirths,27 with 2.25 percent in Liberia,28 2.03 per-
cent in India,29 and 2.53 percent among newborn
males in Norway.30 The Mainz Birth Defects Reg-
istry in Germany in the 1990–1998 period reported
a 6.9 percent frequency of major malformations
among 30,940 livebirths, stillbirths, and abor-
tions.31 Pooled data from 12 US population-based
birth defects surveillance systems, which included
13.5 million livebirths (1999–2007), revealed
that American Indians/Alaska natives had a ≥50
percent greater prevalence for seven congenital
malformations (including anotia or microtia, cleft
lip, trisomy 18, encephalocele, limb-reduction

defect).32 Factors that had an impact on the inci-
dence/prevalence of congenital malformations are
discussed later.

Over 25,500 entries for genetic disorders and
traits have been catalogued.2 Estimates based on 1
million consecutive livebirths in Canada suggested
a monogenic disease in 3.6 in 1,000, consisting
of autosomal dominant (1.4 in 1,000), autosomal
recessive (1.7 in 1,000), and X-linked recessive dis-
orders (0.5 in 1,000).33 Baseline birth prevalence
of rare single-gene disorders for multiple countries
are shown in Figure 1.1, which highlights the con-
tribution of consanguinity-associated disorders.34

Polygenic disorders occurred at a rate of 46.4 in
1,000 (Table 1.1). A key study of homozygosity in
consanguineous patients with an autosomal reces-
sive disease showed that, on average, 11 percent of
their genomes were homozygous.35 Each affected
individual had 20 homozygous segments exceeding
3 cM.

At least 3–4 percent of all births are associ-
ated with a major congenital defect, intellectual
disability, or a genetic disorder, a rate that dou-
bles by 7–8 years of age, given later-appearing
and/or later-diagnosed genetic disorders.36, 37 If
all congenital defects are considered, Baird et al.33

estimated that 7.9 percent of liveborn individuals
have some type of genetic disorder by about 25
years of age. These estimates are likely to be very
low given, for example, the frequency of undetected
defects such as bicuspid aortic valves that occur
in 1–2 percent of the population.38 The bicuspid
aortic valve is the most common congenital car-
diac malformation and in the final analysis may
cause higher mortality and morbidity rates than
all other congenital cardiac defects.39 About 27
percent suffer cardiovascular complications requir-
ing surgery.40, 41 Mitral valve prolapse affects 2–3
percent of the general population, involving more
than 176 million people worldwide.42 A Canadian
study of 107,559 patients with congenital heart
disease reported a prevalence of 8.21 per 1,000
livebirths, rising to an overall prevalence of 13.11
per 1,000 in adults.43 The authors concluded that
adults now account for some two-thirds of the
prevalence of congenital heart disease. Categorical
examples of factors associated with an increased
risk of congenital heart disease or malformations
in the fetus are shown in Box 1.1. A metropoli-
tan Atlanta study (1998–2005) showed an overall
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Figure 1.1 Total baseline birth prevalence of rare single-gene disorders by World Health Organization (WHO) region,
highlighting the important contribution of consanguinity to monogenic disorders.
Source: Blencowe et al. 2018.34 Reproduced with permission from Springer.

Table 1.1 The frequencies of genetic disorders in 1,169,873 births, 1952–198334.

Category

Rate per million

livebirths

Total births

(percent)

A

Dominant 1,395.4 0.14

Recessive 1,665.3 0.17

X-linked 532.4 0.05

Chromosomal 1,845.4 0.18

Multifactorial 46,582.6 4.64

Genetic unknown 1,164.2 0.12

Total 53,175.3 5.32 a

B

All congenital anomalies 740–759 b 52,808.2 5.28

Congenital anomalies with genetic etiology

(included in section A)

26,584.2 2.66

C

Disorders in section A plus those congenital

anomalies not already included

79,399.3 7.94

aSum is not exact owing to rounding.
bInternational Classification of Disease numbers.

Source: Blencowe et al. 2018.34 With permission from Elsevier.

prevalence of 81.4 per 10,000 for congenital heart
disease among 398,140 livebirths,44 similar to a
Belgian study of 111,225 live and stillborn infants
≥26 weeks of gestation with an incidence of 0.83
percent, chromosome abnormalities excluded.45

A EUROCAT registry study found an increas-
ing prevalence of severe congenital heart defects
(single ventricle, atrioventricular septal defects,
and tetralogy of Fallot) possibly due to increasing

obesity and diabetes.46 In a study of 8,760 patients
with autism spectrum disorders and 26,280 con-
trols, a statistically significant increase in the odds
of concurrent congenital heart disease (odds ratio
[OR] 1.32) was noted.47 Atrial septal defects and
ventricular septal defects were most common.

Incidence/prevalence rates of congenital defects
are directly influenced by when and how diagnoses
are made. Highlighting the importance of how
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early a diagnosis is made after birth, the use of
echocardiography, and the stratification of severity
of congenital heart defects, Hoffman and Kaplan48

clarified how different studies reported the inci-
dence of congenital heart defects, varying from 4
in 1,000 to 50 in 1,000 livebirths. They reported
an incidence of moderate and severe forms of
congenital heart disease in about 6 in 1,000 live-
births, a figure that would rise to at least 19 in 1,000
livebirths if the potentially serious bicuspid aortic
valve is included. They noted that if all forms of
congenital heart disease (including tiny muscular
ventricular septal defects) are considered, the
incidence increases to 75 in 1,000 livebirths.

The newer genetic technologies, including chro-
mosomal microarray, whole-exome sequencing,
next-generation sequencing, and whole-genome
sequencing, have helped unravel the causes of
an increasing number of isolated or syndromic
congenital heart defects.49, 50 Identified genetic
causes include monogenic disorders in 3–5 per-
cent of cases, chromosomal abnormalities in 8–10
percent, and copy number variants in 3–25 per-
cent of syndromic and 3–10 percent of isolated
congenital heart defects.49, 51 A next-generation
sequencing study indicated that 8 percent and 2
percent of cases were due to de novo autosomal
dominant and autosomal recessive pathogenic
variants, respectively.52

Pregestational diabetes in 775 of 31,007 women
was statistically significantly associated with sacral
agenesis (OR 80.2), holoprosencephaly (OR 13.1),
limb reduction defects (OR 10.1), heterotaxy
(12.3), and severe congenital heart defects (OR
10.5–14.9).53

Maternal obesity is associated with an increased
risk of congenital malformations.54–65 The greater
the maternal body mass index (BMI), the
higher the risk, especially for congenital heart
defects,59, 60, 62, 65 with significant odds ratios
between 2.06 and 3.5. In a population-based
case–control study, excluding women with pre-
existing diabetes, Block et al.66 compared the
risks of selected congenital defects among obese
women with those of average-weight women. They
noted significant odds ratios for spina bifida (3.5),
omphalocele (3.3), heart defects (2.0), and multi-
ple anomalies (2.0). A Swedish study focused on
1,243,957 liveborn singletons and noted 3.5 percent
with at least one major congenital abnormality.64

These authors used maternal BMI to estimate risks
by weight. The risk of having a child with a con-
genital malformation rose steadily with increasing
BMI from 3.5 percent (overweight) to 4.7 percent
(BMI ≥40). Our own67, 68 and other studies69 have
implicated the prediabetic state or gestational dia-
betes as contributing to or causing the congenital
anomalies in the offspring of obese women. In this
context, preconception bariatric surgery seems not
to reduce the risks of congenital anomalies.61, 70–72

It appears that folic acid supplementation atten-
uates but does not eliminate the risk of spina
bifida when associated with diabetes mellitus73 or
obesity74 (see Chapter 10). In contrast, markedly
underweight women reportedly have a 3.2-fold
increased risk of having offspring with gastroschi-
sis,74 in all likelihood due to smoking and other
acquired exposures.75, 76 Indeed, a study of 173,687
malformed infants and 11.7 million unaffected
controls, when focused on maternal smoking,
yielded significant odds ratios up to 1.5 for a wide
range of major congenital malformations in the
offspring of smoking mothers.77 Young nulliparous
women have an increased risk of bearing a child
with gastroschisis, those between 12 and 15 years of
age having a more than fourfold increased risk.78 A
Californian population-based study (1995–2012)
recorded a prevalence for gastroschisis of 2.7 cases
per 10,000 livebirths.75

The surveillance system of the National Network
of Congenital Anomalies of Argentina reported
a 2009–2016 study of 1,663,610 births with 702
born with limb reduction defects.79 The prevalence
was 4.22/10,000 births. In 15,094 stillbirths, the
prevalence rose to 30.80/10,000. A Chinese study
of 223 newborn deaths in a neonatal intensive
care unit noted that 44 (19.7 percent) had a con-
firmed genetic disorder.80 The National Perinatal
Epidemiology Centre in Ireland in a study of fatal
fetal anomalies recorded 2,638 perinatal deaths,
939 (36 percent) having a congenital anomaly,
43 percent of which were chromosomal.81 More
than a single anomaly was noted in 36 percent
(333 of 938) of their cases. These numbers led
to a significant genetic disease burden and have
accounted for 28–40 percent of hospital admis-
sions in North America, Canada, and England.82–84

Notwithstanding their frequency, the causes of
about 60 percent of congenital malformations
remain obscure.85, 86
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The effect of folic acid supplementation, via
tablet or food fortification, on the prevalence of
neural tube defects (NTDs), is now well known
to reduce the frequency of NTDs by up to 70
percent87, 88 (see Chapter 10). A Canadian study
focused on the effect of supplementation on the
prevalence of open NTDs among 336,963 women.
The authors reported that the prevalence of open
NTDs declined from 1.13 in 1,000 pregnancies
before fortification to 0.58 in 1,000 pregnancies
thereafter.89

In a population-based cohort study by the
Metropolitan Atlanta Congenital Defects Program,
the risk of congenital malformations was assessed
among 264,392 infants with known gestational
ages, born between 1989 and 1995. Premature
infants (<37 weeks of gestation) were found to
be more than twice as likely to have been born
with congenital malformations than infants at
term.90 In a prospective study of infants weighing
401–1,500 g between 1998 and 2007, a congenital
malformation was noted in 4.8 percent of these
very low birthweight infants. The mean gestational
age overall was 28 weeks and the mean birthweight
was 1,007 g.91 A surveillance study of births, still-
births, and fetuses for malformations in a single
center with 289,365 births over 41 years noted
7,020 (2.4 percent) with one or more congenital
abnormalities.92 Twins have long been known to
have an increased rate of congenital anomalies. A
UK study of 2,329 twin pregnancies (4,658 twins)
and 147,655 singletons revealed an anomaly rate
of 405.8 per 10,000 twins versus 238.2 per 10,000
singletons (relative risk [RR] 1.7).93 The prevalence
rate of anomalies among known monochorionic
twins (633.6 per 10,000) was nearly twice that
found in dichorionic twins (343.7 per 10,000) (RR
1.8). A California Twin Registry study of 20,803
twin pairs found an overall prevalence of selected
anomalies of 38 per 1,000 persons.94

The frequency of congenital defects is also influ-
enced by the presence or absence of such defects
in at least one parent. A Norwegian Medical Birth
Registry population-based cohort study of 486,207
males recorded that 12,292 (2.53 percent) had
been born with a congenital defect.95 Among the
offspring of these affected males, 5.1 percent had
a congenital defect, compared with 2.1 percent of
offspring of males without such defects (RR 2.4).
Ethnicity, too, has a bearing on the prevalence of

cardiovascular malformations. In a New York State
study of 235,230 infants, some 2,303 were born
with a cardiovascular malformation. The preva-
lence among non-Hispanic white (1.44 percent)
was higher than in non-Hispanic black individuals
(1.28 percent).96 However, racial/ethnic dispari-
ties clearly exist for different types of congenital
defects.97

Congenital hypothyroidism is associated with
at least a fourfold increased risk of congenital
malformations, and represents yet another factor
that may influence incidence/prevalence rates of
congenital anomalies and neurodevelopment.98, 99

A French study of 129 infants with congenital
hypothyroidism noted that 15.5 percent had asso-
ciated congenital anomalies.100 Nine of the infants
had congenital heart defects (6.9 percent).

Women with epilepsy on anticonvulsant medi-
cations have an increased risk of having offspring
with congenital malformations, noted in one study
as 2.7-fold greater than those without epilepsy.101

A Cochrane Epilepsy Group Registry meta-analysis
of 31 studies of pregnant women on anticonvulsants
concluded with increased, but variable RR of con-
genital malformations of 2.01–5.69, the latter figure
being for valproate.102

There have been reports of an increased risk
of congenital malformations following the use
of assisted reproductive technology (ART) and
negated by other studies.103 A 2018 report using a
Centers for Disease Control and Prevention (CDC)
database of 11,862,780 livebirths (2011–2013)
retrospectively analyzed the 71,050 pregnancies
conceived by ART. Infants conceived by ART had
an increased risk (77/10,000 vs. 25/10,000), an OR
of 2.14.103 The cause(s) of this increase – whether
due to the ART or the patients’ genetic predisposi-
tion – remains to be determined.

Lupo et al.104 in a population-based registry
study of over 10 million children in the United
States assessed the association of cancer and
congenital malformations. They reported that
compared to children without congenital anoma-
lies:
• children with chromosomal anomalies (n =
539,567) were 11.6 times more likely to be diag-
nosed with cancer and
• children with nonchromosomal congenital
anomalies were 2.5 times more likely to have
cancer before 18 years of age.
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Congenital malformations
and infant morbidity
and mortality

The leading cause of infant death in the United
States in 2014 was congenital malformations,
deformations, and chromosomal abnormalities,
accounting for 20.4 percent of 4,748 total infant
deaths.13 Survival is clearly dependent on the
severity or lethality of the congenital defect. The
CDC assessed mortality rates for infants born with
trisomy 13 and trisomy 18. The authors identified
5,515 infants born with trisomy 13 and 8,750
born with trisomy 18. The median age at death
for both trisomy 13 and trisomy 18 was 10 days.
Survival to at least 1 year occurred in 5.6 percent
of those born with trisomy 13 or trisomy 18.105

An international registry study (2019) from 18
countries revealed prevalence rates of 0.55 and
1.07 per 10,000 births for trisomies 13 and 18,
respectively. Death in the first week of life occurred
in 45 percent and 42 percent for trisomy 13 and
trisomy 18, respectively. Reported mortality rates
were 87 percent and 88 percent at 1 year for each of
these trisomies.106 A regional study in the Nether-
lands noted lethal congenital malformations in 51
percent of stillbirths and 70 percent among those
who died during the neonatal period.107 A Scottish
study focusing on the survival of 6,153 infants with
congenital anomalies up to the age of 5 years noted
the following survival rates: chromosomal anoma-
lies (48 percent), NTDs (72 percent), respiratory
system anomalies (74 percent), congenital heart
disease (75 percent), nervous system anomalies
(77 percent) and Down syndrome (84 percent).108

The survival rate among males with congenital
defects was 84 percent, compared with 97 percent
in those born unaffected.30 Liu et al.109 examined
temporal changes in fetal and infant deaths caused
by congenital malformations in Canada, England,
Wales, and the United States. They concluded that
the major factor responsible for the accelerated
decline in infant deaths was prenatal diagnosis and
elective abortion of fetuses with abnormalities.
Given the frequency of Down syndrome, a more
detailed discussion follows.

Down syndrome
The availability of prenatal diagnosis and maternal
serum screening for chromosomal abnormalities

has also affected the birth frequency of Down
syndrome. One French study of the impact of pre-
natal diagnosis over a 21-year period (1979–1999)
in a well-defined population showed a drop of
80 percent in the birth prevalence of Down syn-
drome.110 A later report from the Paris Registry
of Congenital Anomalies (2001–2005) noted a
“fairly stable prevalence of Down syndrome (7.1
per 10,000 livebirths) over time.”111 A Scottish
study aimed to assess the impact of prenatal diag-
nosis on the prevalence of Down syndrome from
1980 to 1996. Both births and pregnancy termina-
tions were included. Pregnancy terminations for
Down syndrome rose from 29 percent to about 60
percent.112 In contrast, the prevalence of Down
syndrome noted by the Dutch Paediatric Surveil-
lance Unit in 2003 was 16 per 10,000 livebirths,
exceeding earlier reports and thought to reflect
an older maternal age cohort.113 In the United
States, a prevalence rate of 8.27 per 10,000 was
reported in 2013 with an estimated 250,700 indi-
viduals.114, 115 In Europe, the 2009–2012 prevalence
rate was 10.2 per 100,000 livebirths.116 In Japan,
the estimated prevalence rate approximates 22 per
10,000 births.117 Many more babies with Down
syndrome are born to women under rather than
over 35 years of age. There is some evidence that the
risk of having Down syndrome offspring in very
young mothers is increased,118–121 but not in twin
pregnancies.122

The special problems and associated defects in
Down syndrome are well known, as is the increas-
ing life expectancy. Studies from Japan,123 Den-
mark,124 England,125 Australia,126 and Canada127

highlight the increased life expectancy with Down
syndrome. Baird and Sadovnick127 reported a large
study of 1,610 individuals with Down syndrome
identified in more than 1,500,000 consecutive
livebirths in British Columbia from 1908 to 1981.
They constructed survival curves and a life table
for Down syndrome (Table 1.2) and for the gen-
eral population.128 Their estimates show that 44.4
percent and 13.6 percent of liveborn individuals
with Down syndrome will survive to 60 and 68
years, respectively, compared with 86.4 percent and
78.4 percent of the general population. In another
report,129 the authors have analyzed the causes
of death in Down syndrome, highlighting con-
genital defects and cardiovascular and respiratory
illnesses as the most important. A UK population
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Table 1.2 Life expectancy with Down syndrome, between
1908–1981, to age 68 years.

Age Total

Survival at

start of age

interval (percent)

5 1,020 81.05

10 841 78.40

20 497 75.34

30 91 72.12

40 136 69.78

50 57 60.68

55 31 53.96

60 16 44.44

68 1 13.57

Source: Baird and Sadovnick 1989.127 With permission from

John Wiley and Sons.

prevalence study noted a median life expectancy of
58 years in 2011.130

Additional studies of mortality rates in indi-
viduals with Down syndrome revealed that those
up to about 35 years of age were little different
from others with intellectual disability. Thereafter,
however, mortality rates in Down syndrome dou-
bled every 6.4 years, compared with 9.6 years for
other intellectually disabled individuals.129 Life
tables constructed by these authors indicated a
life expectancy of 55 years for a 1-year-old patient
with Down syndrome and mild/moderate develop-
mental delay and a life expectancy of 43 years for
a 1-year-old patient with Down syndrome more
profoundly affected.

A study from the CDC focused on the death
certificates of 17,897 individuals with Down syn-
drome born between 1983 and 1997.131 These
authors reported that the median age at death for
those with Down syndrome increased from 25
years in 1983 to 49 years in 1997 (Figure 1.2).

A 2009 Australian study found an overall sur-
vival figure for Down syndrome of 90 percent to
at least 5 years of age.132 The known comorbidities
of Down syndrome116, 133–149 and earlier onset
Alzheimer disease133 cast a longer shadow. In
individuals with Down syndrome over 40 years
of age, increasing neuropsychological dysfunction
and loss of adaptive skills have been noted.149

Between 50 and 70 percent develop Alzheimer
disease by 60 years of age,139 and up to 84 percent
of those with dementia develop seizures.136 People
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Figure 1.2 Median age at death of people with Down
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with or without congenital heart defects (CHD) by racial
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Source: Yang et al. 2002.131 Reproduced with permission of
Elsevier.

with Down syndrome who are APOE𝜀4 carriers
and/or have multiple comorbid disorders are at
an increased risk of both dementia and death.150

A French study between 1979 and 1999 found a
sixfold decreased risk of death from urological
cancer in those with Down syndrome.146 People
with Down syndrome have an overall decreased
incidence of solid tumors.151

Table 1.3 reflects the common associated defects
and complications that occur in Down syndrome,
some of which can be anticipated, monitored,
prevented, and treated.132–165 A EUROCAT
population-based register study between 2000 and
2010 in 12 countries analyzed 7,044 livebirths and
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Table 1.3 Defects and complications associated with Down syndrome132–165.

Defect or complication Prevalence (percent)

Neurologic

Intellectual disability 100

Hypotonia 100

Alzheimer disease and dementia 68–80

Sleep disorders 65

Autism 7–16

Hearing impairment

Conductive 84

Sensorineural 2.7

Mixed 7.8

Epilepsy 5–13

Psychiatric disorders 11–30

ADHD 34

Moyamoya disease 3.8

Unexplained regression Unknown

Heart

Mitral valve prolapse 57

Congenital heart disease 44

Aortic valve regurgitation 17

Pulmonary hypertension 1.2–5.2

Respiratory

Airway problems >16

Immune system

Susceptibility to infection 100

Juvenile rheumatoid-like arthritis 1.2

Gastrointestinal

Congenital defects of the gastrointestinal tract 6

Celiac disease 5.4

Dysphagia 55

Endocrine/metabolic

Overweight/obesity 23–70

Hypothyroidism 50

Diabetes mellitus 1.4–10.6

Hyperthyroidism 1–3

Ophthalmologic

Eye disorders a 80

Cataract 17–29

Keratoconus 8–10

Hematologic/oncologic

Leukemia 2–3 (>20-fold excess)

Testicular cancer Standardized incidence ratio of 2.9

Transient myeloproliferative disorder <10 (20–30% risk of AML)

Retroperitoneal teratoma Increased

Anemia 2.6–10.5

Musculoskeletal

Atlantoaxial instability 10–30

Osteoarthritis/low bone density 8–28

Atlantoaxial subluxation 1–2

Dental

Tooth agenesis 54
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Table 1.3 (Continued)

Defect or complication Prevalence (percent)

Orthodontic problems ±all

Periodontal disease ±all

Dermatologic

Hidradenitis suppurativa 2

Dermatologic disorders 1.9–39.2

Urinary tract

Urinary tract anomalies 3.2

aIncludes strabismus, nystagmus, refractive errors, glaucoma, and lens opacities.

fetal deaths with Down syndrome. That report152

noted that 43.6 percent of births with Down
syndrome had congenital heart disease while 15
percent had another congenital malformation.
The National Society of Genetic Counselors pub-
lished valuable guidelines for communicating
both prenatal and postnatal diagnoses of Down
syndrome.166

The goal and purpose of
prenatal diagnosis

The fundamental philosophy of prenatal genetic
diagnosis is to provide reassurance to couples at
risk so that they may selectively have unaffected
children even if their procreative risk for having
offspring with a genetic disorder is unacceptably
high.167 The goal is to reduce the risk of an adverse
outcome to pregnancy and to secure the health of
mother and fetus. Both the American Society for
Reproductive Medicine and the American College
of Obstetricians and Gynecologists recommend
preconception counseling several times during
a woman’s reproductive lifespan.168 Fetal defects
serious enough to warrant parental election of
abortion are generally found in less than 5 percent
of all cases studied, based on current indications
for prenatal diagnosis. When couples are at risk
for having a child with a serious or fatal disorder,
common experience shows that those with risks
between 10 and 25 percent or even greater most
often avoid pregnancies unless prenatal diagnosis
is available. The advent of prenatal diagnosis has
made it possible for such high-risk couples to have
children that they would otherwise never have
conceived. As a consequence, the number of chil-
dren born because of prenatal diagnosis is much

higher than the very small number of pregnancies
terminated because of the detection of grave fetal
defects. Prenatal genetic studies are used in West-
ern society virtually exclusively for the detection
of defects generally characterized by irreparable
intellectual disability and/or irremediable serious
to fatal genetic disease. Sadly, at present, the ideal
goal of prevention or treatment, rather than abor-
tion after prenatal detection of a fetal defect, is
achieved only rarely, with the exception of NTDs.
Preimplantation genetic testing (see Chapter 2)
does, however, provide an important option that
avoids abortion.

All couples or individuals concerned about
the risks of genetic disorders in their offspring
should seek genetic counseling before conceiving.
For the more common indications for prenatal
diagnosis (such as recognized carriers, a positive
result on a noninvasive prenatal test [see Chapters
6–8] or advanced maternal age), the well-informed
obstetrician should be able to provide the necessary
information.169, 170 However, a salutary observation
in one study revealed that 43.3 percent of patients
referred for amniocentesis exclusively for advanced
maternal age had additional mostly unrecognized
genetic risks, or significant concerns regarding
one or more genetic or congenital disorders.171

Neither a questionnaire in the physician’s office
nor limited consultation time is likely to reveal
many of these disorders. It is now vital that patients
understand the importance of determining the
name of a genetic disorder in the near or extended
family. Since at least 6,739 monogenic phenotypes
now have known genes,2 prenatal diagnosis or
preimplantation genetic testing is available for
avoidance or prevention.



�

� �

�

CHAPTER 1 Genetic Counseling: Preconception, Prenatal, and Perinatal 11

Prerequisites for genetic
counseling

Genetic counseling is a communication process
concerning the occurrence and the risk of recur-
rence of genetic disorders within a family. The aim
of such counseling is to provide the counselee(s)
with as complete an understanding of the disorder
and/or problem as possible and of all the options
and implications. The counseling process is also
aimed at helping families cope with their problems
and at assisting and supporting them in their
decision making.

The personal right to found a family is con-
sidered inviolable. Such reproductive autonomy
is enhanced by genetic counseling, a process
that both emphasizes freedom of choice and
reviews the available options in order to enrich
the decision-making process. All couples have
a right to know whether they have an increased
risk of having children with genetic disease and
to know which options pertain to their particular
situation. The physician and genetic counselor
have a clear duty and obligation to communicate
this information, to offer specific tests or to refer
couples for a second or more expert opinion. In the
United States, at least, the full force of law supports
the prospective parents’ right to know.

As Kessler172 stated so succinctly, “Because
genetic counselors work with people filled with
uncertainty, fear of the future, anguish and a sense
of personal failure” they have unusual challenges
and opportunities “to understand clients, give
them a sense of being understood and help them
feel more hopeful, more valued and more capable
of dealing with their life problems.” The physician
and genetic counselor providing genetic counseling
should have a clear perception of the necessary
prerequisites, guiding principles, and potential
problems.

Knowledge of disease
The need for a counselor to have extensive factual
knowledge about disease in general, as well as
about the disease for which counseling is being
provided, hardly needs emphasis. Such knowledge
should include how the diagnosis is made and
confirmed, the test accuracy and limitations, the
important comorbidities, the recurrence risks, the
mode of inheritance, the tests available to detect

a carrier (and their detection rates), the hetero-
geneity and pleiotropic nature of the disease, the
quality of life associated with survival, prognosis,
and the causes of death. When relevant, it is neces-
sary to know about treatment and its efficacy. The
explosive growth of information and data available
in numerous gene databases stemming from gene
discovery presents an overwhelming challenge for
physicians and genetic counselors. Meeting the
demand for excellence is best accomplished in
tandem with a geneticist and team where possible.
One important example concerns sudden unex-
pected death before 45 years of age.173–175 A wide
range of arrhythmia syndromes and cardiomy-
opathies with many known genes allow “molecular
autopsies.”176 Where DNA was not obtained from
inevitable autopsies, recovery of analyzable mate-
rial can be achieved from retained tissue blocks.
Pathologists increasingly recognize the importance
of retaining tissue (e.g. liver) for freezing without
preservative.

Another challenge is the growing list of syn-
dromes or conditions due to discovery of an
expanding long list of culprit neurodevelopmental
genes and their pathogenic variants,177, 178 a signif-
icant number being due to de novo variants.179 The
KBG syndrome serves as a typical example, with
characteristic dysmorphic features, macrodontia
of upper central incisors, skeletal abnormalities,
short stature, and intellectual disability, confirmed
by pathogenic variants in the ANKRDII gene.180

Recognition that highly variable phenotypes
exemplified by the 22q11 deletion syndrome and
confounded by changes with increasing age can
make the family history difficult to interpret.181–183

Certain phenotypes may emerge as a con-
sequence of environmental exposure or gene
mutation, interpretation being further com-
pounded by the presence or absence of ischemic
encephalopathy at birth.184, 185 Microcephaly serves
as an ideal example with multiple known single
genes and viruses (such as Zika) (see Chapter
34).186–188 Online Mendelian Inheritance in Man
(OMIM) has over 900 phenotype entries and
almost 800 genes linked for microcephaly with
variable expressivity.188

A not infrequent challenge is to determine
whether a brain injury (hypoxia) or a genetic
disorder was the cause of intellectual disability,
presenting as cerebral palsy.184, 185 Typical cerebral
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palsy mimics include hereditary spastic paraplegia,
dystonic disorders, and choreic movement disor-
ders.189 Multiple genes are known for the cerebral
palsy mimics.189–191

The physician or genetic counselor who initiates
genetic counseling for an apparently straight-
forward indication (e.g. advanced maternal age)
may find one or more other familial conditions
with which he or she has little or no familiarity.
Such circumstances dictate referral for specialist
consultation. A National Confidential Enquiry
into counseling for genetic disorders by nongeneti-
cists in the United Kingdom revealed that less
than half of those with known high genetic risks
were referred to medical geneticists.192 That study
focused on a review of 12,093 “genetic events”
involving potentially avoidable cases of Down
syndrome, NTDs, cystic fibrosis, β-thalassemia,
and multiple endocrine neoplasia. Medical record
reviews were frustrated by the poor quality of clin-
ical notes, which lacked evidence of counseling.
An urgent call was made for genetic management
to be at least as well documented as surgical oper-
ations, drug records, and informed consent. A
Dutch study evaluated the levels of knowledge,
practical skills, and clinical genetic practices of 643
cardiologists. They noted low levels of self-reported
knowledge and that only 38 percent had referred
patients to clinical geneticists.193 Other physicians,
too, have been found lacking in the necessary
knowledge and communication skills.184, 194–198

Given the importance of genetic considerations in
all specialties, these problems can be anticipated to
become increasingly problematic, more especially
in family practice.198, 199

After the prenatal diagnosis of a serious genetic
disorder, the geneticist/genetic counselor should be
able to inform the family fully about the anticipated
burden and to detail the effects of this burden on
an affected child, the family, other siblings, the
family economics, and marital relations, along with
any other pros and cons of continuing pregnancy.
The reality of early Alzheimer disease and other
comorbidities in Down syndrome and the care
requirements that may devolve on the siblings
should not be omitted from the discussion. Exact
details should also be known about the availability,
options, and risks of elective abortion (see Chapter
32), as well as the possibility of adoption.

Expertise in genetic counseling
Genetic counseling is best provided by board-
certified clinical geneticists and genetic counselors.
In countries with this specialization, such service
is provided by a team composed of clinical geneti-
cists (physicians) and genetic counselors, working
in concert with clinical cytogeneticists and bio-
chemical and molecular geneticists. It is, however,
impractical and not cost effective to provide such
formal counseling for every woman before prenatal
diagnosis for advanced maternal age. It is necessary
for the obstetrician to be fully informed about the
indications for prenatal diagnosis and to explain
the techniques and requirements for obtaining
amniotic fluid or chorionic villi, the limitations of
the studies, the risks of chromosomal abnormality
in the offspring of the patient being counseled,
the risks of the procedure, and, when pertinent,
all matters concerned with elective abortion of an
abnormal fetus.200

Gordis et al.201 concluded that the way in which
an obstetrician managed patients at risk regard-
ing referral for genetic screening was closely
related to that obstetrician’s attitudes and educa-
tion. Physicians in practice should be aware of
the nuances and needs in the genetic counseling
process, including the key psychologic aspects.202

Perhaps most important is the requirement that
they recognize limitations in their knowledge of
uncommon or rare genetic disorders and be alert
to situations requiring referral. Obstetricians or
family practitioners are not expected to have an
extensive knowledge of all diseases but they should
be able to recognize that a condition could be
genetic. Concern about litigation should not act as
a constant reminder to physicians of the need to
consult or refer.184, 203–205

Ability to communicate
Many physicians are not born communicators and
most have not had formal teaching and training
to hone their communication skills. Recognizing
these deficiencies, the American Academy of Pedi-
atrics has provided valuable guidance and made
specific recommendations for the development
and teaching of communication skills,206 as have
others.207, 208

Simple language, an adequate allocation of
time, care, and sensitivity are keys to successful
genetic counseling. Technical jargon, used with
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distressing frequency,209 is avoided only through
conscious effort. How an issue requiring a decision
is framed210 and the nature of the language used211

may influence the patient’s choice.212 Counseling
is facilitated when three key questions are asked:
“Why did you come?” “What exactly do you hope
to learn?” and “Have I answered all your questions
and concerns?”

Although the explanation of exact statistical risks
is important, patients often pay more attention to
the actual burden or severity of the disease in
question. How risks are explained and expressed
is a skill to be mastered. Key to the exposition
is the patient’s educational level, cultural back-
ground, and the requirement of an interpreter
(who may even bedevil a superb counselor). The
use of numeric probabililties, relative risk, risk
reduction or simple numbers of chance (1 in 100)
or words (almost never, negligible, sometimes,
more often than not)213 are choices a counselor
must make. Clearly, the simpler the better and the
more likely the information will be understood.
Patients’ perceptions of risk not infrequently differ
markedly from those of the counselor, a realiza-
tion that should elicit no comment. An essential
ingredient of the counseling process is time. The
busy practitioner can hardly expect to offer genetic
counseling during a brief consultation. Distress
and misunderstanding are invariable sequelae of
such hastily delivered counseling.

Knowledge of ancillary needs
For the couple at high risk of having a child with
a serious genetic disorder, prenatal diagnosis is
not the sole option. Even in situations in which
a particular disease is diagnosable prenatally, it
is important to be certain that other avenues are
explored. Prospective parents who are known, for
example, to be carriers of an autosomal recessive
disorder may be unaware of the possibility of sperm
or ovum donation, or may be unwilling to raise the
question. This option may be viewed more favor-
ably than prenatal diagnosis and elective abortion.
Physicians should be certain that their patients
are familiar with all the aforementioned impor-
tant options, as well as with adoption, vasectomy,
tubal ligation, treatments of the mother and/or
fetus during pregnancy, and other methods of
assisted reproduction (e.g. intracytoplasmic sperm

injection,214 epididymal sperm aspiration,215 and
preimplantation genetic testing) (see Chapter 2).

Empathy
Empathy embodies the ability to not only under-
stand the perspectives and emotions of others but
to communicate that understanding.216, 217 Much
more than the communication of risk figures for
a particular disorder is required in the genetic
counseling process. Warmth, care, sympathy,
understanding, and insight into the human con-
dition are necessary for effective communication.
The difficulty of assimilating information and
making rational decisions in the face of anxiety218

should be recognized and vocalized. Empathy and
sensitivity enable the counselor to anticipate and
respond to unspoken fears and questions, and are
qualities that make the counseling experience most
beneficial and valuable to the counselees.

For example, a couple may have been trying to
conceive for 10 years and, having finally succeeded,
may be confronted by a callous physician who is
impatient about their concerns regarding amnio-
centesis and elective abortion. Another couple may
have lost their only child to a metabolic genetic dis-
ease and may be seeking counseling to explore the
possibilities for prenatal diagnosis in a subsequent
pregnancy or even treatment following prenatal
diagnosis, as in the case of galactosemia. They
may have in mind past problems encountered in
prenatal diagnosis or may be aware of the uncertain
outcome of treatment. Or worse still, after a long
history of infertility, pregnancy is achieved only to
find that the fetus has aneuploidy.

Sensitivity and awareness of the plight of
prospective parents are critical prerequisites and
include the need to recognize and address the usu-
ally unspoken fears and anxieties. They may have
had a previous affected child with physical/mental
deficits and experienced stigmatizing encounters,
including intrusive inquiries, staring and pointing,
devaluing remarks and social withdrawal.219

Beyond the qualifications and factual knowledge
of the counselor is the person who is key to suc-
cessful and effective counseling. A compassionate
attitude, body language, warmth, manners, dress,
tone of voice, and personality are facets that seri-
ously influence the credibility and acceptance of
the counseling offered. Curiously, counselors rarely
realize during their counseling session that they
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are simultaneously being assessed. Patients assess
the apparent knowledge and credibility of the
counselor, seek and are encouraged by evidence of
experience, and consider the information provided
in light of the counselor’s attitude, body language,
and other nonverbal characteristics. Staring at a
computer screen while counseling conveys deep
insensitivity and engenders no trust.

Essential prerequisites for the empathetic genetic
counselor include the following:
• Acknowledge the burden and empathize about
the sadness or loss (e.g. a previous child; recur-
rent miscarriage; a deceased affected parent; a
patient who has experienced mastectomy and
chemotherapy for breast cancer with daughters at
risk).
• Vocalize the realization of the psychologic pain
and distress the person or couple has experi-
enced (e.g. recurrent pregnancy loss followed
by multiple in vitro fertilization (IVF) efforts
and subsequently a successful pregnancy with a
fetal defect).
• Acknowledge the coping that has been necessary,
including the stress a couple might have to endure,
despite sometimes conflicting feelings.
• Recognize (and explain) psychologic difficulties
in decision making when faced with a prenatal
diagnosis of the same disorder affecting one par-
ent (discussion of self-extinction, self-image, and
issues of guilt and survival).
• Fulfill the patient’s need for hope and support
and actively avoid any thoughtless comments172

that may erode these fundamental prerequi-
sites. Well-intentioned statements are frequently
perceived in a very different way.206

It is self-evident that empathy would engender
greater patient satisfaction and may well be corre-
lated with clinical competence.220

Sensitivity to parental guilt
Feelings of guilt invariably invade the genetic con-
sultation. They should be anticipated, recognized,
and dealt with directly. Assurance frequently does
not suffice; witness the implacable guilt of the
obligate maternal carrier of a serious X-linked
disease.221 Explanations that we all carry harmful
genes often helps. Mostly, however, encouragement
to move anguish into action is important. This
might also help in assuaging any blame by the
partner in such cases.222

Guilt is not only the preserve of the obligate
carrier. Affected parents inevitably also experience
guilt on transmitting their defective genes.223, 224

Frequently, parents express guilt about an occu-
pation, medication, or illegal drug that they feel
has caused or contributed to their child’s problem.
Kessler et al.224 advised that assuaging a parent’s
guilt may diminish their power of effective preven-
tion, in that guilt may serve as a defense from being
powerless.

Guilt is often felt by healthy siblings of an affected
child, who feel relatively neglected by their parents
and who also feel anger toward their parents and
affected sibling. “Survivor guilt” is increasingly
recognized, as the new DNA technologies are
exploited. Experience with Huntington disease and
adult polycystic kidney disease225–231 confirm not
only survivor guilt with a new reality (a future) but
also problems in relationships with close family
members. Huggins et al.228 found that about 10
percent of individuals receiving low-risk results
experienced psychologic difficulties.

Guiding principles for genetic
counseling

Eleven key principles are discussed that guide
genetic counseling in the preconception, prenatal,
and perinatal periods. This section is in concert
with consensus statements concerning ethical
principles for genetics professionals232–234 and
surveyed international guidelines.235

Accurate diagnosis
Clinical geneticists, obstetricians, or pediatricians
are frequently the specialists most confronted
by patients seeking guidance because of genetic
diseases in their families. Given the huge advances
made in the recognition of thousands of culprit
genes for genetic disorders seen in virtually all spe-
cialties, all physicians need to be aware of precise
molecular diagnosis tests for monogenic disorders,
and the opportunities for avoidance of recurrence.
A previous child or a deceased sibling or parent
may have had the disease in question. The genetic
counseling process depends on an accurate diagno-
sis. Information about the exact previous diagnosis
is important not only for the communication of
subsequent risks but also for precise future options.
Now whole-exome or genome sequencing and the
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demonstrated potential diagnostic yield of 25–52
percent for previously undiagnosed patients with
severe intellectual disability236–240 introduce clini-
cal demands to be up to date and well informed. It
is not sufficient to know that the previous child had
a mucopolysaccharidosis; exactly which type and
even subtype must be determined because each
may have different enzymatic deficiencies or geno-
types (see Chapter 23). A history of limb-girdle
muscular dystrophy will also not facilitate prenatal
diagnosis because there are eight dominant types
(1A–1H), at least 23 autosomal recessive types
(2A–2W),241 and many are still to be molecularly
identified. Similarly, a history of epilepsy gives no
clear indication of which genes are involved.242

Birth of a previous child with craniosynostosis
requires precise determination of the cause (∼20
percent recognized as genetic)243 before risk coun-
seling is provided. Mutations in at least 13 genes
are clearly associated with monogenic syndromic
forms of craniosynostosis.244–246 Moreover, a
chromosomal abnormality may be the cause.

Awareness of genetic heterogeneity and of intra-
and inter-family phenotypic variation of a specific
disorder (e.g. tuberous sclerosis)247 is also neces-
sary. The assumption of a particular predominant
genotype as an explanation for a familial disorder is
unwarranted. The common adult dominant poly-
cystic kidney disease caused by mutations in the
ADPKD1 gene has an early-infancy presentation
in 2–5 percent of cases.248 Moreover, mutations in
the ADPKD2 gene may result in polycystic kidney
disease and perinatal death249 and, further, should
not be confused with the autosomal recessive
type caused by mutations in the ARPKD gene.
Awareness of contiguous gene syndromes, such as
tuberous sclerosis and polycystic kidney disease
(TSC2-PKD1) is important, especially with the
availability of microarrays.

Instead of simply accepting the patient’s nam-
ing of the disease (e.g. muscular dystrophy or a
mucopolysaccharidosis), or that a test result was
normal (or not), the counselor must obtain and
document confirmatory data. The unreliability of
the maternal history, in this context, is remarkable,
a positive predictive value of 47 percent having
been documented.250 Photographs of the deceased,
autopsy reports, hospital records, results of carrier
detection or other tests performed elsewhere,
and other information may provide the crucial

confirmation or negation of the diagnosis made
previously. Important data after miscarriage may
also influence counseling. In a study of 91 con-
secutive, spontaneously aborted fetuses, almost
one-third had malformations, most associated
with increased risks in subsequent pregnancies.251

Myotonic muscular dystrophy type 1 (DM),
the most common adult muscular dystrophy,
with an incidence of about 1 in 8,000,252 serves
as the paradigm for preconception, prenatal, and
perinatal genetic counseling. Recognition of the
pleiomorphism of this disorder will, for example,
alert the physician hearing a family history of
one individual with DM, another with sudden
death (cardiac conduction defect), and yet another
relative with cataracts. Awareness of the autosomal
dominant nature of this disorder and its genetic
basis due to a dynamic mutation in the DMPK
gene reflected in the number of trinucleotide
(CTG) repeat units, raises issues beyond the 50
percent risk of recurrence in the offspring of an
affected parent. As the first disorder characterized
with expanding trinucleotide repeats, the obser-
vation linking the degree of disease severity and
earlier onset to the number of triplet repeats was
not long in coming252 (see Chapter 14). In addition,
the differences in severity when the mutation was
passed via a maternal rather than a paternal gene
focused attention on the fact that congenital DM
was almost always a sign of the greatest severity
when originating through maternal transmission.
However, at least one exception has been noted.253

There is about a 93–94 percent likelihood that
the CTG repeat will expand on transmission. This
process of genetic anticipation (increasing clinical
severity over generations) is not inevitable. An esti-
mated 6–7 percent of cases of DM are associated
with a decrease in the number of triplet repeats or
no change in number.254 Rare cases also exist in
which complete reversal of the mutation occurs
with spontaneous correction to a normal range of
triplet repeats.255–262

Nondirective counseling
Physicians are accustomed to issuing therapeutic
directives and, indeed, patients invariably depend
on such instructions to improve their health sta-
tus. Such directive approaches are not consistent
with the overwhelming consensus of opinion
that governs genetic counseling. Nondirective
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genetic counseling has been endorsed by medi-
cal geneticists,263 as well as by the World Health
Organization Expert Committee on Genetic Coun-
seling,264 and in a multinational study focused
on the attitudes of genetic counselors.265, 266 In
an analysis of nondirective genetic counseling,
Kessler267 proffered this definition: “Nondirective-
ness describes procedures aimed at promoting the
autonomy and self-directedness of the client.” The
role of the physician and genetic counselor is to
provide the most complete information available,
remaining impartial and objective in this com-
munication process while recognizing a tenet of
medicine as being to prevent disease. This might
not be an easy task. Indeed there are some who
believe that nondirective counseling is neither
possible nor desirable.268, 269 Not unexpectedly,
significant differences in counseling techniques
mirror the divergent views of counselors on the
goals, content, and process of genetic counseling.
Kessler267 believes that the difficulties counselors
have with answering direct questions and being
nondirective reveal a lack of skill and an incom-
petence, which he lays at the door of inadequate
training. In calling for correction of the major
inadequacies in counseling, training, and skill,
he emphasized that nondirectiveness is an “active
strategy” aimed at “evoking the client’s competence
and ability for self-direction.” The expansion of
genetic counseling training and degree programs
has ameliorated many of these issues.

Michie et al.270 studied nondirectiveness in
genetic counseling. They defined directiveness
as advice and expressed views about or selective
reinforcement of counselees’ behavior, thoughts,
or emotions. As expected, they concluded that
genetic counseling as currently practiced was not
characterized, either by counselors, counselees, or
a standardized rating scale they used, as uniformly
nondirective.

Clarke271 remarkably argued that nondirective
genetic counseling in the context of prenatal diag-
nosis is “inevitably a sham,” largely because of
the “structure of the encounter between counselor
and client.” He further contended “that an offer
of prenatal diagnosis implies a recommendation
to accept that offer, which in turn entails a tacit
recommendation to terminate a pregnancy” if the
fetus is abnormal. In 1970272 it was emphasized

that the offer of prenatal diagnosis was not associ-
ated with any explicit or implicit commitment to
abort. Clarke271 further opined that “nondirective
counseling was unattainable, despite the coun-
selor’s motives, since the offer and acceptance of
genetic counseling has already set up a likely chain
of events in everyone’s mind.” Experienced clinical
geneticists were taken aback by his views,273–275

and rightly so. He regarded reproductive choice
as part of the “1980s consumerism model of
clinical genetics.”276 The personal values of geneti-
cists/counselors may influence behavior in clinical
practice and individual vigilance is necessary to
abide by the nondirective principle. This may be
less challenging than imagined given the reported
highly valued benevolence, self-direction, and pat-
tern of concern for the welfare of others.276 Clarke
ignored a fundamental tenet of genetic counseling
founded in a free society, where choice is not a fad
but a right. His ideas suggest contempt for the views
(and hence choices) of the public, maintaining that
respect for the handicapped is not achievable in a
society that “makes judgments about what types of
people are worthy of life.”276 Others have reported
that people’s decision-making processes are more
rational than they might appear to be.277 Simms278

noted that, with hindsight, 80 percent of parents
with handicapped children would have aborted
their pregnancies. Later, in taking Clarke to task,
she concluded that it was “his professional duty to
advise parents to the best of his ability, not to make
decisions for them. They will have to live with the
consequences: he will not.”279

The intrinsic danger of using a directive approach
is the opportunity (even subconscious or inadver-
tent) for the physician/counselor to insinuate his or
her own religious, racial, eugenic, or other beliefs
or dictates of conscience into the counseling that
is offered.280 A breach of this principle, supported
by some,281 invites the provider to visit upon
the patient unwarranted conscious or subliminal
prejudices. Some obstetricians, for example, are
known to have specifically not offered or referred
patients for prenatal genetic studies because of
their antiabortion views and have unconscionably
exaggerated the specific risks of amniocentesis in
order to discourage prenatal genetic studies. A
Mexican study showed that physicians in special-
ties other than clinical genetics tend to counsel
directively.282
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The duty of the physician and genetic counselor
is to communicate all the available information and
then to assist a counselee to recognize his or her
major priorities, beliefs, fears, and other concerns
in order to make possible the counselee’s rational
decision making. To remain impartial is difficult
and takes valuable time and conscious effort, but it
is largely attainable. Time-pressed nongeneticists
providing genetic counseling may easily experience
slippage between choice and coercion.283, 284 The
difficulty lies mainly in trying to remain impartial
while aiming to prevent the occurrence of genetic
disease. Personality characteristics of the counselor
may well influence the counseling provided.285

The optimistic counselor may unwittingly color
the texture of counseling provided in contrast to
the depressed counselor. Hsia286 validly observed
that optimistic counselors may tell anxious indi-
viduals not to worry, whereas pessimistic ones
might unwittingly exaggerate the significance of
even small risks. The insinuation of the physician’s
prejudices into the decision-making process of the
counselee constitutes a moral affront to individual
privacy and reproductive autonomy.287

In rare instances, family circumstances may
challenge the need to adhere to personal auton-
omy and nondirective counseling. The right of one
monozygous twin at 50 percent risk for Huntington
disease not to know information after predictive
testing should be respected. If there is possible
harm to the co-twin, Chapman suggested that
testing should “be denied in the absence of mutual
consent.”288 She further argued that in the interest
of beneficence, directive counseling is acceptable
for individuals at 50 percent risk of Huntington
disease who suffer from depression, lack social
support, and have a history of attempted suicide.
For these patients, psychiatric evaluation and
counseling, rather than predictive testing, have
been recommended. In a 15-year experience offer-
ing predictive counseling for Huntington disease,
the Canadian authors emphasized the importance
of preparation for receiving test results.289 In a
study of counseling following prenatal diagnosis of
Klinefelter syndrome, Marteau et al.290 found that
pregnancy was almost two-and-a-half times more
likely to continue when counseling was provided
by a geneticist.

Ever-increasing genetic testing using microar-
rays and whole-exome sequencing introduced the

counseling challenge following determination of
secondary findings. This issue of possible genomic
uncertainty should be addressed prior to any
sample being obtained. The American College of
Medical Genetics and Genomics (ACMG) have
a list of 59 actionable disorders which geneti-
cists are directed to communicate because of
potential health and life-saving opportunities
(see Chapter 14). Patients may opt out of this
potential directive counseling, and clearly have
the right not to know.291 More difficult, how-
ever, are discoveries of variants of uncertain or
unknown significance (VOUS) (see Chapter 14).
Recognition, for example, in a newborn with
epileptic encephalopathy, macrosomia, hypo-
tonia, hypoglycemia, and dysmorphic facies of
unknown compound heterozygous, instead of
known homozygous mutations292 in the HERC1
gene, would pose a serious challenge to remain
nondirective regarding future recurrence risks and
options. Further complicating nondirectiveness is
the realization that pathogenic variants may occur
in disease-free individuals.293

Fortunately, it is very uncommon to have two
parents with totally opposing views regarding
the option of an abortion of an affected fetus.
A counseling experience with a couple, both of
whom were FBI agents, brought this issue into
stark relief. The emotional exchange and the vested
positions of the parties invited the “nondirective
directive” to return home for their decision making
while ensuring that they were in the possession of
all necessary facts upon which rationality could
trump.

Incidental detection by ultrasound, for example,
of a hypoplastic thymus,294 following a maternal-
age indicated amniocentesis of a 22q11.2 deletion
provides another quandary when one parent with
a few signs is found to harbor the same microdele-
tion. Certainty about the future phenotype would
be unwise,295 with the discussion about pregnancy
termination requiring definitive nondirectiveness.

Concern for the individual
The ethical principles of beneficence, respect
for autonomy, non-maleficence, and justice (see
Chapter 37) underscore the approach to all patients.
They are the focus of our concern, not the interests
of the state. Although germs and genes occupy the
province of the public health authorities, genetic
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privacy is paramount. This attitude permeates the
genetic counseling encounter where many chal-
lenging issues will be raised, including the frequent
controversial issue of abortion.

Communication should not depend on questions
posed by the patient, who may not be cognizant of
the subject’s dimensions or the available options.
For example, in the case of a couple who are at
risk of having a profoundly intellectually deficient
child, the physician should explore the conse-
quences for the interrelationships of the couple,
the effects on their other children, the suffering of
the affected child, the possible social stigma,219 and
the economic and other societal implications, as
well as the need for contraception. Some may feel
that the economic burden of a defective offspring
on society should at least be mentioned as part of a
comprehensive view of all issues being considered.
However, our concern is for the individual, whose
priorities, needs, and choices remain paramount.
In the physician/counselor–patient relationship,
concern for the individual should always over-
ride consideration of the needs of society. Many
avenues exist for society to influence the actions of
its citizens. In genetic counseling, the role of the
physician/counselor is not that of an advocate for
society.

A couple may elect to have an amniocentesis that
is indeed indicated without making a commitment
to pregnancy termination if the fetus is found to be
abnormal. Some may deny such couples the oppor-
tunity for prenatal genetic studies. All couples have
a right to have information about their fetus and
prenatal diagnosis is a fundamentally reassuring
technique. More than 95 percent of such couples do
not need to consider elective abortion. The few who
are initially ambivalent almost invariably move to
terminate the pregnancy after the detection of a
serious fetal defect. Nevertheless, abortion may be
declined after the prenatal diagnosis of lethal or
severe disorders such as anencephaly or trisomy
13. O’Connell et al. have described the profoundly
emotional journey and the adaptive grieving pro-
cess of four mothers who, after prenatal diagnoses
of anencephaly, continued their pregnancies to
delivery.296 Concern for the individual includes
providing ambivalent couples with the opportunity
for reassurance or the choice to decline abortion
with preparation for the consequences. Moreover,
opportunities to save their offspring’s life, or at

least to improve the outcome, now exist in spe-
cific circumstances (see Chapters 29 and 30). The
availability of adoption should always be discussed.

Quite often, a patient declines an otherwise
clearly indicated amniocentesis. Today, the stan-
dard of care dictates the need for an explanatory
note in the patient’s record. A brief letter to the
patient noting the indication for prenatal study
and that such study was declined is also helpful.
Litigation has ensued in which patients have main-
tained that no amniocentesis had been offered,
while obstetricians (without notes in the records)
have taken an opposite view.

The counseling session provides an opportunity
to also contribute to the overall psychological
health of the patient. Counselors should therefore
spend significant time helping patients to apply the
information to their lives and should not be wholly
focused on communicating genetic information.297

Truth in counseling
Since the time of Hippocrates, physicians have
often withheld the truth from their patients and, as
Katz298 emphasized in The Silent World of Doctor
and Patient, defended the morality of this position.
Sparing the patient emotional distress, removing
hope, and/or diminishing the physician’s personal
esteem may have been some of the quintessential
reasons for the lack of truth telling. While rec-
ognizing the modern change in moral sentiment,
Lantos299 acknowledged that truth telling has
become “morally obligatory.” Notwithstanding
his preference that he “would not want a doctor
judging the morality of my decision,” he remained
uncertain about the value of the “comforting lie.”

Situations have arisen in genetic counseling
where facts have been distorted, de-emphasized,
or even hidden. Obstetricians opposed to abortion
of an abnormal fetus have been known to provide
incorrect or misleading information. That position
is simply amoral, and flies in the face of the ethical
principles of autonomy and beneficence. A physi-
cian or genetic counselor visiting their religious
beliefs on a patient is totally unacceptable. In one
medico-legal case, the mother had a 25 percent risk
of having a second child with severe intellectual
disability and microcephaly. The obstetrician pur-
posefully delayed the required ultrasound study
to 28 weeks of gestation, after which pregnancy
termination was impermissible. The state court, in
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addition to finding that physician negligent, levied
a hefty punitive fine as well.

The enormous increase in DNA testing, includ-
ing prenatal studies, has led to a corresponding
increase in questions of nonpaternity. Prevalence
estimates of nonpaternity vary widely,300–302 with a
meta-analysis noting a median of 4 percent in 17
studies.301 Discovery of a potential chromosomal
abnormality (e.g. an inversion), a microdeletion or
a microduplication, or concerning DNA variant,
may unexpectedly reveal nonpaternity. This obser-
vation may rest on a Y-chromosome karyotypic
difference, haplotypes,303 or a Y-deletion not found
in the fetal DNA. A microarray may yield con-
sanguinity (from runs of homozygosity) when the
male partner is clearly not related (see Chapter
13). A biallelic DNA variant in the fetus may not
be reflected in the putative allele of the “father of
the fetus.” Once the nonpaternity has been discov-
ered the question arises about informing the male
partner, and telling the truth.

Much has been written about this
dilemma.300, 304–308 Of course this potential family
crisis could possibly be avoided when obtaining
informed consent, at which time it should be made
clear that paternity will be confirmed routinely if
prenatal testing for other reasons is performed.
Pregnant women given that information may
decide to forego any testing.

The challenge providers face is the morality of
nondisclosure, the potential for not only serious
harm to the family unit but also, in some cultures,
abandonment or potential serious injury or death
to the mother.304 Some have argued that clinical
significance should determine whether disclosure
should occur.300 Where an inheritance pattern and
explanation is necessary, for example, commu-
nication will be needed. In those circumstances
the provider would be advised to first meet with
the mother. However, clinical significance may
not be immediately apparent. Avci recounts the
poignant case of a 55-year-old father in kidney
failure planning to receive a kidney transplant
from his 35-year-old son.304 The HLA matching
pointed to nonpaternity. The physician in that
case met with the parents and son, confabulating
that tests on the son indicated that being a donor
was highly risky for him! The position taken by
this physician would be justifiable according to
well regarded ethicists,309 and in accord with the

principle of beneficence. Other ethicists disagree,
and maintain that veracity is an ethical princi-
ple310, 311 and rather than a moral rule, it is a prima
facie obligation.304, 309 Like confidentiality, truth
too is not absolute.

The paternalistic approach overrides all personal
choices with the aim of protecting or benefitting
the patient. Since this would occur without the
patient’s full knowledge or consent, it would be
ethically unacceptable and in conflict with the
principle of autonomy.310 The Kantian philosophy
holds that lying is always wrong, regardless of
circumstances.311

In today’s world, the question of nonpa-
ternity disclosure automatically invites legal
purview.305, 306 Withholding information from the
“father” directly violates the physician–patient
“contract,” and establishes a cause of action for
malpractice. On the other hand, a woman attend-
ing genetic counseling alone (not infrequent)
could maintain her rights to privacy,312 the breach
of which would inevitably end up in court. Much
of enacted legislation in many states in the United
States is focused on disclosures to third parties and
not on the issue of concealing genetic information
from a contracted party.305

Clearly, the discovery or realization of nonpater-
nity at the time of prenatal diagnosis is fraught with
potentially serious personal, medical, social, and
legal problems. The counseling provider has to be
extremely adept in managing these cases. Warning
about the potential discovery of nonpaternity as
part of informed consent prior to testing313, 314 may
lead a pregnant woman to decline an indicated
chorionic villus sample (CVS) or amniocentesis.
Nondisclosure is ill advised when nonpaternity is
discovered. In the effort to do no harm, we have
requested a counseling session with the prospective
mother alone. Her decision, taken in confidence,
would govern further action. If, however, testing of
the misattributed partner has genetic implications,
nondisclosure becomes legally untenable.

Confidentiality and trust
Genetic counseling and testing always reveals
much more about the patient’s health status and
often reveals risk information applicable to other
family members. Ethical codes of practice enunci-
ated by the American Medical Association (AMA)
Code of Medical Ethics,315 the American Society of
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Human Genetics,316 the National Society of Genet-
ics Counselors,317 and the President’s Commission
for the study of Ethical Problems in Medicine318

have uniformly declared that it is impermissible to
disclose confidential information without consent.
While patient confidentiality was always thought
of as inviolate, all315–318 recognize exceptional
circumstances. However, the promulgation of the
Health Insurance Portability and Accountability
Act (HIPAA) Privacy Rule (2003)319 permits dis-
closures of health information if the individual
to be warned is the subject of a threat of physical
harm. This position harkens back to the infamous
Tarasoff case in which an individual disclosed to his
psychotherapist his intention to murder a former
girlfriend who had spurned his affections.320

Much of the disclosure quandaries arise as a
consequence of advances in the analysis of DNA.
Relatives of a proband who is determined to be
a carrier of a serious monogenic disorder or is
actually affected, once informed, may be able to
take life-saving measures (e.g. long QT syndrome,
colon cancer). For colorectal cancer there is evi-
dence that over 50 percent of families at risk do
not receive the necessary information.321, 322 Those
in their reproductive years could choose options
that include prenatal genetic diagnosis or preim-
plantation genetic testing. There are also relatives
who exercise their right not to know, especially for
degenerative neurological disorders for which no
cure or effective therapy exists. Disclosure to third
parties, other than relatives, also includes employ-
ers, insurance companies, and schools. It is hoped
that the confidentiality of the physician–patient
relationship and the patients’ right to privacy and
personal autonomy remain sacrosanct. The AMA
has affirmed the importance of keeping genetic
information confidential.315

Geneticists and genetic counselors may argue
that they have no patient relationship with relatives
in question. There is, however, a moral imperative
to care. Practical issues inevitably supervene. If the
patient is unwilling to transmit the information,
the provider is stymied and cannot be expected
to launch a search for the relative(s). Given the
wide dispersal of families, frequently noted limited
intrafamilial communication,323 caregivers are left
with the requirement to indicate in writing the
need and importance for the patient to transmit
the vital information.

Next-generation sequencing discovery of sec-
ondary findings applicable to the patient may also
be of potential importance to close relatives (e.g.
a mutation in BRCA1 or BRCA2). In noncohesive
noncommunicating families (sadly common), all
good intentions may then come to naught. Some
have argued that providers may owe a duty of
care to relatives,324 even though an international
consensus holds that individuals have a moral
obligation to communicate genetic information to
their family members.325 In France, a law requires
direct disclosure to relatives about genetic risks of
any serious disease that can affect their health.326

However, faced with an intractable patient, some
guidance about disclosure is reflected in a state-
ment issued by the American Society of Human
Genetics in 1998.316 When serious and foreseeable
harm to at-risk relatives can be anticipated, when
the disorder is preventable or treatable, or when
reduction of risk through monitoring is achievable,
disclosure is seen to be permissible. “The harm that
may result from failure to disclose should outweigh
the harm that may result from disclosure.” In
practice, few geneticists appear to have warned
at-risk relatives without patient consent. The vast
majority of medical geneticists who decided not
to warn such relatives were concerned by patient
confidentiality issues and legal liability.327

Timing of genetic counseling
Today, more than ever before, genetic counseling
before conception or marriage328 may provide
opportunities for carrier detection, prenatal diag-
nosis, preimplantation genetic testing, or the
presentation of other important options noted
earlier. This is the time to review the family history,
although it is startling that so many couples know
so little about their relatives. Therefore, the optimal
time to initiate counseling is not during pregnancy.
Counselees whose first antenatal visits occur after
the second missed menstrual period miss the crit-
ical period of organogenesis and patients referred
well after conception have lost almost all their
options except for selective abortion. Given the 70
percent protection afforded by periconceptional
folic acid supplementation against the occurrence
of an NTD329, 330 (see Chapter 10), there is a
need to advise women about the importance of
preconception care.
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Confronted by a fatally malformed newborn, the
physician may attempt to counsel a couple on the
very day of the birth of such a child or before the
mother’s discharge from the hospital. Although
communication and support are both vital during
those fateful days, the physician needs to recognize
the great difficulty that anguished patients would
have in assimilating or comprehending even the
essence of any counseling.279, 331, 332 The physi-
cian/counselor should share with the couple his or
her awareness that it is difficult to remember all
the important information in the face of emotional
upset and that it would be normal and expected
for them to raise all the same questions some
weeks later, when the entire subject could be fully
covered. Support for the parents should continue
to be available for many months.

Parental counseling
Physicians/counselors have a duty to convey infor-
mation about the known options, risks, benefits,
and foreseeable consequences203–205 to couples
with increased risks of having children with
genetic disorders. Such a duty may be difficult,
if not impossible, to fulfill if only one member
of the couple attends genetic counseling. The
issues are usually complex and are frequently
compounded by feelings of guilt and by ignorance,
family prejudices, religious obstacles, fear, and
serious differences of opinion between partners.
Hence, when possible (at the time the appointment
is made would seem to be best), the necessity that
the couple attend together should be emphasized.
Physicians/counselors have often seen an extremely
anxious parent attend counseling alone and then
have learned later of the counselee’s incorrect inter-
pretation to the partner, lack of appreciation of the
true risk figures, and unnecessary emotional chaos.
Not even letters written to couples after the coun-
seling session333 (a recommended procedure, to
summarize the essence of the counseling provided)
can safely substitute for face-to-face discussions
with both, allowing for questions and interchange
about the issues and an opportunity to examine the
partner.

Genetic counselors should be cognizant of the
complex interactive factors involved in parental
reproductive decision making. Frets334 confirmed
the importance of the burden of the disease in
question and found that the interpretation of

risk (high or low) and the wish to have children
were paramount factors. The absence of personal
experience of the disease was also found to be a
significant influence. Frets identified a number
of factors that were independently and signifi-
cantly associated with problems experienced by 43
percent of counseled couples. These included no
postcounseling support, recognition of high risk,
disapproval by relatives, having an affected child,
and decisions not to have a (or another) child. Due
diligence is necessary for the partners of genetic
disease carriers, who clearly experience significant
psychologic distress.335

Counselee education
Hsia et al.332 emphasized that genetic counseling
is an educational process in which the counselee
acquires a set of facts and options. Fraser’s263

essential message was that genetic counseling does
not involve telling families what they should do but
rather what they can do. We maintain that members
of the health professions should adopt as a guiding
principle the critical imperative that the concept
of genetic counseling be introduced in high school
and in continuing public education335–339 about
genetic disease. Children sensitized in school about
the importance of the family history, elements of
heredity, concepts of individual susceptibility and
risk, and opportunities for anticipatory prevention
of unnecessary catastrophes are likely to better
comprehend pregnancy risks and options.

Genetic counseling and prenatal diagnostic
services are of little avail if many women attend for
their first antenatal visit after 16 weeks of gestation.
Currently, this is the case in many urban hospitals
in the Western world, where between 20 and 40
percent of obstetric patients arrive at this late stage.
Education beginning in high school and continued
by public health authorities could effectively com-
municate the critical importance of preconception
and prenatal care.

Duty to recontact
The enormous expansion of genetic testing,
including expanded carrier testing, chromoso-
mal microarrays, whole-exome sequencing, and
whole-genome analysis, has further emphasized
the continuing responsibility of communicat-
ing results. That obligation extends well after
a clinical visit, given that the information may
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inform a patient’s risks or affect reproductive
decisions.336, 337

Mersch et al.340 reported that among 1.45 million
people who received genetic testing for hereditary
cancer risks between 2006 and 2016, further com-
munications were necessary since 6.4 percent had
unique variants reclassified. Some 7.7 percent
of VOUS were reclassified and 8.7 percent were
upgraded. As an aside, following genetic research
and new meaningful results, an ethical duty to
inform the patient has become apparent.341

In a study by Carrieri et al. most patients viewed
recontact as desirable.342 However, a range of barri-
ers to implementation have been raised, including
a lack of resources, potential negative psychological
consequences, unclear operational definitions of
contacting, policies that prevent healthcare pro-
fessionals from recontacting, difficulties locating
patients, intrusion into privacy, and a violation of a
patient’s interests and right not to know.343–346

To obviate any concern that failure to recontact
could be construed as negligence,346 patients need
to be told as part of the informed consent for testing
of their responsibility to be in contact, either annu-
ally or when childbearing is planned or in progress
or if a relevant change has occurred in their family
history. This is especially the case when sequencing
or a chromosomal microarray reveals a VOUS. We
have for decades appended a statement in our post-
genetic counseling letter to the referring physician
and the patient alike about the need to remain in
contact. There is indeed a duty to recontact, but that
duty is reciprocal, despite the objections of some.347

Medical genetics consultations frequently
involve only one encounter and the requirement
to contact that patient years later may be regarded
as both irrational and unreasonable. Pelias pointed
to a 1971 lawsuit348 in which the University of
Chicago failed to notify women who had been
given diethylstilbestrol. The university had appar-
ently become aware of the dangers of this drug
but had delayed notification for 4–5 years. In yet
another case, after a single visit to her gynecologist
for insertion of an intrauterine device (a Dalkon
shield), a woman sued this physician for failing
to notify her of the subsequently recognized risks
of this device.349 In that case, as Pelias noted, the
court allowed the case to proceed because of the
continuing status of the physician–patient relation-
ship and because the physician had a “separate duty

to act.”350 Clearly, recommendations for recontact
should be recorded in clinical notes and echoed in
letters to referring physicians and patients alike.
Initial ACMG guidelines regarding recontacting351

were revised in 2008352 and framed as “points to
consider” in 2018.353 These were the points:
1. Recontact is fundamentally a shared responsi-
bility among the ordering healthcare provider, the
clinical testing laboratory, and the patient.
2. As part of the informed consent process, the
patient or family should be advised that:
a) Changes in interpretation of clinical genomic

test results are possible and recontact may be
important for patient care.

b) If the patient’s medical history or family history
changes, the patient should make the healthcare
provider aware.

c) Important times for the patient to request an
update are at life cycle junctures such as pre-
conception planning, pregnancy, and changes
in family history information, including sudden
unexpected death or the diagnosis of a major
health issue in the person originally tested or a
close relative.

d) When seeking an updated variant interpre-
tation, the patient or family should contact
the provider who ordered the test, the clinical
geneticist who interpreted the test result with
the patient, and/or the clinical testing labora-
tory for an update on a result with an uncertain
interpretation. Alternatively, the patient can
request their primary care or specialty provider
to contact a genetics provider.

e) The patient or family has a right to decline
recontact.

f) The patient or family should register with the
healthcare facility patient portal if available.

g) It is the patient’s obligation to provide updated
contact information over time.

3. The ordering provider should emphasize,
through discussion and in written explanation
to the patient, that the ordering provider cannot
promise that recontact regarding a revised inter-
pretation will occur unless the patient initiates the
recontact.
4. The discussion regarding recontact should be
documented in the medical record. The patient or
family ideally will be given a copy of the recontact
policy.
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5. The ordering provider should inform the
patient of the specific tests performed and which
laboratory performed the analysis, typically by
providing a copy of the test report. The patient
should be encouraged to keep the report with
their important health information. The test report
should be entered into the electronic health record
(EHR) and should be provided to the referring
physician.
6. The responsibility to inform the ordering physi-
cian of variant reclassification or discovery of a new
gene–disease relationship rests with the clinical lab-
oratory.
7. Medical geneticists need to inform referring
providers that, even if the patient is referred to a
medical geneticist for counseling regarding test
results, the ordering physician will remain the
primary contact for the laboratory.
8. If contacted by the laboratory with an updated
result, the ordering physician should make reason-
able efforts to recontact the patient.

Do no harm
The classic exhortation primum non nocere (first,
do no harm) is as pertinent to clinical genetics
as it is to medicine in all specialties. Attention to
this principle arises particularly in the context of
predictive genetic diagnosis, possible for a rapidly
escalating number of neurodegenerative disorders
(e.g. Huntington disease, frontotemporal demen-
tia, Machado–Joseph disease), cardiovascular
and other serious disorders including multiple
endocrine neoplasia type 2B, and breast, colon,
and other malignancies. Published recommenda-
tions and guidelines354 urge rigorous pretest and
post-test genetic counseling. Many factors impact
the attempt at risk communication and prediction.
Patients who attend for genetic counseling invari-
ably have their own, possibly tentative idea, about
their personal risks. Their perception of risks will
vary according to their family history, educational
level, socioeconomic status, psychological state
of mind, life experience, gender, health status,
language ability, culture, IQ, and comprehension
of mathematics.355–359 Those who initially thought
their personal risks or risks of having an affected
child were 50 percent and are informed that the
risk only approximates 10 percent may be relieved
and not even opt for any testing. Others may be
startled to hear that all couples face a 3–4 percent

risk on average for bearing a child with a birth
defect, intellectual disability, or genetic disorder.

The inherent harm that could potentially be
done by predictive testing is the potential for
demoralization and depression with possible sui-
cidal consequences (see later discussion). Extreme
caution is recommended in considering predictive
testing for a disorder without curative, let alone
meaningful, palliative treatment. Although for
certain dominant disorders some 50 percent of
individuals at risk may receive good news, the
other 50 percent face, effectively, a death sentence.
A single consultation is inadvisable for a couple (or
individual) considering predictive testing. During
the counseling session with full information trans-
fer, an assessment of emotional health should be
made. For many, a consultation with a psychologist
or psychiatrist would be wise before a follow-up
visit to determine the decision to test or not, and to
obtain informed consent.

Many at risk of developing Huntington disease
choose not to be tested. In a study of 733 individ-
uals who did not wish to learn if they harbored
this fatal flaw, 66 percent pointed to lack of a cure
or treatment, and 66 percent to the inability to
undo information provided.360 Only 12–17 percent
of those at risk in North America and Europe
pursue testing.360–364 Family and extended family
repercussions may occur as a consequence of a
choice not to be tested in the face of a 50 percent
risk.365–367 Some family members may hold the
untested who proceed to have children morally
irresponsible.

There is of course the right of every person not
to know their genetic status as potential carrier of a
serious genetic disorder. It is not the duty of a coun-
selor to state or hint that it is a moral imperative to
have a predictive test. Rather, the responsibility is
to provide a perspective on the testing, the various
options, and the disparate pros and cons.

Predictive testing of children younger than 18
years of age is proscribed except in life-threatening
disorders (e.g. long QT syndrome, multiple
endocrine neoplasia type 2B). Given the remark-
able pace of advances in human genetics, it may
well be possible in the foreseeable future to develop
a therapy that enhances the extant biologic mecha-
nism already in place that delays the manifestations
of later onset disease for decades after birth. No life
should be ruined by severe depression or suicide
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only to discover later that a critical palliative
remedy has emerged.

No longer hypothetical is the prenatal diagnosis
request by a pregnant mother for fetal Huntington
disease without the knowledge of her at-risk part-
ner who does not wish to know his genetic status. In
preserving the partner’s autonomy and recognizing
maternal rights, we have in the past honored such
requests. Mothers have, in these circumstances,
faced with an affected fetus, elected to terminate
the pregnancy, invoking miscarriage as the reason
to her unknowing partner. Distressing as it is to
contemplate such a marital relationship, textured
on the one hand by extreme care and on the other
hand by deceit born of sensitivity, consider our
report of symptomatic juvenile Huntington disease
at 18 months of age and diagnosed at the age of
3 years.368 These cases pose challenging ethical,
moral, and legal questions, but both prenatal and
preimplantation genetic testing (see Chapter 2)
are now well accepted in the Western world.369–371

Certainly rigorous recommendations and guide-
lines are in place for the prenatal diagnosis and
the preimplantation genetic testing for Huntington
disease,369 which would apply equally to other
neurodegenerative disorders and serious/fatal
adult-onset disorders.

In general, the post-prenatal testing behavior
of the mother is not likely to escape the aver-
age paternal observer. In a study of 54 women
whose fetal risks of being affected were 50 percent
(that included spouses of an affected partner),
after an initial unaffected pregnancy, 10 percent
chose not to have prenatal testing in a subsequent
pregnancy.372

Prenatal diagnosis is not recommended for cou-
ples who do not intend to terminate a pregnancy
if the fetus is affected.373 A contrary view holds
that diagnosis of a fetal genetic disorder may well
inform the subsequent management of labor and
delivery. Continuation of that pregnancy would
likely remove the autonomous right of that child to
decide to be tested or not.374 In a review of 15 such
pregnancies, one guideline was to recommend that
couples should not disclose the diagnosis in order
to protect the confidentiality and autonomy of the
future child.374

Clearly, there are extraordinarily difficult cir-
cumstances related to planned childbearing in the
face of 50 percent risks for a neurodegenerative

disorder coupled with a wish not to know. In these
special circumstances, predictive testing can be
regarded as acceptable only if performed with
extreme care, concern, and professionalism.

Preconception care should begin during visits to
the family physician after menarche. Reiterated and
expanding discussions on personal health habits
that will affect both the adolescent herself and a
future child, provide a basis for promoting good
health behavior, while a solid grounding in knowl-
edge about the hazards of smoking, drugs, alcohol,
sexually transmitted diseases, and nutrition is
provided. Early adolescence is also a vital period
during which to inculcate the importance of genes
and the wisdom of assimilating and updating infor-
mation on family history. Linkage of family history
to the common experience of physical and mental
handicap, outlined in the context of personal risk
in childbearing, provides a compelling and cogent
framework on which physicians, teachers, and
parents can build.

This preparatory background may help educate
all women about the importance of planning preg-
nancy. Over 50 percent of pregnancies in the United
States are not planned and are often unintended.375

Physicians also need to reorient their practices so
that women of childbearing age understand that to
optimize the chance of having a healthy child,335

prenatal care is best initiated before conception and
not after the second missed menstrual period, as is
still anachronistically practiced so widely.

Duty to warn
Physicians and counselors traditionally owe no
duty to individuals with whom they have never
met or entered into any treatment relationship.
However, following the decision of the Califor-
nia Supreme Court (in Tarasoff v. Regents of the
University of California),376 it has become clear
that when a serious risk to the health or life of a
third party is recognized, a duty of reasonable care
evolves that demands protective action. Examples
include contact with blood relatives at risk in situa-
tions of threatened violence, exposure to infection
(HIV/AIDS), and now harmful genes. For colorec-
tal cancer there is evidence that over 50 percent
of families at risk do not receive the necessary
information.377–379 A salutary lesson is provided in
the study of 43 families with at least one sudden
unexplained death.380 Identification of a genetic
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cardiac disorder (e.g. long QT syndrome) was
made in 40 percent of the families who harbored
151 presymptomatic carriers! The loss-of-chance
legal doctrine makes it incumbent upon geneti-
cists/counselors to impress on their patients the
need to warn blood relatives if a serious genetic
threat is determined. This counsel should be in
writing and documented in the medical record.
Litigated examples include failure to warn of the
risk of medullary thyroid cancer, familial adeno-
matous polyposis with colon cancer, and the fragile
X syndrome.381 From the judicial opinions in these
cases382 we learned that: (i) moral duty is not equal
to legal duty; (ii) the duty to one’s family members
of avertible risk serves the interests of justice; (iii)
given precedents of third party disclosures in the
fields of psychiatry and infectious disease, there
has been a willingness to extend the duty to warn.

Sudden death as a consequence of a mono-
genic disorder invokes specific responsibilities not
only by the pathologist performing the autopsy
but also the geneticist or genetic counselor, if
involved with the family. Determination of the
cause of sudden death, if not clearly obvious, may
be ascribed to an arrhythmia. Cost issues aside,
there is the need to consider gene sequencing for
the long QT syndrome, the Brugada syndrome,
and catecholaminergic polymorphic ventricular
tachycardia. At the very least, a tissue sample
should be frozen without preservative for sub-
sequent DNA studies. Where cardiac pathology
points to a cardiomyopathy, similar considera-
tions pertain. Counseling of next of kin in such
cases is important, more especially since they may
face a 50 percent personal risk. On occasion, a
patient at high risk may refuse to be informed
about a specific genetic test result. However, if that
result implicates a specific disorder that not only
places that individual at risk but as a consequence
may cause harm to others, the ethical imperative
would demand communication of that unwanted
information.383

Important legal precedents serve as further
guidance. In the Pate v. Threlkel case (1987),384 the
mother of Heidi Pate was diagnosed and treated for
the autosomal dominant form of medullary thyroid
cancer. Three years later, the same diagnosis was
made for Heidi. She sued her mother’s physicians
asserting that they had had a duty to warn her and
her siblings. The Florida Supreme Court held that

a reasonably prudent physician had a legal duty to
warn of a genetically transferable disease.

The case Safer v. Estate of Pack385 followed a
similar theme. The father of Donna Safer was
diagnosed in 1956 and surgically treated for colon
cancer associated with multiple polyposis. Despite
a total colectomy, he died when Donna was only 10
years of age. Subsequently, at the age of 36 years,
she was diagnosed with metastatic colon cancer
due to autosomal dominant multiple polyposis.
She sued her father’s surgeon’s estate (he died in
1969) for not warning him of the genetic nature
and transmissibility of that cancer. The Appellate
Court in New Jersey decided that a physician had a
duty to warn those known to be at risk of a genetic
disorder and went on to state that duty may not
always be satisfied by warning the patient.386 About
5 years later, in 2001, the New Jersey Legislature
enacted a broad genetic privacy law387 that without
consent a physician is prohibited from disclosure
of genetic information.386, 388

A failure to make a diagnosis of the fragile X syn-
drome in the symptomatic daughter of Kimberly
Molloy was followed by her giving birth to a son
with this disorder. She sued the three physicians
who treated her daughter (Molloy v. Meier).389

The Minnesota Supreme Court (2004) concluded
that physicians owed a duty to a third party and
that legal action was permissible for the failure to
warn.389

More recently, and in the United Kingdom, the
duty to warn came into sharp focus. A man with
Huntington disease expressly forbade his doctor
from informing his daughter of his diagnosis. She
subsequently (and accidentally) learned of the
diagnosis when she was already pregnant. She
sued her father’s physicians (ABC v. St. Georges
Healthcare NHS Trust)390 for failure to inform
her, claiming she would have terminated her preg-
nancy. The High Court denied the claim, holding
that there was no duty of care. However, the Court
of Appeal (2017) overturned this decision, indi-
cating that clinicians may owe a duty to warn a
patient’s relatives.391

The aforegoing cases, including the decision by
the UK Court of Appeal, made it clear that confi-
dentiality in genetics is not absolute324, 392, 393 with
some exceptions.

Following the ruling of the Court of Appeal, the
case returned to the High Court for trial, where
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the decision was against the claimant (ABC).391

Notwithstanding that ruling the Court “introduced
a novel legal duty of care owed by doctors to third
parties in certain circumstances.”391

Earlier, the UK General Medical Council
regarded the transfer of genetic information as
justified if failure to do so exposes others to a risk
of death or serious harm.324, 394 The Joint Com-
mittee on Genomics in Medicine concurred393 and
advised that if a breach of confidentiality is to be
made, consent for disclosure should be sought, dis-
cussion should be held with professional colleagues
(e.g. ethics committee), and disclosure should be
kept to a minimum, and all actions documented.395

Internationally, many authors have opined and
wrestled with these issues and mostly saw the
necessity of communicating with relatives of the
proband.396–400

Preconception genetic
counseling

It is an anachronism that preconception genetic
counseling in the 21st century, despite being recog-
nized as important, is not widely practiced.401, 402

Expectations at the first preconception visit include
routine documentation of the medical, obstetric,
and family history, the latter regarded arguably
as the most important “genetic test.”403 It is now
possible to prenatally diagnose all monogenic dis-
orders in which the culprit gene is known. Since
6,739 have phenotypes thus far with recognized
single genes,2 it is very important for the physician
to obtain and record the exact name of the genetic
disorder(s) in the family. A history of “muscular
dystrophy,” given numerous types, would, for
example, not be useful. Patients need a brief expla-
nation as to why they need to obtain the precise
information, and the physician’s request docu-
mented. Review of medical records, photographs
(e.g. previous stillbirths), and pertinent autopsy
reports, radiographs, brain scans, and chromo-
some or other special laboratory reports may be
necessary, as well as referral for genetic counseling.
Physical examination and necessary special tests
also focus on acquired and genetic disorders that
could, during pregnancy, threaten maternal and/or
fetal welfare.

Previously undiagnosed/undetected disorders
may be determined for the first time at this visit and

may be important for planned childbearing and the
selection of future prenatal diagnostic tests. There
is a need to insist that the male partner attend the
preconception visit (or absolutely the first prenatal
visit), providing an opportunity to detect at least
obvious genetic disorders and solidify information
possibly provided earlier about his family history.
The senior author recalls, over many years during
prenatal diagnosis counseling for other issues,
diagnosing various disorders in male partners who
were wholly unaware of their conditions, includ-
ing osteogenesis imperfecta, Treacher–Collins
syndrome, tuberous sclerosis, neurofibromatosis,
Charcot–Marie–Tooth (type 1A) disease, limb
girdle muscular dystrophy, facioscapulohumeral
muscular dystrophy, blepharophimosis, mitral
valve prolapse, the XYY male, and spinocerebellar
ataxia.

The first preconception visit also serves to
instruct about the need for folic acid supple-
mentation for the 70 percent avoidance of NTDs
(see Chapter 10) and about diabetic control,
management of obesity, cessation of illicit drugs,
medications, smoking and alcohol. Referral to
other specialists (e.g. neurologists), for tailoring
medication requirements to safer and possibly
less teratogenic agents (e.g. epilepsy, acne), is also
recommended. This is also the time for specialists
caring for the same patient to confer about the
planned care of their patient through pregnancy
and for documentation of that interaction to
be made.

Indications for preconception genetic
counseling
The indications for preconception genetic counsel-
ing should be determined at the first visit and can
be considered in a few clear categories.

Advanced maternal age
An arbitrary age of 35 years has previously func-
tioned in the United States as an expected standard
of care, which requires that a prospective mother
be informed of her increased risks of having a child
with a chromosome defect, informed of the rec-
ommendation for prenatal diagnosis, and given an
explanation of the risks of CVS or amniocentesis,
with the associated details related to any problems,
pitfalls or reservations. Now, given the very low
procedural risks, all women should be offered



�

� �

�

CHAPTER 1 Genetic Counseling: Preconception, Prenatal, and Perinatal 27

routine prenatal genetic studies that focus on chro-
mosomal analysis and 𝛼-fetoprotein (see Chapter
17). Advances in fetal imaging and low risks of
fetal loss following amniocentesis (0.1–0.4 per-
cent) or CVS (0.2–0.4 percent)404, 405 (see Chapter
9) have led to the policy change. The advent of
noninvasive prenatal testing (see Chapters 6 and
7) has further decreased the need for CVS or
amniocentesis.

Excluding infants with chromosome abnormali-
ties, a prospective analysis of 102,728 pregnancies
(including abortions, stillbirths, and livebirths)
in Texas found that the incidence of congenital
malformations increased significantly and pro-
gressively in women after 25 years of age.406 The
authors found that an additional age-related risk
of nonchromosome malformations was approx-
imately 1 percent in women 35 years of age or
older. The odds ratio for cardiac defects was 3.95
in infants of women 40 years of age or older when
compared with women aged 20–24 years.

Pregnancy outcomes related to maternal age
were reported in a Danish study of 369,516 sin-
gleton cases.407 Pregnancies were followed from
11–14 weeks to delivery or termination and the age
groups (20–34, 35–39, and ≥40 years) compared.
Adverse outcomes included chromosomal abnor-
malities, congenital malformations, miscarriage,
stillbirth, and delivery prior to 34 weeks of ges-
tation. Women ≥40 years had a 3.83 percent risk
of chromosomal abnormality, compared with 0.56
percent in the younger age group. Other significant
results were an odds ratio of 3.1 for miscarriage
(1.68 percent vs. 0.42 percent) and an odds ratio of

1.66 (2.01 percent vs. 1.21 percent) for birth <34
weeks of gestation.

Paternal age
Paternal age has trended upwards in the United
States, England, and elsewhere in recent years.408, 409

The current consensus view is that a male ≥40
years of age at the time of conception is defined
as being of advanced age.410 Advanced paternal
age (≥40) in the United States for childbearing
in the 35- to 49-year-old category has risen from
42.8/1000 to 69.1/1000 from 1980–2015.411 This
probably reflects increased divorce/remarriage
rates and the increased use of assisted reproductive
technologies.409 Advanced paternal age is asso-
ciated with increased infertility and miscarriage
rates,409, 412–415 as well as an increased risk of
0.3–0.5 percent of de novo autosomal dominant
mutations that result in severe phenotypes.416–421

Professional societies and others whose guidelines
suggest that sperm donors be less than 50 years of
age,422, 423 might now reconsider given both new
and established data.

Well-established data exist for a number of
autosomal dominant disorders in the offspring of
older fathers408 (Table 1.4), with achondroplasia
having a relative risk of 12. The causes are de novo
mutations estimated to accumulate to 420 over a
20-year period.408 An Israeli psychiatric disease
registry study of 87,907 births, showed a 2.96-fold
relative risk of schizophrenia among the offspring
of fathers over 50 years of age compared with
those aged 20–24 years.424 A Swedish National
Birth Registry study of the entire population of

Table 1.4 Single-gene dominant disorders in offspring that are associated with advanced paternal age and relevant to
prenatal diagnosis.

Clinical condition Gene Population risk Relative risk Adjusted risk

Achondroplasia FGFR3 1/15,000 12 1/1,250

Apert syndrome FGFR2 1/50,000 9.5 1/5,263

Crouzon syndrome FGFR2 1/50,000 8 1/6,250

Pfeiffer syndrome FGFR2 1/100,000 6 1/16,666

Wilms tumor WT1 1/10,000 2.1 1/4,761

Bilateral retinoblastoma RB1 1/15,000 5 1/3,000

Neurofibromatosis 1 NF1 1/3,000 2.9 1/1,034

Osteogenesis imperfecta COL1A1/2 1/10,000 2.5 1/4,000

Polycystic kidney disease PKD1/2 1/1,000 1.2 1/833

Thanatophoric dysplasia FGFR3 1/20,000 3.18 1/6,290

Source: Yatsenko et al.408 Reproduced with permission of Springer Nature.
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births (2,615,081) between 1973 and 2010 exam-
ined the link between autism and paternal age.425

The authors observed a statistically significant
3.45-fold greater likelihood of autism for fathers
age at conception of >45 years compared to fathers
in the 20–24 age group. They also reported a
13.1-fold greater likelihood of developing atten-
tion deficit hyperactivity disorder and a 2.07-fold
risk of psychosis. In a California study of 5,121
spontaneous abortions between 6 and 20 weeks of
pregnancy, fathers over 50 years of age had double
the likelihood of associated pregnancy loss.415 A
prospective Danish study of 23,821 pregnancies
showed that fathers >50 years of age had associated
risks of fetal death almost twice that of younger
fathers.426

A Swiss population study found that the pro-
portion of younger fathers was uniformly different
between those with and without Down syndrome
offspring. Young fathers had an almost twofold
increased odds for siring a child with trisomy
21.427 The authors stated the need for confirmation
of their findings.

Paternal age should garner more attention
during genetic counseling,428 especially with the
availability of molecular analysis of multiple genes
susceptible to de novo mutations in both noninva-
sive prenatal testing (see Chapter 8) and prenatal
diagnosis (see Chapter 14).

A previous fetus or child with a genetic
disorder
A genetic evaluation and counseling are usually
indicated when a previous fetus or child has or had
a genetic disorder, unless the matter is straightfor-
ward (e.g. previous trisomy 21) and the obstetrician
is well informed. Careful inquiry should be made
about the health status of a previous child. Failure
or delay in the diagnosis of a monogenic disorder
leaves the parents without the option of prenatal
diagnosis in a subsequent pregnancy. In addition,
it deprives them of the option of preimplantation
genetic testing for those disorders with known
mutations. Failure to make an early diagnosis of
a genetic disorder during the first 5 years of life
is common. For example, the Rotterdam Clini-
cal Genetics Group reported that 50 percent of
children affected by neurofibromatosis had been
treated for related symptoms before a specific diag-
nosis had been made.429 Such delay has become

problematic given that the NF1 gene and genes
for many other monogenic disorders are routinely
sequenced for a precise diagnosis.

Frequently, distressed parents will select a dif-
ferent physician for a subsequent pregnancy and a
new or more recent insight may shed light on the
cause of the previous disorder. For example, con-
fined placental mosaicism (see Chapter 4) may now
serve to explain the discrepancy between reported
chromosomal findings at the time of CVS and fetal
tissues obtained at elective abortion. Confined
placental mosaicism may also be associated with
intrauterine growth restriction (see Chapter 4),
requiring serial ultrasounds during the pregnancy.

Given the heterogeneous nature of genetic
disease, being alert to alternative mechanisms
of causation will on occasion be rewarding. For
example, during a consultation with a patient who
had previously delivered a child with the autosomal
recessive Meckel–Gruber syndrome, preparatory
discussions about establishing the specific muta-
tion from each parent could reveal that the father
is not a carrier of a mutation in the culprit gene.
Although nonpaternity is more likely, a judicious
approach would also include consideration of uni-
parental disomy.430, 431 This mode of inheritance,
in which an offspring can inherit two copies – part
or all of a chromosome from one parent and no
copy from the other parent – has been seen in
a number of disorders, including Prader–Willi
syndrome and Angelman syndrome (see discus-
sion later and Chapter 14). About 25 percent of
cases of Prader–Willi syndrome are caused by
maternal uniparental disomy.432 Involvement of
chromosomes 7, 11, 14, and 15 have been notable.
Uniparental disomy is caused primarily by meiotic
nondisjunction events and followed by trisomy or
monosomy “rescue.” Most cases described have
been associated with advanced maternal age and
have been detected primarily in the process of
prenatal genetic studies.433, 434

Recognition of the molecular basis of a disorder
from which a previous child died may provide a
couple with an opportunity for prenatal diagnosis
in a subsequent planned pregnancy. A caveat would
be the availability of analyzable tissue from the
deceased child. In the recent past this was mostly
not done, but with the escalation of new discov-
eries in genetics, tissues should now be frozen for
potential future DNA analysis. The establishment
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of the molecular basis of recognized syndromes,
previously undetectable prenatally, now provides
new opportunities for couples seeking prenatal
diagnosis. Examples abound and include some of
the craniosynostosis syndromes, certain skeletal
dysplasias, and many other disorders.

In one of our cases, a father with metaphyseal
dysplasia of Schmid, troubled by the indignities
and hurts of growing up with severe short stature,
elected prenatal diagnosis at a preconception
visit. Subsequent mutation analysis of conceived
twins yielded a normal prenatal diagnosis result
confirmed postnatally.435

Heterogeneity and pleiotropism also require con-
sideration in the context of a previous child’s dis-
order and anticipation of future prenatal diagnosis.
For example, a previous child with tuberous sclero-
sis or a fetus with a cardiac rhabdomyoma would
prompt molecular analysis of the TSC1 and TSC2
genes for more precise future prenatal diagnosis.436

A parent with a genetic disorder
Physicians are now advised to determine whether
a culprit gene has been found for a specific genetic
disorder under discussion, since prenatal diag-
nosis would then be available for that couple
or their children. Adult-onset genetic disorders
(breast/ovarian cancer, colon cancer, hypertrophic
cardiomyopathy, long QT syndrome) serve as
examples where prenatal diagnosis is an option.
The long-established prenatal diagnoses for both
presymptomatic and symptomatic neurodegen-
erative disorders437 continue to be expanded to
include disorders such as amyotrophic lateral
sclerosis and frontotemporal dementia by analy-
sis of the C9orf72 gene.438 In prenatal diagnosis
discussions for all adult-onset disorders, there is
a natural focus on the tortured questions of per-
sonal existence and self-extinction. One example
is that of a young father with CADASIL (cerebral
autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy) who, faced with
our prenatal diagnosis of this disorder, by mutation
analysis of the Notch3 gene, with his wife, elected
termination.439 Mutation analysis in a subsequent
pregnancy assured an unaffected fetus.440

These consultations may invoke deep personal
emotional conflict, especially when pleiomorphic
genes are concerned. For example, a parent with
tuberous sclerosis and normal intelligence could

not be certain that an affected child would not have
intellectual disability. This was especially evident in
our series of 50 couples having prenatal diagnosis
for tuberous sclerosis.436 Discovery of fetal cardiac
rhabdomyoma led to sequencing of both the TSC1
and TSC2 genes in the fetus and diagnosis in one
of the asymptomatic parents. Parental decisions are
neither simple nor predictable. In a UK study441 of
644 deaf individuals and 143 with hearing impair-
ment, 2 percent opined that they would prefer to
have deaf children and would consider an elective
abortion if the fetus was found to be hearing!

Prospective mothers with insulin-dependent
diabetes mellitus (IDDM) could find their disor-
der harder to control during pregnancy. Diabetes
should be well controlled before pregnancy. The
better the control, the lower the risk of having a
child with congenital defects.442, 443 An Australian
study noted that with good preconception care of
type 1 IDDM, the major congenital malformation
rate decreased from a high of 14 percent to 2.2
percent.444 Notwithstanding extant knowledge
about IDDM and pregnancy, a report of 273
women noted rates of stillbirth (1.85 percent),
perinatal mortality (2.78 percent), and congenital
anomalies (6 percent).445 An important Stockholm
study of 1,089 stillbirths usefully separated causes
in preterm and term/post-term births.446 Infec-
tion and intrauterine growth restriction/placental
insufficiency accounted for over 44 percent of cases
in about equal proportion.

The genetics of diabetes is complex with multiple
types, both polygenic, multifactorial, syndromic,
and monogenic in origin. The polygenic type 1
diabetes (T1DM) and type 2 diabetes (T2DM)
have over 40 and 90 genes implicated, respectively.
Between 1 and 5 percent of diabetes is monogenic
and symptoms overlap with T1DM and T2DM
diabetes.447, 448 Affected monogenic type patients
mostly do not have islet autoantibodies, often have
endogenous insulin production, and are frequently
misdiagnosed.449, 450 Both T2DM and monogenic
diabetes are often not insulin-dependent, have
a family history of diabetes, and can occur in
the young. Usually, insulin resistance does not
occur, nor does acanthosis nigricans in monogenic
diabetics, who are mostly not obese.449

Diabetes diagnosed in the first year of life is
monogenic and due to KATP channel mutations.451

There are multiple types of monogenic autosomal
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dominant maturity-onset diabetes of the young
(MODY), four subtypes predominating with muta-
tions in HNFIA (52 percent), GCK (32 percent),
HNF4A (10 percent), and HNF1B (6 percent).452

A precise preconception molecular diagnosis
is important so as to direct appropriate treat-
ment. No pharmacologic treatment is indicated
for the GCK-MODY type, low dose sulfony-
lureas are prescribed for HNF1A-MODY and
HNF4A-MODY, with high-dose sulfonylureas for
KATP channel-related diabetes.451

Pregestational T1DM and T2DM are associated
with poorer pregnancy outcomes, including up to
a fourfold higher rate of perinatal mortality.453 The
poorer glycemic control at the time of conception
and the first trimester, the higher the frequency
of stillbirths, congenital abnormalities, perinatal
morbidity and mortality, macrosomia, dystocia in
labor, and maternal mortality.454–458 Obesity, with
its burden of obstetric complications and congeni-
tal anomalies457 (as discussed earlier), compounds
all the problems in the diabetic mother.

Pregnant women with the chronic multifactorial
autoimmune disease systemic lupus erythematosus
(SLE) face a host of complications. This disorder,
with its predilection for women of childbearing
age, is more prevalent in non-white populations
and is characterized by involvement that includes
renal, cardiovascular, musculoskeletal, neurolog-
ical, rheumatological, and cutaneous systems.459

Adverse pregnancy outcomes include fetal death,
preterm births, intrauterine growth restriction, and
neonatal lupus.460 Women with anti-Ro/anti-La
antibodies, the latter being specific for the diag-
nosis of SLE and Sjögren syndrome,461 can be
asymptomatic. Anti-Ro antibodies may precede
the clinical manifestations of SLE by an average
of 3.6 years.462 Note, however, these antibod-
ies are found in up to 3 percent of the general
population.463

The prime consequences of having anti-Ro anti-
bodies is the risk of fetal/neonatal heart block and
neonatal lupus. In a study of 325 children with
second- or third-degree heart block, the overall
mortality rate was 17.5 percent. Death in utero
occurred in 6 percent.464 The risk of offspring
being born with congenital heart block to a mother
with anti-Ro antibodies is between 0.2 and 2.0
percent, but 15–20 percent if there has been a
previously affected fetus or neonate.464, 465 After

two affected pregnancies, the subsequent preg-
nancy risk is 50 percent.466 Complex therapeutic
considerations include fluorinated glucocorti-
coids (dexamethasome and betamethasome) and
maternal fetal echocardiography monitoring.467, 468

Neonatal lupus with congenital heart block will
usually require pacemaker implantation.469, 470

For mothers with a previous affected pregnancy,
hydroxychloroquine has been recommended as
a pre-emptive treatment.471, 472 Fortunately, only
a third of mothers carrying fetuses with com-
plete heart block have an identified autoimmune
disorder such as lupus or Sjögren disease.473

Certain genetic disorders may threaten maternal
and fetal health in pregnancy and are discussed in
detail in Chapter 31.

A history of infertility
Beyond the issues of paternal age discussed earlier,
there is the evidence that structural chromosomal
abnormalities, which occur in 0.25 percent of
births, more frequently have their origin in pater-
nal chromosomes. In a 2006 report, 72 percent of
de novo unbalanced chromosomal rearrangements
were of paternal origin.474 The likelihood of having
a translocation doubled every 10 years after the
age of 25.475 An American Cancer Society Study
of 2,532 cases of hematological cancers noted that
men over 35 had a 63 percent higher risk of hav-
ing affected offspring when compared with those
under 25.476 A small, but statistically significant
increased risk of nonchromosomal congenital
malformations associated with advanced paternal
age was reported by the National Birth Defects
Prevention Study.477 Malformations included were
cleft lip, diaphragmatic hernia, right ventricular
outflow tract obstruction, and pulmonary stenosis.

About 10 percent of couples have infertility. A
World Health Organization multicenter study con-
cluded that the problem appeared predominantly
in males in 20 percent of cases, predominantly in
females in 38 percent, and in both partners in 27
percent. In the remaining 15 percent of cases, no
definitive cause for the infertility was identified.478

Care should be exercised in the preconception
counseling of a couple with a history of infertility.
In the absence of a recognizable cause, karyotyping
of both is recommended. Unrecognized sponta-
neous abortions may have occurred without the
patient’s awareness, caused by overt structural
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chromosome rearrangements or microdeletions or
duplications (see Chapters 11 and 13). Microarrays
performed after routine cytogenetics on products
of conception in 2,389 cases revealed significant
copy number changes or whole-genome uni-
parental disomy in 1.6 percent and 0.4 percent
of cases, respectively.479 A study of 1,300 infertile
men revealed chromosomal abnormalities in 10.6
percent and Y-microdeletions in 4.0 percent.480

Recognized habitual abortion due to the same
causes would also require cytogenetic analysis.
Such studies may reveal a parent (rarely both) with
a chromosomal rearrangement with significant
risks for bearing a child with intellectual disability
and/or malformations, who could benefit from
prenatal or preimplantation diagnosis.

Other examples of disorders characteristically
associated with recurrent pregnancy loss or infer-
tility include premature ovarian failure in fragile
X syndrome carriers (see Chapter 16), and the
X-linked disorders steroid sulfatase deficiency481

and incontinentia pigmenti.482 Thrombophilia as
a significant cause remains uncertain.483, 484 In
about 8 percent of women experiencing recurrent
abortion a mutation in the SYCP3 gene (which
encodes an essential component of the synap-
tonemal complex, key to the interaction between
homologous chromosomes) was noted.485 An
extensive list of genes related to premature ovarian
failure have been recognized,486 especially note-
worthy in a highly consanguineous population.487

Consequently, next-generation sequencing488 or
whole-exome sequencing,489–492 cost issues aside,
would be indicated.

Although the investigation to determine the
cause of male or female infertility can be exten-
sive, several observations are pertinent here. We
recognized that congenital bilateral absence of the
vas deferens (CBAVD),493 which occurs in 1–2
percent of infertile males, is primarily a genital
form of CF (see Chapter 15). Men with CBAVD494

should have CF gene analysis (sequencing, poly T
variant analysis, deletion analysis). A meta-analysis
concluded that among CBAVD patients, 78 percent
had one recognizable CFTR gene mutation whereas
46 percent were noted to have two mutations.495

The mutation detection rate is likely to exceed 92
percent including large gene rearrangements.496

Of interest is the observation of Traystman et al.497

that CF carriers may be at higher risk for infertility

than the population at large. Men who test negative
for a CFTR mutation should have the ADGRG2
gene on the X chromosome sequenced.498, 499

Some patients with CBAVD (21 percent in one
study500) also have renal malformations. These
patients may have a normal sweat test and thus far
no recognizable mutations in the CF gene.500, 501

Renal ultrasound studies are recommended in all
patients with CBAVD who have normal CFTR
analyses. The partner of a male with CBAVD and a
recognized mutation(s), after gene analysis, should
routinely be offered sequencing and deletion anal-
ysis of the CFTR gene. Such couples frequently
consider epididymal sperm aspiration,502, 503 with
pregnancy induced by IVF. Precise prenatal and/or
preimplantation genetic testing can be achieved
only if specific mutations have been recognized.

Significant male infertility is mainly associated
with XXY males (see Chapter 12), autoso-
mal translocations, Kallman syndrome, Y-
microdeletions, autosomal inversions, CBAVD,
mixed gonadal dysgenesis, and X-linked and
autosomal gene mutations.504 We reported a
28-year-old with azoospermia and bilateral con-
genital cataracts associated with a contiguous
deletion including the Nance–Horan gene at
Xp23.13 and implicating the SCML1 gene.505 The
global prevalence of Yq microdeletions approx-
imates 7.5 percent in infertile males.506 Genes
including DAZ (“deleted in azoospermia”), YRRM
(Y chromosome RNA recognition motif),507, 508

and others may be deleted singly or together in the
region of Yq11.23.509 Couples must be informed
that male offspring of men with these interstitial
deletions in the Y chromosome will have the same
structural chromosome defect. The female partner
of the male undergoing intracytoplasmic sperm
injection (ICSI) needs explanations about proce-
dures and medications for her that are not risk
free. Patients should realize that ICSI followed by
IVF is likely to achieve pregnancy rates between
20 and 24 percent,510 a success rate not very dif-
ferent from the approximately 30 percent rate in a
single cycle after natural intercourse at the time of
ovulation.510 Pregnancy follow-up data from cases
culled from 35 different programs reported in a
European survey511 and a major American study
of 578 newborns showed no increased occurrence
of congenital malformations.214 However, a sta-
tistically significant increase in sex chromosome
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defects has been observed.512 Prenatal diagnosis is
recommended in all pregnancies following ICSI.

Even “balanced” reciprocal translocations in
males may be associated with the arrest of sper-
matogenesis and resultant azoospermia.513 In one
series of 150 infertile men with oligospermia or
azoospermia, an abnormal karyotype was found
in 10.6 percent (16/180), 5.3 percent (8/150) had
an AZF-c deletion, and 9.3 percent (14/150) had
at least a single CF gene mutation.514 This study
revealed a genetic abnormality in 36/150 (24 per-
cent) of men with oligospermia or azoospermia.
A Turkish study of 1,696 males with primary
infertility showed 8.4 percent with a chromosomal
abnormality and 2.7 percent with a Y-chromosome
microdeletion.515

Rarer disorders may need to be considered in the
quest to determine the cause of infertility includ-
ing, for example, the blepharophimosis, ptosis, epi-
canthus inversus syndrome, which may respond to
treatment.516

In a study of 75,784 women to determine
all-cause and cause-specific mortality, those with
infertility had a 10 percent increased risk of death
from any cause.517 Death from breast cancer was
more than doubled. In a major prospective Dan-
ish study, 3,356 women who had children born
after frozen embryo transfer were compared with
910,291 fertile women. The incidence rate of child-
hood cancer was 17.5 per 100,000 for children born
to fertile women, and 44.4 per 100,000 in children
born after the use of frozen embryos.518 The sta-
tistically significant increased risk was primarily
leukemia and sympathetic nervous system tumors.
The cause(s) remain unknown. A US study did
not find a significant association, but had a shorter
follow-up period (<5 years), follow-up loss, and
incomplete maternal data.519 In a retrospective
study using insurance data, the records of 19,658
infertile women and 525,695 fertile women were
examined to determine severe maternal morbid-
ity.520 The overall incidence of severe maternal
morbidity among women receiving fertility treat-
ment was 7.0 percent compared with 4.3 percent in
fertile women.

Parental carrier of a genetic disorder
Prospective healthy parents are mostly unaware
of their carrier status for a chromosomal or
single-gene disorder, unless their medical or

reproductive history has otherwise been informa-
tive. Studies to determine prenatal carrier status
for a chromosomal disorder are recommended
following a history of recurrent miscarriage, pre-
vious stillbirth, previous child with intellectual
disability, or congenital abnormality, infertility,
oligospermia, azoospermia, or a family history that
is concerning for any of these outcomes. Chromo-
some analysis will mostly suffice in determining
translocations, inversions, and somatic mosaicism.
Chromosomal microarrays (see Chapter 13) for
both parents are appropriate if no diagnosis was
made for previous affected progeny, but will miss
balanced translocations.

The first preconception visit is the time to
establish the carrier status of a couple for either a
chromosomal or monogenic disorder.521 Among
the many items to be considered during the pre-
conception visit are the potential physical features
indicative of sex-linked disorders that may mani-
fest in female carriers (see discussion later). With or
without a family history of the disorder in question,
referral to a clinical geneticist would be appropriate
for final evaluation of possible implications. Failure
to recognize obvious features in a manifesting
female may well result in a missed opportunity for
prenatal genetic studies and an outcome character-
ized by a seriously affected male (or occasionally
female) offspring. Recognition of the carrier status
for Duchenne muscular dystrophy (DMD) of a
prospective mother at the first preconception visit
should immediately include consideration of her
own future health. Some two-thirds of mothers
are carriers of a DMD gene mutation. As X-linked
carriers they may manifest symptoms and signs of
this disorder, including muscle weakness, promi-
nent but weak calf muscles, abnormal gait, fatigue,
exercise intolerance, and, of greatest importance,
heart involvement.522 Up to 16.7 percent of DMD
carriers develop dilated cardiomyopathy, with car-
riers of Becker muscular dystrophy (BMD) having
up to a 13.3 percent risk.523 The cardiomyopathy
may also manifest with conduction defects and
arrhythmias.522, 524–527 While most carriers become
symptomatic around puberty,528 the risks and
severity increase with age. Unfortunately, physi-
cians are often unaware of the risks DMD carriers
face,529 despite having elevated levels of creatine
phosphokinase.530 In a study of 77 DMD and BMD
carriers with a molecular confirmed diagnosis, 49
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percent had myocardial fibrosis detected by cardiac
MRI.531 Irreversible heart failure maybe the final
complication for which cardiac transplantation has
been done.532

A report on 355 fragile X carrier women noted
that >30 percent complained of anxiety, depres-
sion, and headaches.533 Between 20 and 30 percent
of carriers experience irregular or absent menses
due to primary ovarian insufficiency.534 This latter
recognition during routine obstetric care often
serves as an alert to check fragile X syndrome
carrier status. We have also seen instances where
recognition of carrier status has led to reversal
of a putative diagnosis of parkinsonism or early
dementia, instead of an actual diagnosis of the
fragile X tremor ataxia syndrome manifesting in a
grandfather over 60 years of age (see Chapter 16).

Carrier status for women with a family history
of hemophilia A or B cannot be excluded by a
normal activated partial thromboplastin time or
normal factor VIII or factor IX levels.535 A defini-
tive molecular diagnosis combined with linkage
analysis where necessary is needed, especially if
prenatal or preimplantation diagnosis is sought.
Determination of a pathogenic variant in the
structurally complex factor VIII gene enables con-
firmation of carrier status.536, 537 Prenatal diagnosis
requests for hemophilia A are uncommon, but
have been provided.538–540 Preimplantation genetic
testing (see Chapter 2) for hemophilia has also
been accomplished.541 Noninvasive prenatal diag-
nosis of hemophilia A and B in hemophilia carriers
using maternal plasma and factor VIII and factor
IX sequence variants has been demonstrated542

(see Chapter 8).
We all carry a host of deleterious recessive

genes (∼100–300)543 and technical advances have
enabled routine simultaneous testing of hundreds
of autosomal recessive and X-linked disorders
which affect about 1 in 300 pregnancies.544 Not well
understood by patients is the fact that expanded
carrier testing545–555 examines only a few common
mutations in each gene analyzed. The net effect is a
significant reduction in the risk of being a carrier
of the gene tested. Unfortunately, the refrain heard
from patients having had expanded carrier testing
is “I am not a carrier.” Financial constraints prevent
many couples benefitting from the extensive panel
of carrier tests, leaving them with the previously
required indications of ethnicity, affected offspring,

or family history. This type of limited carrier
testing, which includes CF and spinal muscular
atrophy, misses about 70 percent of carriers of
rare disorders.556 For the most part carriers of
autosomal recessive disorders are asymptomatic.
An important exception are the carriers of the
sickle cell disease gene mutation p.Glu6-Val in
the β-globin chain of hemoglobin, who have an
increased risk of both venous thromboembolism
and chronic renal disease.557 This is an important
realization that should lead to care and surveil-
lance, given that about 300 million worldwide have
the sickle cell trait.

Autosomal recessive disease severity when due
to compound heterozygous pathogenic variants
will be a consequence of the variable expression of
the two alleles (e.g. CF with the p.Phe508del and
the p.Arg117His alleles resulting only in CBAVD)
(see Chapter 15). Gene modifiers too will affect
the phenotype. Variant interpretation remains a
challenge as well as increasing the need and time
taken for genetic counseling given that over 1,800
autosomal recessive genes are known.543

Clearly, the purpose of expanded carrier screen-
ing (see Chapter 14) for healthy couples enables
them to benefit from available options that include
preimplantation genetic testing, routine prenatal
diagnosis, adoption, donor sperm or ova, or sur-
rogacy. This approach has proved acceptable to the
American College of Obstetricians and Gynecol-
ogists, the American College of Medical Genetics
and Genomics, the Society for Maternal-Fetal
Medicine, and the National Society of Genetic
Counselors.558, 559 The clinical utility and efficacy
has been clearly demonstrated.546, 549, 551, 558

Johansen Taber et al.560 reported on the actions
and reproductive outcomes of 391 at-risk couples
from a tested population of over 270,000 using a
panel of 176 genetic disorders. Over 75 percent
who had preconception testing, planned or acted
to avoid having an affected progeny. More than 50
percent of at-risk couples terminated pregnancies.
Relying on a survey study, the authors acknowl-
edge, has limitations so far as memory, response
bias, and selection (infertility problems) are con-
cerned. In a smaller study, others549 demonstrated
the clear superiority of expanded carrier screening
compared with ethnicity-based testing, with over
threefold detection. Punj et al. offered precon-
ception next-generation sequencing to determine
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carriers and found 12/71 couples at risk.548 Eight
were carriers of hemochromatosis. These authors
analyzed 728 genes in 202 individuals, 78 percent
being determined to have at least one positive
carrier result. In this exploratory study, which used
a 148 gene-panel rather than the ACMG actionable
panel of 59 genes, 3.5 percent of participants had
a medically actionable variant548 (see Chapter 14).
Applying their analysis to the ACMG panel, 2.9
percent had an actionable variant.

Ethnicity-based carrier testing (Table 1.5)
remains the only option for large swaths of the
world’s population. Selective Ashkenazi Jewish
mutation carrier testing, for example, for disor-
ders listed in Table 1.5 do provide valuable but
limited information, leading to options noted
above. A study of 6,805 Jewish patients (Ashke-
nazi, Sephardi, and Mizrahi) having expanded
carrier screening showed that 64.6 percent were
identified as a carrier of one or more of 96 dis-
orders562 (Table 1.6). The authors noted that >80
percent of the reported variants would have been
missed by standard Ashkenazi Jewish screening
protocols. One in 16 couples were identified as
joint carriers with a 25 percent risk of having an
affected child. A novel, likely pathogenic variant
was seen in about 2.5 percent of patients tested. A
whole-exome sequencing study of 123,136 cases
examined carrier rates in six ethnic groups, focus-
ing on 415 genes associated with severe recessive
disorders.563 These authors found that 32.6 percent
(East Asian) and 62.9 percent (Ashkenazi Jewish)
were variant carriers of at least one of the 415 genes.
A pan-ethnic screen using these 415 genes would
identify up to 2.52 percent of at-risk couples.

However, the limitations of ethnic-based carrier
testing were revealed by a genetic ancestry analy-
sis of >93,000 individuals having expanded carrier
testing using a 96-gene panel.565 Nine percent of
those tested had an ancestry from a lineage incon-
sistent with self-reported ethnicity.

Multiple published reports on preconception
or prenatal expanded carrier screening using
large but variable-sized gene panels overwhelm-
ingly support this approach above ethnicity-based
testing.545, 549, 566–572

Although not currently required in preconcep-
tion carrier screening, testing for hereditary cancer
risk should be considered. A personal or family
history of cancer as well as ethnicity currently

serves as an indication for screening. Autosomal
dominant disorders are otherwise not usually
subject to screening. In a study of 26,906 individ-
uals in the Healthy Nevada Project screened for
BRCA-related breast and ovarian cancer, Lynch
syndrome, and familial hypercholesterolemia, 1.33
percent were found to be carriers of pathogenic or
likely pathogenic variants.573 Moreover 90 percent
of carriers had not been identified previously, and
only 25.2 percent had a relevant family history.
These three disorders determined by screening
(not family history) are not usually considered for
prenatal diagnosis or preimplantation genetic test-
ing. However, other autosomal dominant disorders
with manifestations in childhood (e.g. multiple
endocrine neoplasia type 2B, familial adenomatous
polyposis, long QT syndrome, cardiomyopathy)
do qualify for preconception, preimplantation, and
prenatal testing. A study of 23,179 individuals with
a family history of cancer had next-generation
sequencing using a 30-gene panel.574 A total of
2,811 pathogenic variants were found in 2,698
individuals for an overall pathogenic frequency
of 11.6 percent. For those of Ashkenazi Jewish
descent three-quarters of the pathogenic variants
in the BRCA1 and BRCA2 genes would have been
missed if only the routine three common founder
mutations were tested.

Geneticists and genetic counselors will attest to
the frequent challenges they encounter faced by
their patients’ difficulty comprehending genetic
test results, implications, and options. On the
heels of the technologic advances in genetics
have come commercialization in the form of
direct-to-consumer (DTC) testing. Few patients are
cognizant of the commercialization realities that
include selling of their data, receiving misleading
results, being faced with incorrect, false-positive or
false-negative results, a lack of informed consent,
confidentiality, and privacy.575–580 There is a wide
spectrum of laws that govern genetic testing in
most countries, with special reference to labo-
ratory accreditation, staff certification, genetic
counseling requirements, and informed consent.

In one study of identical twins there was a lack of
concordance between laboratories.581 In an illustra-
tive case, the result provided was actionable, but no
action was taken by the recipient of the DTC com-
munication.582 Ethical breaches, including testing
of children, further complicate DTC practices.583
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Table 1.5 Genetic disorders in various ethnic groups.

Ethnic group Genetic disorder

Africans (black) Sickle cell disease and other disorders of hemoglobin

α- and β-thalassemia

Glucose-6-phosphate dehydrogenase deficiency

Benign familial leucopenia

High blood pressure (in females)

Afrikaners (white South Africans) Variegate porphyria

Fanconi anemia

American Indians (of British Columbia) Cleft lip or palate (or both)

Amish/Mennonites Ellis–Van Creveld syndrome

Pyruvate kinase deficiency

Hemophilia B

Armenians Familial Mediterranean fever

Ashkenazi Jews A-β-lipoproteinemia

Bloom syndrome

Breast cancer

Canavan disease

Colon cancer

Congenital adrenal hyperplasia

Dysferlinopathy (limb girdle muscular dystrophy 2B)

Dystonia musculorum deformans

Factor XI (PTA) deficiency

Familial dysautonomia

Familial hyperinsulinism

Fanconi anemia (type C)

Galactosemia

Gaucher disease (adult form)

Iminoglycinuria

Joubert syndrome

Maple syrup urine disease

Meckel syndrome

Niemann–Pick disease

Pentosuria

Retinitis pigmentosa 590

Tay–Sachs disease

Warsaw Breakage syndrome 561

Chinese Thalassemia (𝛼)

Glucose-6-phosphate dehydrogenase deficiency

(Chinese type)

Adult lactase deficiency
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Table 1.5 (Continued)

Ethnic group Genetic disorder

Eskimos E1 pseudocholinesterase deficiency

Congenital adrenal hyperplasia

Finns Aspartylglucosaminuria

Congenital nephrosis

French Canadians Neural tube defects

Tay–Sachs disease

Irish Neural tube defects

Phenylketonuria

Schizophrenia

Italians (northern) Fucosidosis

Japanese and Koreans Acatalasia

Dyschromatosis universalis hereditaria

Oguchi disease

Maori (Polynesians) Clubfoot

Mediterranean peoples (Italians, Familial Mediterranean fever

Greeks, Sephardic Jews, Armenians,

Turks, Spaniards, Cypriots)

Glucose-6-phosphate dehydrogenase deficiency

(Mediterranean type)

Glycogen storage disease (type III)

Thalassemia (mainly β)

Norwegians Cholestasis-lymphedema

Phenylketonuria

Yugoslavs (of the Istrian Peninsula) Schizophrenia

Table 1.6 Residual risk values for diseases in Ashkenazi Jewish populations.

Disease

100% Ashkenazi

Jewish carrier

frequency Detectability

Residual

risk

Probability of

affected fetus if

parents pos/nega

Gaucher disease 1 in 15 0.95 1 in 281 1 in 1,124

Cystic fibrosis 1 in 23 0.94 1 in 368 1 in 1,472

Tay–Sachs disease 1 in 27 0.98 1 in 1,301 1 in 5,204

Familial dysautonomia 1 in 31 >0.99 1 in 3,001 1 in 12,004

Canavan disease 1 in 55 >0.97 1 in 1,801 1 in 7,204

Glycogen storage disease type 1a 1 in 64 0.95 1 in 1,261 1 in 5,044

Hyperinsulinemic hypoglycemia 1 in 68 0.90 1 in 671 1 in 2,684

Mucolipidosis IV 1 in 89 0.95 1 in 1,761 1 in 7,044

Maple syrup urine disease 1 in 97 0.95 1 in 1,921 1 in 7,684

Fanconi anemia 1 in 100 0.99 1 in 9,901 1 in 39,604

Dihydrolipoamide dehydrogenase deficiency 1 in 107 >0.95 1 in 2,121 1 in 8,484

Niemann–Pick disease type A 1 in 115 0.97 1 in 3,801 1 in 15,204

Usher syndrome type 3 1 in 120 >0.95 1 in 2,381 1 in 9,524

Bloom syndrome 1 in 134 0.99 1 in 13,301 1 in 53,204

Usher syndrome type 1F 1 in 147 ≥0.75 1 in 585 1 in 2,340

Nemaline myopathy 1 in 168 >0.95 1 in 3,341 1 in 13,364

aOne parent is positive and one parent is negative by carrier screening.

Source: Modified from Scott et al.564
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Professional organizations, aware of all these
issues, have discouraged the use of DTC genetic
testing. Position statements have accordingly been
issued by the American College of Obstetricians
and Gynecologists,584 the American College of
Medical Genetics and Genomics,585 the Joint Soci-
ety of Obstetricians and Gynecologists, and the
Canadian College of Medical Genetics.586 A range
of laws exist in Europe, with France and Germany
banning DTC genetic testing.587 Serious concern
has been expressed about the ethical, legal, and
regulatory challenges of DTC testing in Ireland588

and Europe.589

A family history of a genetic disorder
The explicit naming of a specific genetic disor-
der when the family history is being discussed
facilitates evaluation and any possible testing.
Difficulties are introduced when neither family
nor previous physicians have recognized a genetic
disorder within the family, sometimes revealed
by expanded carrier screening591 or whole-exome
sequencing.592 Such a disorder may be common
(e.g. factor V Leiden deficiency) but neverthe-
less unrecognized. Clinical clues would include
individuals in the family with deep-vein throm-
bosis, sudden death possibly due to a pulmonary
embolus, and yet other individuals with recurrent
pregnancy loss.593 Venous thromboembolism is
the third leading cause of cardiovascular death in
the United States, and provides additional insights
into the genetic basis of unprovoked pulmonary
embolism. Using whole-exome sequencing in 393
affected individuals and 6,114 controls, Desch
et al.594 identified four genes (PROS1, STAB2,
PROC, SERPINC1) with pathogenic variants,
expanding the need for genetic testing given the
history of thromboembolism.

For some families, individuals with quite dif-
ferent apparent clinical features may, in fact, have
the same disorder. Seventeen cancers in different
organs in family members may not be recognized
as manifestations of the same common mutation.
In hereditary nonpolyposis colon/rectal cancer,
various family members may suffer from other can-
cers including the uterus, ovary, breast, stomach,
small bowel, ureter, melanoma, or salivary glands.
Analysis of the five culprit genes in the proband
would enable detection of the mutation, which
could then be assayed in other family members at

risk. In another example, there may be two or more
deceased family members who died from “kidney
failure,” and another one or two who died from a
cerebral aneurysm or a sudden brain hemorrhage.
Adult polycystic kidney disease (APKD) may be the
diagnosis, which will require further investigation
by both ultrasound and DNA analysis. Moreover,
two different genes for APKD have been identified
(about 85 percent of cases due to APKD1 and close
to 15 percent due to APKD2),595 and a rare third
locus is known. In yet other families, a history of
hearing impairment/deafness in some members
and sudden death in others may translate to the
autosomal recessive Jervell and Lange–Nielsen syn-
drome.596 This disorder is characterized by severe
congenital deafness, a long QT interval, and large
T waves, together with a tendency for syncope and
sudden death due to ventricular fibrillation. Given
that a number of genetic cardiac conduction defects
have been recognized, a history of an unexplained
sudden death in a family should lead to a routine
electrocardiogram at the first preconception visit
and possibly mutation analysis of at least 15 long
QT syndrome genes.597 Other disorders in which
sudden death due to a conduction defect might
have occurred, with or without a family history
of cataract or muscle weakness, should raise the
suspicion of myotonic muscular dystrophy (see
Chapter 31).

Rare named disorders in a pedigree should
automatically raise the question of the need for
genetic counseling. We have seen instances (e.g.
pancreatitis) in which, in view of its frequency, the
disorder was simply ascribed to alcohol or idio-
pathic categories. Hereditary pancreatitis, although
rare, is an autosomal dominant disorder for which
several genes are known.598

Awareness of the clinical manifestations in car-
rier females of X-linked disorders is important
given health and risk implications (Table 1.7).
The pattern of inheritance of an unnamed dis-
order may signal a specific monogenic form of
disease. For example, unexplained intellectual
disability on either side of the female partner’s
family calls for fragile X DNA carrier testing.
Moreover, unexpected segregation of a maternal
premutation may have unpredicted consequences,
including reversion of the triplet repeat number to
the normal range.671 Genetic counseling may be
valuable, more especially because the phenomena



�

� �

�

38 Genetic Disorders and the Fetus

Table 1.7 Signs in females who are carriers of selected X-linked recessive disease pertinent to prenatal diagnosis.

Selected disorders Key feature(s) that may occur Selected references

Aarskog–Scott syndrome allelic with

XLMR 16

Widow’s peak or short stature 599

Achromatopsia Decreased visual acuity and myopia 600

Adrenoleukodystrophy Neurologic and adrenal dysfunction 601, 602

Alport syndrome Microscopic hematuria and hearing impairment 603

Ameliogenesis imperfecta,

hypomaturation type

Mottled enamel vertically arranged 604

Arthrogryposis multiplex congenita Club foot, contractures, hyperkyphosis 605

ATRX syndrome 𝛼-thalessemia/ID

syndrome

Mild intellectual disability, hemoglobin H inclusions 599, 606

Borjeson–Forssman–Lehmann

syndrome

Tapered fingers, short, widely spaced, flexed toes,

mild mental retardation

607

Choroideremia a Chorioretinal dystrophy 608

Chondrodysplasia punctata 1 Mild intellectual disability, possible bone defects

and short stature

599

Chronic granulomatous disease Cutaneous and mucocutaneous lesions 609–611

Cleft palate Bifid uvula 612

Conductive deafness with stapes

fixation

Mild hearing loss 613

Deafness X-linked 1 allelic with

Charcot-Marie-Tooth 5

Mild high-pitch hearing loss 599

Dilated cardiomyopathy Cardiac failure 614

Duchenne/Becker muscular

dystrophy

Pseudohypertrophy, muscle weakness,

cardiomyopathy/conduction defects

615–618

Dyskeratosis congenita Retinal pigmentation 619

Ectodermal dysplasia Variable severity of skin, hair, nails, and teeth 599

Emery–Dreifuss muscular dystrophy Cardiomyopathy/conduction defects 620–622

Fabry disease Angiokeratomas, corneal dystrophy, "burning"

hands and feet, rhabdomyolysis

623, 624

FG syndrome Anterior displaced anus, facial dysmorphism 625

Fragile X syndrome Mild-to-moderate intellectual disability, behavioral

aberrations, schizoaffective disorder, premature

ovarian failure, fragile X tremor ataxia

syndrome, women and men premutation carriers

626–628 (see Chapter 16)

G6PD deficiency Hemolytic crises, neonatal hyperbilirubinemia 629

Hemophilia A and B Bleeding tendency 630

Hypohydrotic ectodermal dysplasia Sparse hair, decreased sweating 631, 632

Ichthyosis Ichthyosis 633

KDM5C gene disease Intellectual disability 634

Lissencephaly and agenesis of the

corpus callosum

Epilepsy with subcortical band heterotopia 599

Lowe syndrome Lenticular cataracts 635

MASA syndrome/SPG1 Mild intellectual disability, abducted thumbs 599

McLeod neuroacanthocytosis

syndrome

Chorea, late-onset cognitive decline 636

Menkes disease Patchy kinky hair, hypopigmentation 637, 638

Myopia Mild myopia 639

Nance–Horan syndrome b Posterior Y-sutural cataracts and dental anomalies 640

Norrie disease Retinal malformations 641

Ocular albinism type 1 Retinal/fundal pigmentary changes 642
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Table 1.7 (Continued)

Selected disorders Key feature(s) that may occur Selected references

Oculofaciodigital syndrome (OFD1)

allelic with

Simson–Galabia–Beheld syndrome

2 and Joubert syndrome

Facial dysmorphism, abnormal digits, and polycystic

kidneys

599

Oligodontia Hypodontia 643

Opitz G/BBB syndrome Hypertelorism 644

Opitz–Kaveggia syndrome Mild intellectual disability, hypertelorism 599

Ornithine transcarbamylase

deficiency

Hyperammonemia, psychiatric/neurologic

manifestations

645, 646

Ovarian cancer Ovarian cancer 647

Pelizaeus–Merzbacher Possible mild spasticity 648

Retinoschisis Peripheral retinal changes 649

Retinitis pigmentosa Night blindness, concentric reduction of visual field,

pigmentary fundal degeneration, extinction of

electroretinogram, cone disruption, vision loss

650, 651

MECP2-duplication syndrome Intellectual disability, neuropsychiatric features,

endocrine abnormalities

652

Simpson–Golabi–Behmel syndrome Extra lumbar/thoracic vertebrae, accessory nipples,

facial dysmorphism

653, 654

Spinal and bulbar muscular atrophy Muscle weakness and cramps 655

Split-hand/split-foot anomaly Mild split-hand/split-foot anomaly 656

Spondyloepiphyseal dysplasia, late

onset

Arthritis 657

Ulnar hypoplasia with lobster-claw

deficiency of feet

Slight hypoplasia of ulnar side of hand and mild

syndactyly of toes

658

Wiskott–Aldrich syndrome a Abnormal platelets and lymphocytes 659, 660

X-linked intellectual disability Mostly intellectual disability (many genes),

occasional short stature, hypertension,

psychiatric symptoms

661–663

X-linked mental retardation Short stature, hypertelorism 599, 664, 665

X-linked mental retardation

(OPHN1)

Cerebellar hypoplasia, distinctive facies 666, 667

X-linked myotubular myopathy Weakness, respiratory problems 668

X-linked protoporphyria Life-long photosensitivity; liver disease 669

X-linked retinitis pigmentosa Retinal changes 670

aUncertain.
bMay be same disorder.

of pleiotropism (several different effects from a
single gene) and heterogeneity (a specific effect
from several genes) may confound interpretation
in any of these families.

History of a previous child with intellectual dis-
ability with a diagnosis deemed “idiopathic” or of
unknown cause after chromosomal, fragile X and
biochemical analyses, is no longer tenable without
whole-exome sequencing672, 673 (see Chapter 14).
Over 700 genes involved in intellectual disability
of monogenic origin have been recognized.674, 675

In a meta-analysis of 3,350 individuals with neu-
rodevelopmental disorders676–678 the diagnostic
yield was 36 percent using whole-exome sequenc-
ing. More recently, whole-exome sequencing
for patients sent for a chromosomal microarray
yielded diagnoses in about 27 percent of intellectual
disability cases.676

Consanguinity
A wide swath of the world’s population have high
rates of consanguinity (50–70 percent of births to
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consanguineous parents). This especially applies to
India, Pakistan, Bangladesh, the Middle East, and
Africa. Medical literature is replete with examples
of rare severe autosomal recessive disease in these
populations. Where family history does not reveal
unknown or hidden consanguinity, purposeful or
incidental, significant runs of homozygosity seen
on a chromosomal microarray (see Chapter 13)
frequently will. In those instances, recognition of
a shared gene and its mutation within a shared
region may unexpectedly lead to a rare diagnosis.
Not as well known, perhaps, is that shared variant
homozygosity markedly reduces the fertility rate of
close consanguineous couples.679

Consanguineous couples face increased risks
of having children with autosomal recessive dis-
orders; the closer the relationship, the higher the
risks. A study in the United Arab Emirates of 2,200
women ≥15 years of age (with a consanguinity
rate of 25–70 percent) concluded that the occur-
rence of malignancies, congenital abnormalities,
intellectual disability, and physical handicap was
significantly higher in the offspring of consan-
guineous couples.680, 681 The pooled incidence
of all genetic defects, regardless of the degree of
consanguinity, was 5.8 percent, in contrast with
a nonconsanguineous rate of 1.2 percent, similar
to an earlier study.681, 682 A Jordanian study also
noted significantly higher rates of infant mortality,
stillbirths, and congenital malformations among
the offspring of consanguineous couples.683 A
Norwegian study of first-cousin Pakistani parents
yielded a relative risk for birth defects of about
twofold.684 In that study, 28 percent of all birth
defects were attributed to consanguinity. An obser-
vational study of 5,776 Indian newborns noted
a birth defect prevalence of 11.4 per 1,000 births
with a consanguinity rate of 44.74 percent.685

A study from Saudi Arabia, where the con-
sanguinity rate exceeds 50 percent, focused on
whole-exome sequencing of 2,219 families who
had or had lost an affected fetus or child. The
study group was constituted by 1,653 individual
samples, 127 twosomes, 370 trios, 58 quads, and
11 others.686 They resolved many cases by deter-
mining known causal recessive genes and their
mutations, but also discovering multiple previously
unknown pathogenic variants. In addition, they
recognized some genes that also had a dominant
rather than recessive mode of inheritance. Their

prenatal diagnostic detection rate was 46.2 percent
(30/65 cases), 87 percent of which were autosomal
recessive.

Whole-exome sequencing following discovery
of a fetal anomaly not resolved by karyotyping or
chromosomal microarray may well provide a pre-
cise diagnosis. In a study of 102 anomalous fetuses,
a definitive or probable diagnosis was made in 21
(20.6 percent).687 A similar small study of 19 fami-
lies with fetal anomalies yielded candidate variants
in 12 (63 percent).688 A systematic evidence-based
review of exome and genome sequencing for con-
genital anomalies or intellectual disability on behalf
of the ACMG concluded that a change in patient
management was observed in nearly all studies,
including an impact on reproductive outcomes.689

The occurrence of rare, unusual or unique syn-
dromes invariably raises questions about potential
consanguinity and common ancestral origins. Clin-
ical geneticists will frequently be cautious in these
situations, providing potential recurrence risks of
25 percent. Consanguineous couples may opt for
the entire gamut of prenatal tests to diminish even
their background risks, with special focus on their
ethnic-specific risks.690 Abnormal or concerning
prenatal ultrasound observations in pregnancies
by consanguineous couples may prompt prenatal
whole-exome sequencing.691

Environmental exposures that threaten
fetal health
Concerns about normal fetal development after
exposure to medications, alcohol, illicit drugs,
chemical, infectious or physical agents, and/or
maternal illness are among the most common
reasons for genetic counseling during pregnancy.
Many of these anxieties and frequently real risks
could be avoided through preconception care. Pub-
lic health authorities, vested with the care of the
underprivileged in particular, need to focus their
scarce resources on preconception and prenatal
care and on the necessary public education regard-
ing infectious diseases, immunization, nutrition,
and genetic disorders.

In preconception planning, careful attention
to broadly interpreted fetal “toxins” is necessary,
and avoidance should be emphasized. Alcohol,
smoking, illegal drug use, certain medications, and
X-ray exposure require discussion. Estimates of the
prevalence of the fetal alcohol spectrum disorder
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approximate 2 per 1,000 livebirths692 in the United
States but in certain regions and countries rates
reach as high as 10 percent.693–695 There is a limited
list of known and proven human drug teratogens696

(see Chapter 3). Maternal use of specific terato-
genic medications,697 such as isotretinoin, may
be missed, unless the physician expressly inquires
about them.

Preconception advice to avoid heat exposure in
early pregnancy is appropriate. Our observations
showed a 2.9 relative risk for having a child with
a NTD in mothers who used a hot tub during
the first 6 weeks of pregnancy.698 High fever in
the very early weeks of pregnancy is a potential
teratogen698 and should be avoided and treated
promptly. Animal studies show that commonly
used drugs enter the fetal brain.699

A report from the Spanish Collaborative Study
of Congenital Malformations noted a 2.8-fold
increased risk of Down syndrome in the offspring
of women ≥35 years of age and who were taking
oral contraceptives when they became pregnant.700

Identification of preconception
options
The time to deal with unwanted risks is not dur-
ing the second trimester of pregnancy, as is so often
the case in practice. Preconception counseling will
identify specific risks and attendant options, which
include the following:
• Knowledge of family history
• Attention to maternal health (e.g. diabetes con-
trol,701, 702 confirm cardiac and vascular normality)
• Decision not to have children (includes consider-
ation of vasectomy or tubal ligation)
• Adoption
• In vitro fertilization
• Gamete intrafallopian tube transfer or allied
techniques
• Artificial insemination by donor
• Ovum donation (includes surrogacy)
• Intracytoplasmic sperm injection
• Carrier detection tests
• Noninvasive prenatal screening by fetal DNA in
the maternal circulation
• Naternal serum 𝛼-fetoprotein screening for
NTDs
• Prenatal diagnosis (CVS, amniocentesis, cordo-
centesis, ultrasound, MRI)
• Preimplantation genetic testing

• Fetal treatment or surgery for selected disorders
• Folic acid supplementation in periconceptional
period (see Chapter 10)
• Noninvasive prenatal testing (aneuploidy; mono-
genic disorders)
• Selective abortion

Genetic counseling as a prelude
to prenatal diagnosis

The assumption that noninvasive prenatal testing
for common chromosomal abnormalities (see
Chapter 7) is a screening and not a diagnostic test,
is unfortunately common. Many women receiving
a normal report opt to avoid an amniocentesis.
The vast majority will be vindicated, but some will
complete pregnancy with a child having a disorder
that could have been diagnosed in early gestation.
Physicians and counselors are advised to remind
women of this limitation, given that about half of
all chromosomal abnormalities will be missed by
the noninvasive screen.703

Prospective parents should understand their spe-
cific indication for prenatal tests and the limitations
of such studies. Frequently, one or both members of
a couple fail to appreciate how focused the prenatal
diagnostic study will be. Either or both may have
the idea that all causes of intellectual disability or
congenital defects will be detected or excluded.
It is judicious for the physician to urge that both
members of a couple come for the consultation
before CVS or amniocentesis. Major advantages
that flow from this arrangement include a clearer
perception by the partner regarding risks and
limitations, a more accurate insight into his family
history, and an opportunity to detect an obvious
(although unreported or undiagnosed) genetic
disorder of importance (e.g. Treacher–Collins syn-
drome, facioscapulohumeral dystrophy or one of
the orofacial–digital syndromes). Women making
an appointment for genetic counseling should be
informed about the importance of having their
partner with them for the consultation, avoiding
subsequent misunderstanding about risks, options,
and limitations.

Before prenatal genetic studies are performed, a
couple should understand the inherent limitations
both of the laboratory studies and, when relevant,
of ultrasound. For detection of chromosomal
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disorders, they should be aware of potential mater-
nal cell admixture and mosaicism (see Chapter
11). When faced with potential X-linked hydro-
cephalus, microcephaly, or other serious X-linked
disorders, and the realization of less than 100 per-
cent certainty of diagnosis, couples may elect fetal
sex determination as the basis for their decision to
keep or terminate a pregnancy at risk. For some,
neither chromosomal microarrays, biochemical
assays, nor DNA analyses will provide results with
100 percent certainty.

The time taken to determine the fetal karyotype
or other biochemical parameters should be under-
stood before amniocentesis. The known anxiety
of this period can be appreciably aggravated by a
long, unexpected wait for a result. The need for
a second amniocentesis is rarer nowadays but, in
some circumstances, fetal blood sampling remains
an additional option that may need discussion.
Despite the very unlikely eventuality that no result
may be obtained because of failed cell culture or
contamination, this issue should be mentioned.

The potential possibility for false-positive or
false-negative results should be carefully discussed
when applicable. Any quandary stemming from
the results of prenatal studies is best shared imme-
diately with the couple. The role of the physician in
these situations is not to cushion unexpected blows
or to protect couples from information that may
be difficult to interpret. All information available
should be communicated, including the inability
to accurately interpret the observations made. This
is especially so with the use of the chromosomal
microarray (see Chapter 13) and whole-exome
sequencing (see Chapter 14). Cautions are appro-
priate with special reference to VOUS (see Chapter
14), that require in addition, parental samples to
determine inherited or de novo changes.

Other key issues to be considered by the genetic
counselor and discussed when appropriate with the
consultand follow.

Informed consent
Consent for minor procedures including amnio-
centesis and CVS has been a requirement for
decades and needs no repetition. However, the
advent of chromosomal microarrays (see Chapter
13) and whole-exome sequencing for prenatal
diagnosis (see Chapter 14) requires additional
explanations and caveats. Informed consent for

these two technologies is focused on the potential
results, not sampling risks and procedures. The
specific issues primarily involve the interpretation
of results, their significance, the small possibility of
uncertain findings, test limitations, and incidental
results.

Chromosomal microarray testing adds up to
6–10 percent to a prenatal diagnosis result (see
Chapter 13) beyond the 8–10 percent for rou-
tine karyotyping, and whole-exome sequencing
when done after the ultrasound discovery of fetal
structural abnormality adds an additional 6.2–80
percent.691, 704–708 This absurd range reflects very
small case series, varying indications, and the
presence of single or multiple fetal abnormalities.
A more likely detection range would be between
8.5 and 32 percent.707, 708

Prenatal diagnosis using whole-exome sequenc-
ing (see Chapter 14) is primarily focused on
pregnancies in which fetal structural abnormality
has been observed. A much less frequent indi-
cation would be a recent or late diagnosis of a
parent with a likely monogenic disorder char-
acterized by genetic heterogeneity. No matter
the indication, the informed consent obtained
incorporates and extends current practice for chro-
mosomal microarray tests. The decision to offer
whole-exome sequencing will almost inevitably
come on the heels of the detection of fetal abnor-
mality and in an atmosphere of tension and anxiety.
Any center offering whole-exome sequencing will
have, of necessity, established their informed con-
sent procedure. The following list of pointers are
likely to find common ground:

1. Pre- and postgenetic counseling by a geneticist
or genetic counselor is a prerequisite, with strict
adherence to ethical standards.709, 710

2. Both parents should be in attendance.
3. Explanations should use simple language, no

jargon, and be in the language of the parents (with
an interpreter, if needed).

4. The details of the fetal abnormality, effect on
a child (pain; disability), a progressive disorder or
not, and life expectancy.

5. The use of targeted sequencing, trios, and gene
panels will need explanations, including the reason
and need for prior or simultaneous chromosomal
microarrays.

6. The time needed to obtain a result.
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7. The likely detection rate and the limitations
of whole-exome sequencing (e.g. repeat expansion
disorder; mosaicism).

8. The occurrence of false positives, false nega-
tives, or error.

9. The unexpected discovery of nonpaternity or
consanguinity.
10. The detection of a variant of unknown signifi-
cance.709

11. A “secondary finding”711–714 unrelated to the
original purpose of the analysis.
12. The opportunity for the parents to opt out
of receiving “secondary findings”715 which they
should understand may have personal important
health implications.
13. The choice to refuse testing.

Presymptomatic or predictive testing
Presymptomatic or predictive testing is available
for a rapidly increasing number of disorders, espe-
cially neuromuscular and neurodegenerative (see
Chapter 14). Huntington disease is the prototype,
and predictive testing using guidelines promul-
gated by the World Federation of Neurology,716–719

the International Huntington Association, and
the European Huntington Disease Network719 are
well established. Various programs report that a
majority of patients are able to cope when it is
found that they are affected,225–230, 720, 721 and, at
least after a 1-year follow-up, potential benefit has
been shown even in those found to be at increased
risk.722 A European collaborative study evaluated
180 known carriers of the Huntington disease gene
mutation and 271 noncarriers, all of whom received
a predictive test result. Although the follow-up was
only 3 years for about half the group, pregnancies
followed in 28 percent of noncarriers and only
14 percent of carriers.723 Prenatal diagnosis was
elected by about two-thirds of those who were
carriers.

Genetic counseling for Huntington disease
when intermediate alleles with 27–35 CAG repeats
are determined, pose significant challenges.724

Intermediate CAG repeats have been associated
with behavioral, movement, and cognitive prob-
lems.725–727 The concern is the unpredictable
likelihood of expansion which might account for
7 percent of new mutations.724 Providing counsel-
ing for those with low penetrance alleles (36–39
CAG repeats) is no less challenging. Repeats in

this range are estimated to occur randomly in the
general population with a frequency of about 1 in
400.728 For patients with 36–39 repeats considering
prenatal diagnosis, many factors will need to be
addressed. These include all options discussed ear-
lier and uncertainty, penetrance, anticipation, age
of onset, and life expectancy. Experienced geneti-
cists with an established program that includes
predictive/presymptomatic testing for Huntington
disease should preferably be consulted.

As others earlier,729 we remain very concerned
about the use of a test that can generate a “no hope”
result. Even in sophisticated programs offering
Huntington disease tests, fewer than expected
at-risk individuals requested testing.730 A mul-
ticenter Canadian collaborative study evaluated
the uptake, utilization, and outcome of 1,061 pre-
dictive tests, 15 prenatal tests, and 626 diagnostic
tests from 1987 to 2000. The uptake for predictive
testing was about 18 percent (range 12.5–20.7
percent).731 Of the 15 who had prenatal tests, 12
had an increased risk, which led to pregnancy
termination in all but one.731

The motivations leading to the very difficult
decision to have or not to have a predictive test
are being recognized as extremely complex.732 In
a Danish study before DNA tests were available,
one in 20 individuals at risk for Huntington disease
committed suicide, more than double the popu-
lation rate,733 highlighting earlier reports of high
suicide rates734 and emphasizing the erosive effects
of uncertainty. However, a worldwide assessment
of suicide rates, suicide attempts, or psychiatric
hospitalizations after predictive testing did not
confirm a high rate of suicide.735 In their world-
wide questionnaire study sent to predictive testing
centers, the authors noted that 44 individuals (0.97
percent) among 4,527 tested had five suicides,
21 suicide attempts, and 18 hospitalizations for
psychiatric reasons. All those who committed
suicide had signs of Huntington disease, while 11
(52.4 percent) of the 21 individuals who attempted
suicide were symptomatic. Suicidal ideation or
attempts remain a devastating reality for Hunting-
ton disease, especially given the psychopathology
in those affected.736, 737 Depression, anxiety, and
bipolar disorder are not infrequent. Suicidal behav-
ior may be about 12 times that in the population
at large, reaching an estimated 20 percent.738, 739

Others have written about the psychologic burden
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created by knowledge of a disabling fatal disease
decades before its onset.740–742

Hayden743 warned that it is inappropriate to
introduce a predictive test that “has the potential
for catastrophic reactions” without a support pro-
gram, including pretest and post-test counseling
and specified standards for laboratory analyses.
In one study, 40 percent of individuals tested for
Huntington disease and who received DNA results
required psychotherapy.744 A 5-year longitudinal
study of psychologic distress after predictive testing
for Huntington disease focused on 24 carriers and
33 tested noncarriers. Mean distress scores for both
carriers and noncarriers were not significantly
different but carriers had less positive feelings.745

A subgroup of tested persons were found to have
long-lasting psychologic distress. An interview
study of 20 who tested negative for Huntington
disease revealed reactions that included obvious
relief and gratitude, wishes to have (more) children,
and life changes that included pursuit of a career
and ending an unhappy relationship.746 Negative
reactions included survivor guilt with sadness and
depression or a feeling of pressure to do something
extraordinary with their lives.

Homozygotes for Huntington disease are
rare747, 748 and reported in one out of 1,007 patients
(0.1 percent). Counseling a patient homozygous
for Huntington disease about the 100 percent prob-
ability of transmitting the disorder to each child is
equivalent to providing a nonrequested predictive
test,749 while failing to inform the patient of the
risks would be regarded as the withholding of crit-
ical information. Pretest counseling in such cases
would take into consideration a family history on
both sides and therefore be able to anticipate the
rare homozygous eventuality.

On the other hand, an increasing number of
examples already exist (see Chapter 14) in which
presymptomatic testing is possible and important
to either the patient or future offspring or both.
Uptake has been high by individuals at risk, espe-
cially for various cancer syndromes.750 Use of DNA
linkage or mutation analysis for ADPKD751, 752

may lead to the diagnosis of an unsuspected asso-
ciated intracranial aneurysm in 8 percent of cases
(or 16 percent in those with a family history of
intracranial aneurysm or subarachnoid hemor-
rhage753) and preemptive surgery, with avoidance
of a life-threatening sudden cerebral hemorrhage.

It is worth noting that a subgroup of families has
features similar to Marfan syndrome and that
haplo-insufficiency of the PKD1 gene influences
the transforming growth factor-β (TGFβ) signaling
pathway.754 In a study of 141 affected individuals,
11 percent decided against bearing children on
the basis of the risk.755 These authors noted that
only 4 percent of at-risk individuals between 18
and 40 years of age would seek elective abortion
for an affected fetus. The importance of accurate
presymptomatic tests for potential at-risk kidney
donors has been emphasized.756 Organ donation
by a sibling of an individual with ADPKD, later
found to be affected, has occurred more than once.
Since the PKD1 gene abuts the tuberous sclerosis
(TSC2) gene, heterozygous deletions may lead to a
contiguous gene-deletion syndrome.757

Individuals at 50 percent risk for familial poly-
posis coli (with inevitable malignancy for those
with this mutated gene) who undergo at least
annual colonoscopy could benefit from a massive
reduction in risk (from 50 percent to <1 percent)
after DNA analysis. Individuals in whom this
mutation was found with greater than 99 percent
certainty may choose more frequent colonoscopies
and eventually elective colonic resections, thereby
saving the lives of the vast majority. The need for
involvement of clinical geneticists is especially evi-
dent in this and other disorders in which complex
results may emerge. Giardiello et al.758 showed that
physicians misinterpreted molecular test results in
almost one-third of cases.

Families with specific cancer syndromes, such
as multiple endocrine neoplasia, Li–Fraumeni
syndrome, or von Hippel–Lindau disease, may
also benefit by the institution of appropriate
surveillance for those shown to be affected by
molecular analysis when they are still completely
asymptomatic, once again, in all likelihood, saving
their lives. In one case, an evaluation using array
comparative genomic hybridization to determine
the cause of intellectual disability revealed a de
novo deletion within 3p25.3 that included the
von Hippel–Lindau gene.759 For example, elec-
tive thyroidectomy is recommended for multiple
endocrine neoplasia type 2B by 5 years of age in
a child with this mutation, given the virtual 100
percent penetrance of this gene and the possible
early appearance of cancer.760 Predictive testing,
even of children at high genetic risk, poses a
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host of complex issues.761 Where life-threatening
early-onset genetic disorders are concerned, test-
ing in early childhood still requires the exercise
of parental prerogatives. However, failure to test
because of parental refusal may invite the reporting
of child neglect.762

Identification of specific mutations in the
breast/ovarian cancer susceptibility genes (BRCA1
and BRCA2) has led to us providing requested
prenatal diagnosis. Mothers with such mutations
who have seen their own mothers and sisters die
have made the difficult personal decision to ter-
minate pregnancy.763 DudokdeWit et al. laid out
a detailed and systematic approach to counseling
and testing in these families.764 In their model
approach, important themes and messages emerge:
• Each person may have a different method of cop-
ing with threatening information and treatment
options.
• Predictive testing should not harm the family
unit.
• Special care and attention are necessary to obtain
informed consent, protect privacy and confiden-
tiality and safeguard “divergent and conflicting
intrafamilial and intergenerational interests.”

A French study noted that 87.7 percent of
women who were first-degree relatives of patients
with breast cancer were in favor of predictive test-
ing.765 Two specific groups of women are especially
involved. The first are those who, at a young age,
have already had breast cancer, with or without
a family history, and in whom a specific muta-
tion has been identified. Recognizing their high
risk for breast and/or ovarian cancer,766, 767 these
women have grappled with decisions about elective
bilateral mastectomy and oophorectomy and mas-
tectomy of a contralateral breast. Current estimates
of penetrance are 36–85 percent lifetime risk for
breast cancer and 16–60 percent lifetime risk for
ovarian cancer, depending upon the population
studied.768

The second group of women are of Ashkenazi
Jewish ancestry. These women have about a 2
percent risk of harboring two common mutations
in BRCA1 (c.68 69delAG and c.5266dupC) and one
in BRCA2 (c.5946delT) that account for the major-
ity of breast cancers in this ethnic group.768, 769

Regardless of a family history of breast or ovarian
cancer, the lifetime risk of breast cancer among
Jewish female mutation carriers was 82 percent in

a study of 1,008 index cases.770 Breast cancer risk
by 50 years of age among mutation carriers born
before 1940 was 24 percent, but 67 percent for
those born after 1940.770 Lifetime ovarian cancer
risks were 54 percent for BRCA1 and 23 percent
for BRCA2 mutation carriers.770

It can easily be anticipated that, with identifica-
tion of mutations for more and more serious/fatal
monogenic genetic disorders (including cardio-
vascular, cerebrovascular, neurodegenerative,
connective tissue, and renal disorders, among
others), prospective parents may well choose pre-
natal diagnosis in an effort to avoid at least easily
determinable serious or fatal genetic disorders.
Discovery of the high frequency (28 percent)
of a mutation (T to A at APC nucleotide 3920)
in the familial adenomatous polyposis coli gene
among Ashkenazi Jews with a family history of
colorectal cancer771 is also likely to be followed by
thoughts of avoidance through prenatal diagnosis.
This mutation has been found in 6 percent of
Ashkenazi Jews.771 Because of the ability to deter-
mine whether a specific cancer will develop in the
future, given identification of a particular muta-
tion, much agonizing can be expected for many
years. These quandaries will not and cannot be
resolved in rushed visits to the physician’s office as
part of preconception or any other care. Moreover,
developing knowledge about genotype–phenotype
associations and many other aspects of genetic
epidemiology will increasingly require referral to
clinical geneticists.

Expansion mutations and anticipation
In 1991 the first reports appeared of dynamic
mutations resulting from the unstable expansion
of trinucleotide repeats.772 Thus far, at least 40
proven disorders with these unstable repeats have
been described (see Chapter 14).773 All disor-
ders described thus far are autosomal dominant
or X-linked, except for Friedreich ataxia and
progressive myoclonic epilepsy with myoclonic
tremor,774–776 which are autosomal recessive and
also unique in having intronic involvement.777

Typically for these disorders (except for Friedreich
ataxia), the carrier will have one normal allele and
a second expanded allele. The repeat expansion
disorders, although diverse, share many basic
features. They arise from normally existing poly-
morphic repeats, are unstable, changing size on
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transmission, with longer repeats associated with
severe and earlier onset disease, and highly variable
phenotypes.773

These disorders (except for Friedreich ataxia and
progressive myoclonic epilepsy type 1)774 are also
generally characterized by progressively earlier
manifestations and/or more severe expression
with succeeding generations. This genetic mecha-
nism, called anticipation, is associated with further
expansion (rarely contraction) of the specific triplet
repeat (Box 1.2). These disorders characteristically
have a direct relation between the number of
repeats and the severity of disease with an inverse
relation between the number of repeats and age of
onset. These aspects of anticipation weigh heavily
in preconception counseling when it becomes clear
that the relatively mild-to-moderate status of a
mother with myotonic muscular dystrophy type
1, for example, with a 50 percent risk, could have
an affected child with severe congenital myotonic
muscular dystrophy.778 Triplet size in this disorder
correlates significantly with muscular disability

Box 1.2 Selected genetic disorders with anticipation

Disorders with anticipation

• All autosomal dominant disorders with repeat
expansion mutations listed in Chapter 14 Table
14.2
• Charcot–Marie–Tooth disease type 1A
• Dyskeratosis congenita
• Familial amyloid polyneuropathy
• Hereditary nonpolyposis colorectal cancer
(Lynch syndrome)

Disorders with suspected anticipation

• Ablepharon–macrostomia syndrome
• Adult-onset idiopathic dystonia
• Autosomal dominant acute myelogenous
leukemia
• Autosomal dominant familial spastic paraplegia
• Autosomal dominant polycystic kidney disease
(PKD1)
• Autosomal dominant rolandic epilepsy
• Behçet syndrome
• Bipolar affective disorder
• Crohn disease
• Facioscapulohumeral muscular dystrophy

• Familial adenomatous polyposis
• Familial breast cancer
• Familial chronic myeloproliferative disorders
• Familial Hodgkin lymphoma
• Familial intracranial aneurysms
• Familial pancreatic cancer
• Familial paraganglioma
• Familial Parkinson disease
• Familial primary pulmonary hypertension
• Familial rheumatoid arthritis
• Graves disease
• Hodgkin and non-Hodgkin lymphoma
• Holt–Oram syndrome
• Idiopathic pulmonary fibrosis
• Lattice corneal dystrophy type I (LCD1)
• Li–Fraumeni syndrome
• Ménière disease
• Obsessive–compulsive spectrum disorders
• Oculodentodigital syndrome
• Paroxysmal kinesigenic dyskinesia (PKD)
• Restless legs syndrome
• Schizophrenia
• Total anomalous pulmonary venous return
• Unipolar affective disorder

as well as intellectual and gonadal dysfunction.779

These authors also noted that triplet repeat size
did not correlate with the appearance of cataract,
myotonia, gastrointestinal dysfunction, and cardiac
abnormalities. For myotonic dystrophy type 2
there is no correlation between disease severity and
tetranucleotide (CCTG) repeat length.780 Women
with myotonic dystrophy type 2 have an increased
risk of ovarian and endometrial cancer.781, 782

Somatic mosaicism with different amplification
rates in various tissues may be one possible expla-
nation for variable phenotypes. Fortunately, in very
few repeat expansion disorders, including Hunt-
ington disease, do de novo mutations occur.783

Parent-of-origin effects influencing anticipation
are also recognized (see fragile X syndrome dis-
cussion in Chapter 16). The offspring of fathers
with Huntington disease, spinocerebellar ataxias
types 2 and 7, for example, may present clinically,
and on occasion even before the father has become
symptomatic.784 For myotonic muscular dystro-
phy, paternally transmitted small expansions have
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a higher risk of symptomatic offspring compared
with females.785 Rarely, two triplet repeat disorders
occur concurrently, as reported in a patient with
both oculopharyngeal muscular dystrophy and
Huntington disease.786 Anticipation does occur in
Huntington disease, but not in oculopharyngeal
muscular dystrophy. It is well documented that the
paradoxical effects of repeat interruptions in the
ATTCT expansion alleles in spinocerebellar ataxia
type 10 result in a contraction in intergenerational
repeat size.787 De novo repeat interruptions may
also be associated with less somatic instability
and few or no symptoms and signs in myotonic
muscular dystrophy type 1.788, 789 Spinocerebellar
ataxia type 2 has also been associated with Parkin-
sonism and an increased risk for amyotrophic
lateral sclerosis (ALS).790 Almost all of the 59
autosomal recessive spinocerebellar ataxias791 are
not characterized by repeat expansions. Marked
heterogeneity in the clinical features are common.

Recognition in the last decade of hexanucleotide
repeat expansions in the C9orf72 gene reveal addi-
tional challenges that have raised consideration
of prenatal diagnosis, as discussed under “Accu-
rate diagnosis.” Mutations in C9orf72 have been
reported in 40–50 percent of cases with familial
amyotrophic lateral sclerosis, between 3.5 per-
cent and 8 percent of sporadic ALS cases,792–795

and in 25 percent of familial frontotemporal
lobar degeneration, with about 7 percent in spo-
radic cases.793, 794 The clinical spectrum includes
patients with frontotemporal dementia and ALS
as well as those with a corticobasal syndrome.796

The real burden and likely involvement of prenatal
diagnosis is the recognition of C9orf72 expansions
noted in Western Europe as occurring in 18.52 per-
cent of familial cases and 6.26 percent in sporadic
cases of frontotemporal lobar degeneration.797

Overall frequencies of these expansions in Finland,
Sweden, and Spain were much higher, being 29.33
percent, 20.73 percent, and 25.49 percent, respec-
tively.797 A further distressing aspect of the C9orf72
expansion is the symptomatology that extends to
family members who do not have the expansion.
In a study of 1,414 first- and second-degree rel-
atives, a statistically significant number had an
increased risk of schizophrenia (hazard ratio of
4.9), late-onset psychosis, and suicide.798 There is
also evidence of anticipation.799

Preimplantation genetic testing (see Chapter 2)
has been successful for many repeat expansion
disorders including fragile X syndrome (see
Chapter 16), Huntington disease, myotonic mus-
cular dystrophy, and spinocerebellar ataxias types
2 and 12.800–802

Imprinting and uniparental disomy
All that is genetic is not necessarily Mendelian.
Developing gametes or early embryonic cells may
have genes deleted or silenced, with such pri-
mal events being of a single parent origin and
lifelong. Moreover, these occurrences may be a
consequence of an environmental (epigenetic)
factor or influence. Notwithstanding this epige-
netic phenomenon, the genomic change, termed
“imprinting,” is heritable with potentially serious
clinical implications. Epigenetics does not alter
DNA sequence, but it does alter its expression.

The expectation is that each pair of autosomes
have an equal matched allele from each parent.
Infrequently, a pair may be constituted by alle-
les from one parent, termed uniparental disomy
(UPD). If those two are chromosome 7 alleles
from one parent and harbor a mutation in the
CFTR gene, and the chromosome 7 from the other
parent is lost during meiosis, the offspring will have
autosomal recessive cystic fibrosis.803, 804 Multiple
different disorders are known to be a consequence
of UPD and influenced by parent of origin (see
Chapter 14).

Relatively rarely, with biparental alleles, one
gene (or a cluster) on one allele may be silenced
(imprinted). If it is the paternally only expressed
region on chromosome 15q, the consequence
would be Prader–Willi syndrome, and if it is the
maternally expressed UBE3A gene, Angelman
syndrome would be the consequence. Silencing
occurs through a process of DNA methylation.
The repressed allele is methylated; the functional
allele is unmethylated. Various assays are available
to determine methylation status.805, 806 Multilocus
imprinting may also occur, and result in a phe-
notypic spectrum.807 Accurate detection of UPD
can also be determined by whole-exome sequenc-
ing.808 Imprinted gene clusters are primarily found
on chromosomes 6, 7, 11, 14, 15, and 20.809

Recommendations made by the ACMG810 for
prenatal UPD testing include the following:
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• Multiple-cell pseudomosaicism or true mosaicism
for trisomy or monosomy of chromosomes 6, 7, 11,
14, 15, or 20 from amniocentesis or CVS.
• Multiple-cell pseudomosaicism or true mosaicism
for trisomy or monosomy of chromosomes 6, 7, 11,
14, 15, or 20 in CVS followed by normal karyotype
in amniocentesis.
• In the context of preimplantation genetic screen-
ing (PGS), a transfer of mosaic embryos with
trisomy or monosomy of chromosomes 6, 7, 11,
14, 15, or 20 should be followed by prenatal studies
including UPD testing.
• Prenatal imaging anomalies consistent with
a UPD phenotype. The classic example is the
pathognomonic coat-hanger sign in paternal
UPD14.
• Familial or de novo balanced Robertsonian
translocation or isochromosome involving chro-
mosome 14 or 15 based on CVS or amniocentesis.
Both familial and de novo translocations are
associated with an increased risk for UPD.
• De novo small supernumerary marker chromo-
some with no apparent euchromatic material in the
fetus.
• Non-Robertsonian translocation between an
imprinted chromosome with possible 3:1 disjunc-
tion that can lead to trisomy or monosomy rescue
or gamete complementation. Although every chro-
mosome abnormality that increases the occurrence
of nondisjunction in theory would increase the
risk of UPD of the chromosomes involved, there
are only very few cases reported.

Imprinting disorders are the results of abnormal
expression of imprinted genes at seven imprinted
domains on the six chromosomes noted above.
These disorders are due to different molecu-
lar changes that include copy number variation
(loss or gain), UPD, point mutation in the active
allele, an epimutation resulting in gain or loss
of DNA methylation at the imprinting control
region, a microdeletion or microduplication at
an imprinting control region interfering with
DNA methylation, and structural chromosome
rearrangements.811 Recurrence risks for imprint-
ing disorders vary according to the molecular
alteration. For example, copy number variations
or point mutations may occur de novo or come
from one parent, who may or may not be affected,
depending upon which grandparent transmitted
the mutant allele.811 For Angelman syndrome and

the Prader–Willi syndrome genetic alterations are
almost invariably de novo, resulting in extremely
low risks of recurrence. The expectation, however,
is a point mutation in the culprit UBE3A gene that
causes Angelman syndrome, with a recurrence rate
of 50 percent when inherited from an unaffected
mother. Fortunately, only about 1 percent of our
genes find expression from one or other parent.812

Multilocus imprinting disorders with mater-
nal effect genes (including NLRP2, NLRP7, and
PADI6) can affect oocytes and resulting offspring,
who may manifest with atypical imprinting disor-
ders.813, 814 Multilocus imprinting disturbance in
methylation may affect growth and development.
Epigenetic effects are evident in sperm, oocyte,
and zygote genomes.815, 816 It is no surprise then,
that mutations in NLRP genes may result in early
miscarriages, hydatidiform moles, and apparent
infertility.813 Most imprinted genes express in the
placenta, and loss of imprinting can affect placental
weight, fetal growth, and development,817–821 and
the regulation of placental hormones.821

Potential imprinting disturbances at the sperm,
oocyte, or zygote stages are associated with
ART and preimplantation procedures. Cogent
evidence exists of an increased incidence of
imprinting disorders following ART.822–828 In the
most extensive report to date, Hattori et al.822

in a nationwide study in Japan, reported on
931 patients with imprinting disorders. These
included 117 cases of Beckwith–Weidemann
syndrome, 67 with Silver–Russel syndrome, 520
with Prader–Willi syndrome, and 227 with Angel-
man syndrome. Most were conceived through
ART including intracytoplasmic sperm injec-
tion. They noted a 4.46- and 8.91-fold increased
frequency of Beckwith–Weidemann syndrome
and Silver–Russel syndrome respectively. Cortes-
sis et al.,828 in a meta-analysis of 23 studies on
ART and the occurrence of imprinting disorders,
reported significant odds ratios of 4.7 for Angel-
man syndrome, 5.8 for Beckwith–Weidemann
syndrome, 2.2 for Prader–Willi syndrome, and
11.3 for Silver–Russel syndrome.

Mutations in imprinted genes that occur after
fertilization can result in somatic mosaicism.829 An
interesting example is represented by discordant
monozygotic twins in which only one has the
disorder (Beckwith–Weidemann syndrome)830–832
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or Silver–Russel syndrome,829, 833 pointing to
epigenetic disturbances in early development.829

About 1.7 percent of births in the United States
result from ART.834 Although the frequency of
imprinting disorders is increased, the actual risks
are very low, but should be discussed.

Genotype–phenotype associations
DNA mutation analysis has slowly clarified
genotype–phenotype associations requiring exten-
sive databases and definitive phenotyping835, 836

(see Chapter 14). Notwithstanding this limitation,
mutation analysis does provide precise prenatal
diagnosis opportunities and detection of affected
fetuses even with compound heterozygosity. Simple
logic might have concluded that genotype at a sin-
gle locus might predict phenotype. For monogenic
disorders this is frequently not the case. Allelic
combinations of missense, nonsense, and com-
pound heterozygous mutations within different
genes could result in overlapping clinical pheno-
types as exemplified for the Kabuki syndrome and
Schinzel–Giedion syndrome.837 Now that clinical
diagnostic criteria have been established838 and
two genes (KMT2D and KDM6A) recognized,
syndrome identification has been facilitated.839

Additional novel pathogenic variants continue to
be discovered.840 It appears that hyperinsulinism,
long halluces, large central incisors, and hyper-
trichosis are more common in Kabuki syndrome
due to KDM6A mutations,841, 842 while the classic
Kabuki facial features and renal/palatal anomalies
are more commonly found with KMT2D muta-
tions.839, 843 In the autosomal dominant Marfan
syndrome (due to mutations in FBN1), family
members with the same mutation may have severe
ocular, cardiovascular, and skeletal abnormalities,
while siblings or other close affected relatives with
the same mutation may have mild effects in only
one of these systems.844 In Gaucher disease with
one of the common Ashkenazi Jewish mutations,
only about one-third of homozygotes have signif-
icant clinical disease.845 At least two-thirds have
mild or late-onset disease or remain asymptomatic
(see Chapter 21). Compound heterozygotes for this
disorder involving mutations p.L444P and p.N370S
have included a patient with mild disease first diag-
nosed at 73 years of age, while another requiring
enzyme replacement therapy was diagnosed at the
age of 4 years.846

In cystic fibrosis, a strong correlation exists
between genotype and pancreatic function but
only a weak association has been noted with
the respiratory phenotype847 (see Chapter 15).
Although individuals who are homozygous for
the common cystic fibrosis mutation (ΔF508) can
be anticipated to have classic cystic fibrosis, those
with the less common mutation (p.R117H) are
likely to have a milder disease.848 On occasion,
an individual who is homozygous for the “severe”
ΔF508 mutation might unexpectedly exhibit a mild
pancreatic-sufficient phenotype. Illustrating the
complexity of genotype–phenotype associations
is the instance noted by Dork et al.849 of a mildly
affected ΔF508 homozygote whose one chromo-
some 7 carried both the common ΔF508 mutations
and a cryptic p.R553Q mutation. Apparently, a sec-
ond mutation in the same region may modify the
effect of the common mutation, permitting some
function of the chloride channel850 and thereby
ameliorating the severity of the disease. Modify-
ing genes in cystic fibrosis are being increasingly
recognized851–853 (see Chapter 15).

The extensive mutational heterogeneity in
hemophilia A854–856 is related not only to variable
clinical severity but also to the increased likelihood
of antifactor VIII antibodies (inhibitors) develop-
ing. Miller et al.857 found about a fivefold higher
risk of inhibitors developing in hemophiliac males
with gene deletions compared with those with-
out deletions. In Netherton syndrome, a severe
autosomal recessive ichthyosis that affects skin,
hair, and immune system, upstream mutations
in the SPINK5 gene correlate with more severe
phenotypes.858

The many mutations and wide phenotypic range
seen in neurofibromatosis type 1 is well known,
and characterized by variable expressivity and
age-dependent clinical features. This variability
makes phenotype prediction difficult. Among
the few thousand constitutional variants in the
NF1 gene, recurrent pathogenic missense vari-
ants at p.Met1149, p.Arg1276 or p.Lys1423 have
been associated with a Noonan-like phenotype.859

Moreover, these authors also found that mutations
at p.Arg1276 was associated with spinal neurofi-
bromas, and that mutations at both p.Lys1423
and p.Arg1276 were associated with a high preva-
lence of cardiovascular abnormalities, including
pulmonic stenosis.
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Figure 1.3 Shown are the 16
pathogenic variants reported
in the ACTG2 gene and the
number of times each
mutation was observed in 45
probands.863

Chronic intestinal pseudo-obstruction (CIPO),
also known as megacystis–microcolon–intestinal–
hypoperistalsis syndrome, is a severe debilitat-
ing visceral myopathy involving enteric smooth
muscle.860–863 Mutations in the ACTG2 gene
account for about 44–50 percent of cases. We
noted in a whole-exome sequencing study a muta-
tional hotspot in the ACTG2 gene (Figure 1.3).863

We subsequently determined somatic ACTG2
mosaicism,864 further complicating genotype–
phenotype determination.

Japanese authors have assembled mutation data
for the NOTCH3 gene and recognized three muta-
tions as major contributors to the phenotype of
CADASIL.865 They also recognized gender differ-
ences in symptomatology (worse in males) that
included migraines, stroke, psychiatric problems,
cognitive impairments, and dementia. Although
CADASIL is mostly adult onset, we have provided
prenatal diagnosis for a family with an affected
young father, as noted earlier.

Given the history of a previously affected off-
spring with a genetic disorder, the preconception
visit serves as an ideal time to refocus on any puta-
tive diagnosis (or lack thereof), to check constantly
updated databases where prior alterations are or
are not considered pathogenic, and to perform
newly available mutation analyses when applicable.

Recognition of genotype–phenotype associa-
tions remains challenging for reasons that include
expressivity, penetrance, multiple causal genes,
modifier alleles, compound heterozygosity, locus
heterogeneity, interacting polymorphisms of
small effect, and digenic inheritance. For the vast

majority of monogenic disorders, even without
known epigenetic influence (such as epilepsy,
microcephaly, holoprosencephaly, hydrocephalus,
craniosynostosis), definitive genotype–phenotype
associations remain unknown.

Somatic mosaicism
We are all somatic postzygotic mosaics, either born
that way or later as a consequence of spontaneously
occurring mutations during our lifetimes. Using
single-cell whole-genome sequencing of B lym-
phocytes, Zhang et al.866 found that the number of
somatic mutations increases from <500 per cell in
newborns to >3,000 per cell in centenarians. These
dynamic changes involving other tissues as well,
are likely to be associated with cancer and aging,867

and many disorders (Table 1.8).
Somatic mosaicism has been described in almost

all autosomal dominant disorders. Tissue- or
organ-specific segmental mosaicism explains cer-
tain overgrowth syndromes exemplified by the
PIK3CA-associated developmental disorders that
result in focal overgrowth, brain overgrowth, or
capillary malformations with overgrowth.868–870

A remarkable example of focal growth due
to somatic mosaicism was the hyperinsulin-
ism noted in an infant without any signs of the
Beckwith–Wiedemann syndrome. Following
removal of 80 percent of the pancreas, atypical
histological features with enlarged hyperchro-
matic nuclei in islets were observed. Methylation
analysis, a chromosomal microarray, and short
tandem repeat markers led to a diagnosis of
mosaic segmental paternal uniparental disomy
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Table 1.8 Selected examples of monogenic disorders with established somatic mosaicism with DNA confirmation.

Disorder Gene Reference

Achondrogenesis type 2 COL2A1 885

Aicardi–Goutières syndrome TREX1 886

Alport syndrome COL4A5 887

Alzheimer disease, early-onset PS1 888

Androgen insensitivity AR 888

Atelostegenesis type I FLNB 889

Beta-propeller protein-associated neurodegeneration WDR45 890

Campomelic dysplasia SOX9 888

Catecholaminergic polymorphic ventricular tachycardia RYR2 891

Centronuclear myopathy DNM2 892

Charcot–Marie–Tooth disease type 1E PMP22 893

CHARGE syndrome CHD7 888

Chronic infantile neurologic, cutaneous, articular syndrome NLRP3 894, 895

Chronic intestinal pseudo-obstruction ACTG2 864

Cleidocranial dysplasia RUNX2 888

COL2A1 disorders COL2A1 896

Congenital central hypoventilation syndrome PHOX2B 897

Congenital contractural arachnodactyly FBN2 888

Congenital disorder of glycosylation SLC35A2 898

Congenital lipomatous overgrowth with vascular, epidermal

and skeletal anomalies

PIK3CA 899

Cornelia de Lange syndrome CdLS 900

Costello syndrome HRAS 901

Creutzfeldt–Jakob disease PRNP 902

Crouzon syndrome FGFR2 903

Duchenne muscular dystrophy DMD 888, 904

Ectrodactyly SHFM3 905

EEC (ectrodactyly, ectodermal dysplasia, and orofacial clefts) P63 888

Epidermal nervus, rhabdomyosarcoma, polycystic kidneys and

growth restriction

KRAS 906

Epidermolysis bullosa simplex KRTS 5 888

Epilepsy with mental retardation in females PCDH19 907, 908

Facial infiltrating lipomatosis PIK3CA 909

Familial polymicrogyria TUBA1A 910

Fanconi anemia FANCD2 911

Fascioscapular humeral muscular dystrophy D4Z4 888

Freeman–Sheldon syndrome TNNI2 912

Gardner syndrome APC 913

Hemi-megalencephaly PIK3CA 914

Hemophilia A and B F8 and F9 888

Hereditary hemorrhagic telangiectasia associated with

pulmonary arterial hypertension

ACVRL1 915

Hereditary nonpolyposis colon cancer (Lynch syndrome) MLH1 916

Hereditary spastic paraplegia SPG4 888

Hunter syndrome IDS 888

Hyper-IgE syndrome STAT3 917

Hypocalcemia CASR 888

Infantile spinal muscular atrophy SMN1 888

Intellectual disability GATAD2B 918

Isolated growth hormone deficiency GH1 919

(Continued)
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Table 1.8 (Continued)

Disorder Gene Reference

Juvenile myelomonocytic leukemia NRAS 920

Keratinocyte epidermal nevi RAS 921

Lesch–Nyhan syndrome HPRT1 888

Li–Fraumeni syndrome TP53 922

Loeys–Dietz syndrome TGFBR2 888

Lone atrial fibrillation Cx43 923

Maffuci syndrome IDHI 924

Marfan syndrome FBN1 888

McCune–Albright syndrome GNAS1 888

Metaphyseal chondromatosis with D-2-hydroxyglutaric

aciduria

IDH1 925

MYH9 disorders MYH9 888

Myoclonic epilepsy SCN1A 888

Myofibrillar myopathy BAG3 926

Myotonic dystrophy type 2 ZNF9 927

Nail–patella syndrome LMX1B 928

Neonatal diabetes KCNJ11 888

Neurofibromatosis type 1 (generalized and segmental) NF1 929

Neurofibromatosis type 2 NF2 930

Ohtahara syndrome STXBP1 931

Ollier disease IDHI 924

Ornithine transcarbamylase deficiency OTC 888

Osteochondromas EXT 932

Osteogenesis imperfecta II COL1A1, COL1A2 888

Osteopathia striata AMER1 933

Otopalatodigital syndrome FLNA 888

Paroxsysmal nocturnal hemoglobinuria PIGA 888

Phenylketonuria PAH 888

Pheochromocytomas and hemihyperplasia UPD 11p15 934

Pitt–Hopkins syndrome TCF4 935

Polycythemia–paraganglioma syndrome HIF2A 936

Progeria LMNA 937

Proteus syndrome AKT1 938

Pseudohypoparathyroidism type 1a GNAS 939

Pyruvate dehydrogenase complex disorder PDHA1 940

Retinitis pigmentosa RPGR 941

Retinoblastoma RB1 942

Rett syndrome in males MECP2 943

Rett syndrome, atypical CDKL5 944

Rubinstein–Taybi syndrome CREBBP 945, 946

Shprintzen–Goldberg syndrome SKI 947

Sotos syndrome NSD1 948

Spondyloperipheral dysplasia COL2A1 949

Stickler syndrome COL2A1 896

Subcortical band heterotopia and pachygyria LIS1 950

Testicular dysgenesis syndrome SRY 951

Thanatophoric dysplasia FGFR3 888

Timothy syndrome type 1 CACNA1C 952

Townes–Brock syndrome SALL1 888

Uniparental disomies – 953

(Continued)
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Table 1.8 (Continued)

Disorder Gene Reference

Von Hippel–Lindau VHL 888

Wiskott–Aldrich syndrome WASP 954

X-linked anhidrotic ectodermal dysplasia with

immunodeficiency

NEMO 955

X-linked chronic granulomatous disease CYBB 956

X-linked craniofrontonasal syndrome EFNB1 957

X-linked creatine deficiency SLC6A8 958

X-linked Danon disease LAMP2 959

X-linked dilated cardiomyopathy DMD 960

X-linked dyskeratosis congenita DKC1 888

X-linked focal dermal hypoplasia PORCN 961, 962

X-linked hypophosphatemia PHEX 888

X-linked incontinentia pigmenti NEMO 963

X-linked Menkes disease ATP7A 964

X-linked mental retardation ARX 888

X-linked osteopathia striata with cranial sclerosis and

developmental delay

WTX 965

X-linked periventricular nodular heterotopia FLNA 966

X-linked protoporphyria XLDPP 967

X-linked subcortical band heterotopia DCX 968

11p15.5-p15.1 in pancreatic tissue, but not in the
infant’s blood.871

Brain somatic mutations occurring during corti-
cal development may result in sporadic intractable
epilepsy.872 One study focused on the parents of
children with Dravet syndrome due to SCN1A
mutations.873 SCN1A mosaicism was found in 5.2
percent (30 out of 575) of families with affected
children. Discovery of an oncogene (e.g. RB1)
for retinoblastoma occurring in the absence of a
family history, will inevitably lead to examination
of the parents to determine recurrence risk. An
analysis using targeted deep sequencing of the par-
ents of 124 offspring with bilateral retinoblastoma
revealed only one parent with somatic mosaicism
for the deleterious RB1 mutation, a 0.4 percent risk
of recurrence.874

Over 700 genes are linked to neurodevelop-
mental disorders, some with epilepsy. Discovery
of a putative de novo mutation now invariably
leads to genomic evaluation of both parents in a
search for somatic mosaicism. Disorders in this
category include intellectual disability, epileptic
encephalopathies, cerebral cortical malformations,
and autism spectrum disorders.875, 876

In a study of 10,362 consecutive patients,
over 1 in 200 were shown to have somatic
mosaicism.877 In that study, mosaicism was
detected for aneuploidy, ring or marker chro-
mosomes, microdeletion/duplication copy number
variations, exonic copy number variations, and
unbalanced translocations. Examples include
hypomelanosis of Ito, other syndromes with patchy
pigmentary abnormalities of skin associated with
intellectual disability, and some patients with
asymmetric growth restriction.878, 879 Gonadal
mosaicism (see Chapter 14) should be distin-
guished from somatic cell mosaicism in which
there is also gonadal involvement. In such cases,
the patient with somatic cell mosaicism is likely
to have some signs, although possibly subtle, of
the disorder in question, while those with gonadal
mosaicism are not expected to show any signs of
the disorder. Current methodologies for clinical
and prenatal diagnosis invariably list detection
of very low degrees of mosaicism in a caveat that
accompanies the reports. Additional examples of
somatic and gonadal mosaicism include autosomal
dominant osteogenesis imperfecta,880, 881 Hunting-
ton disease,882 and spinocerebellar ataxia type 2.883

Lessons from these and the other examples quoted
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for gonadal mosaicism indicate a special need for
caution in genetic counseling for disorders that
appear to be sporadic (see Chapter 14).

Very careful examination of both parents for
subtle indicators of the disorder in question is
necessary, particularly in autosomal dominant and
sex-linked recessive conditions. The autosomal
dominant disorders are associated with 50 percent
risks of recurrence, while the sex-linked disorders
have 50 percent risk for males and 25 percent risk
for recurrence in families. Pure gonadal mosaicism
would likely yield risks considerably lower than
these figures, such as 4–8 percent for females with
gonadal mosaicism and X-linked DMD. A second
caution relating to counseling such patients with an
apparent sporadic disorder is the offer of prenatal
diagnosis (possibly limited) despite the inability to
demonstrate the affected status of the parent.

Chromosomal mosaicism is discussed in Chapter
11 but note can be taken here of a possibly rare
(and mostly undetected) autosomal trisomy. A his-
tory of subfertility with mostly mild dysmorphic
features and normal intelligence has been reported
in at least ten women with mosaic trisomy 18.884

Genetic counseling when the fetus is
affected
The fateful day when the anxious, waiting cou-
ple hears the grim news that their fetus has a
malformation or genetic disorder will live on in
their memories forever. Cognizance of this impact
should inform the thoughts, actions, and commu-
nications of the physician or counselor called on
to exercise consummate skill at such a poignant
time. Couples may have traveled the road of hope
and faith for many years, battling infertility only
to be confronted by the devastating reality of a
fetal anomaly. With hopes and dreams so suddenly
dashed, distress, doubt, anger, and denial surface
rapidly. The compassionate physician or counselor
will need to be fully armed with all the facts about
the defect or be ready to obtain an immediate
expert clinical genetics consultation for the couple.

Care should be taken in selecting a quiet,
comfortable, private location that is safe from
interruption. The language used should be clear
and without jargon. Attention to a patient’s cultural
background and possible need for an interpreter
is important. This is a communication not to
be rushed but characterized by sensitivity and

empathy. Informing a couple with bad news about
the fetus by telephone or email is unacceptable.
Arrangements for a follow-up visit and support
where needed is advisable. Ptacek and Eberhardt969

and others,970 in reviewing the literature, noted
consensus recommendations in breaking bad news
that included the aforegoing and sitting close
enough for eye contact without physical barriers.
Identifying a support person, if the partner can-
not/will not attend the consultation, is important
and knowledge of available resources is valuable.
All of the above points are preferences that have
been vocalized by parents receiving bad news
during pregnancy or about their infants.971

Almost all couples would have reached this
juncture through maternal serum screening, non-
invasive prenatal testing, an ultrasound or MRI
study, or amniocentesis/CVS for maternal age, for
established known carriers, because of a previously
affected child, being an affected parent, or having a
family history of a specified disorder. More recently,
prenatal diagnosis using whole-exome sequenc-
ing972 has led to the diagnosis of unexpected
genetic disorders, and in the process introduced
ethical issues and challenging quandaries.973, 974

Commonly, an anxious patient insists on a prena-
tal study. Physicians are advised not to dissuade
patients from prenatal diagnosis but rather to
inform them about the risks of fetal loss balanced
against the risk of fetal abnormality, distinctly
different from recommendations for accepted
indications. Given the low risks, prenatal diagnosis
can be offered to all couples (see Chapter 9).

Recognition of a fetal abnormality by imaging,
molecular, or cytogenetic study may reveal, for
the first time, the genetic disorder in an affected
asymptomatic parent. Robyr et al.975 described
20 such parents with disorders including spinal
muscular atrophy, DiGeorge syndrome, osteogen-
esis imperfecta, arthrogryposis, and Noonan-like
syndrome.

Frequently, second-trimester ultrasound studies
reveal fetal abnormalities of uncertain etiology
with a subsequent normal karyotype. A chromo-
somal microarray may enable a precise diagnosis
in 6–8.1 percent976, 977 (see Chapter 13). In a
legal case, sequential observations noted promi-
nent lateral cerebral ventricles, multiple thoracic
hemivertebrae, and intrauterine growth restriction.
Amniocyte chromosome studies were normal. The
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parents were not counseled about the potential for
intellectual disability despite no definitive diagno-
sis. The child was born with holoprosencephaly
with marked psychomotor delay. Diagnostic
uncertainty must be shared with parents at risk.
Uncertainty should not and cannot be suppressed
for the patient’s sake. Expressing uncertainty does
not imply ignorance or incompetence. An honest
accounting of the problems at hand, the offer of a
second opinion, and an empathetic approach all
go a long way in averting a catastrophic outcome
and aggravating litigation. Moreover, responsibility
shared is anxiety halved.

Decision making
The presence of both parents for the consultation
concerning possible elective abortion for a fetal
anomaly is critical in this situation. All the princi-
ples governing the delivery of genetic counseling
and discussed earlier apply when parents need to
decide whether or not to continue their pregnancy.
A brief explanation of some of the key issues fol-
lows, culled from over 50 years of experience in
this very subject.

Doubt and disbelief crowd the parental senses in
the face of such overwhelming anxiety. Was there
a sample mix up? How accurate is this diagnosis?
How competent is the laboratory? Have they made
errors in the past? How can we be certain that
there has been no communication failure? Is there
another couple with the same name? There are
endless questions and endless doubts. Each and
every one needs to be addressed carefully, slowly
and deliberately, with painstaking care to provide
the necessary assurance and reassurance. Needless
to say, the clinical geneticist or counselor must have
thoroughly checked all the logistics and potential
pitfalls before initiating this consultation. Errors
have indeed occurred in the past.184, 185

The central portion of the communication will
focus on the nature of the defect and the physician
or counselor providing the counseling should be
fully informed about the disorder, its anticipated
burden, the associated prognosis, life expectancy,
and the possible need for lifetime care. A clear
understanding of the potential for pain and suf-
fering is necessary, and an exploration concerning
the effect on both parents and their other children
is second only to a discussion about the potential
effects on the child who is born with the condition

in question. Any uncertainties related to diagnosis,
prognosis, pleiotropism, or heterogeneity should
emerge promptly. Questions related to possible
future pregnancies should be discussed, together
with recurrence risks and options for prenatal
diagnosis.

The question concerning a repeat prenatal study
is invariable, at least if not stated then certainly
in the mind of the parents. There are occasions
when a repeat test might be appropriate, especially
if there is a failure to reconcile cytogenetic or
molecular results with expected high-resolution
ultrasound observations. Maternal cell contamina-
tion (see Chapters 9, 11, and 14), while extremely
unlikely in almost all circumstances, requires
exclusion in some others. Some prenatal diagnoses
may not easily be interpretable and a phenotype
may not be predictable with certainty. A de novo
supernumerary chromosome fragment in the
prenatal cytogenetic analysis (see Chapter 11) or
a microdeletion or microduplication (see Chapter
13) are key examples. VOUS, especially in a gene
known to harbor pathogenic mutations, is unnerv-
ing. Where a VOUS is uninterpretable, decision
making reverts to the fetal anomaly seen or bio-
chemical abnormality observed. The sensitive
counselor should offer a second opinion to anxious
parents facing an uncertain prenatal diagnosis. The
“compleat physician” anticipates virtually all of the
patient’s questions, answers them before they are
asked, and raises all the issues without waiting for
either parent to vocalize them.

Occasionally, there are powerful disparate atti-
tudes to abortion between the spouses as discussed
earlier. Such differences would best be considered
during the preconception period, rather than for
the first time when faced with a serious fetal defect.
Resolution of this conflict is not the province
of the physician or counselor, nor should either
become arbitrator in this highly charged and very
personal dispute, in which religious belief and
matters of conscience may collide. The physician’s
or counselor’s duty is to ensure that all facts are
known and understood and that the pros and cons
of various possible scenarios are identified in an
impartial manner. A return appointment within
days should be arranged. Questions of paternity
have also suddenly emerged in this crisis period
and can then be settled, sometimes with painful
certainty.
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Elective abortion: decision and sequel
Among the greatest challenges clinical geneticists
and genetic counselors face is the consultation in
which the results of prenatal studies indicating a
serious fetal defect are communicated to parents
for the first time. These appointments must not
be rushed. It is important that the many variables
influencing parental decisions about pregnancy ter-
mination be recognized.978, 979 The quintessential
qualities a counselor will need include maturity,
experience, warmth and empathy, sensitivity,
knowledge, communication skill, and insight into
the psychology of human relationships, pregnancy,
and grieving. Personal experience with loss or
bereavement is likely to influence the emotional
guidance provided.980 Certainly there is a wealth
of literature suggesting inadequate preparation for
those who ultimately care for individuals facing
bereavement or death.980, 981 An in-depth under-
standing of the disability that the affected child and
parents could anticipate is of obvious importance.
The principles and prerequisites for counseling
discussed earlier apply fully in these circumstances
and the fact that this is a parental decision, not
a medical “recommendation,” should not need
reiteration.

Anticipatory counseling in these consultations
has been characterized by in-depth discussions of
two areas: first, all medical and scientific aspects
of the prenatal diagnosis made (and discussed ear-
lier), and second, recognition and vocalization of
emotional responses and reference to experiences
(preferably published) of other couples in like
circumstances when it was helpful. These sessions
have then included explorations concerning guilt,
a possible feeling of stigma (because of abortion),
anger, upset, family pressures, and how other cou-
ples have coped. All of this anticipatory counseling
should be tinctured with support and hope when
possible.

It is important that the many variables influ-
encing parental decisions about pregnancy
termination when faced with a serious disabil-
ity and/or life-threatening or limiting disorder or
anomaly be recognized and understood.979, 982–985

Parents will automatically bring their moral and
religious beliefs to bear on their decision making.
So too will their experience of disability and what
they had seen in families with affected children. A
mother’s age, prior periods of infertility, previous

miscarriages, a history of an elective abortion or
fetal abnormality, all factor into their decisions.
Fortunately, not common is the painful quandary
of uncertainty concerning severity of the prenatally
diagnosed genetic disorder. One example is the
mildly affected mother with a 22q11.2 deletion
informed about a conotruncal cardiac anomaly in
her fetus and uncertain future intellectual disabil-
ity, the risk for which approximates 30 percent,
further compounded by up to 30 percent risk of
developing schizophrenia in young adulthood,
and autism/autism-spectrum disorders in about 20
percent.986–991

Longing for and imagining becoming a par-
ent anew or again may also have been bolstered
by unexpected bonding that occurred when the
mother saw fetal features and/or movements on
obstetric ultrasound. A frequent expressed con-
cern is the effect a disabled child would have on
the family’s other child or children. Worse still,
would that child have the burden of caring for
the affected sibling after the death of the parents.
Would some stigma attach and eventually have an
effect on a potential marriage mate for their child
or children. Would they have to devote so much
time and energy to the needs of a disabled child
that it would result in relative neglect of their other
children. To what degree, if any, would there be
pain or suffering (including psychological) for the
affected child.

Perhaps not surprising is the influence of their
own parents and their belief in the couple’s ability
to parent a child with a serious disability. Eco-
nomic issues also loom large, depending upon
the pressures and circumstances of their lives. On
occasion, there is an unwillingness to continue
pregnancy when a partner has suffered from the
same later onset disorder. Marital ambiguity about
the abortion decision can dominate the process
and destroy a relationship. Any argument should
be relegated to the couple’s home, with a request to
return when a decision has been made.

The importance of continuing follow-up visits
with couples who have terminated pregnancy for
fetal defects cannot be overemphasized. In an
important study on the psychosocial sequelae in
such cases, White-van Mourik et al.992 showed
the long-range effects. Displays of emotional
and somatic symptoms 1–2 years after abortion
were not rare and included partners. Although
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some couples grew closer in their relationships,
separations, especially because of failed commu-
nication, increased irritability, and intolerance,
were noted in 12 percent of the 84 patients stud-
ied.993 Marital discord in these circumstances has
been noted previously.993, 994 At least 50 percent
of couples admitted to having problems in their
sexual relationship. In addition, many couples
indicated changed behavior toward their existing
children, including overprotectiveness, anxiety,
irritability, and subsequent guilt and indifference
(Table 1.9).992 Women with secondary infertil-
ity and those younger than 21 years of age (or
immature women) had the most prolonged emo-
tional, physical, and social difficulties.992 After
a loss of a child, with or without an anomaly,
between 10 and 25 percent of distressed parents
have disturbed emotional stability and adverse
mental and physical health effects.995 Anticipated

grief experienced by mothers, especially those
faced with a third-trimester diagnosis of a lethal
fetal abnormality, requires psychological help with
preparedness. Empathy and sensitivity are critical
at these intensely painful times and mature coun-
seling and nonjudgmental support are vital to help
parents cope.

Grief counseling becomes part of the consul-
tation after elective termination, in which full
recognition of bereavement is necessary (see
Chapter 33). Compassion fatigue, characterized
as feeling overwhelmed by experiencing patients’
suffering,996 mainly in cancer genetic counseling,
is not likely to be an issue in prenatal genetic
counseling. The psychology of mourning has been
thoroughly explored997–999 (see Chapter 33). Wor-
den emphasized how important it is for a bereaved
individual to complete each of four stages in the
mourning process:998

Table 1.9 The frequency of emotions and somatic symptoms of 84 women and 68 men:
overall and 24 months after terminating a pregnancy for fetal abnormality.

Overall 24 months after termination

Women (%) Men (%) Women (%) Men (%)

Feeling

Sadness 95 85 60 47

Depression 79 47 12 6

Anger 78 33 27 7

Fear 77 37 46 17

Guilt 68 22 33 7

Failure 61 26 24 14

Shame 40 9 18 4

Vulnerability 35 0 18 0

Relief 30 32 16 16

Isolation 27 20 11 6

Numbness 23 0 0 0

Panic spells 20 0 5 0

Withdrawal 0 32 0 13

Left out 0 12 0 0

Somatic symptom

Crying 82 50 22 5

Irritable 67 38 19 3

No concentration 57 41 7 1

Listlessness 56 17 2 0

Sleeplessness 47 19 2 1

Tiredness 42 21 6 3

Loss of appetite 31 10 0 0

Nightmares 24 7 5 0

Palpitations 17 - 6 0

Headaches 9 8 2 0

Source: White-van Mourik et al. 1992.992 Rproduced with permission of John Wiley and Sons.
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1. Acceptance of the loss.
2. Resolving the pain of grieving.
3. Adjusting to life without the expected child.
4. Placing the loss in perspective.

The importance of allowing parents the option of
holding the fetus (or later, the child), when appro-
priate, is well recognized.1000, 1001 These authors
have also called attention to the complex tasks
of mourning for a woman who is faced with one
abnormal twin when pregnancy reduction or birth
might occur.

Notwithstanding anticipated loss and grief,
Seller et al.,1001 reflecting our own experience,
emphasized that many couples recover from
the trauma of fetal loss “surprisingly quickly.”
Insinuation of this reality is helpful to couples in
consultations both before and after elective termi-
nation. Moreover, couples’ orientation toward the
grieving process achieves an important balance
when they gain sufficient insight into the long-term
emotional, physical, economic, and social conse-
quences they might have needed to contemplate if
prenatal diagnosis had not been available.

Testing the other children
Invariably, parents faced with the news of their
affected fetus question the need to test their other
children. Answers in the affirmative are appropriate
when diagnosis of a disorder is possible. Carrier
detection tests, however, need careful consideration
and are most appropriately postponed until the late
teens, when genetic counseling should be offered.
Given the complex dilemmas and far-reaching
implications of testing asymptomatic children for
disorders that may manifest many years later, par-
ents would best be advised to delay consideration
of such decisions while in the midst of dealing
with an existing fetal defect. In later consultations,
the thorny territory of predictive genetic testing
of children can be reviewed at length.1002–1005

Fanos1002 emphasized that testing adolescents
“may alter the achievement of developmental tasks,
including seeking freedom from parental figures,
establishment of personal identity, handling of
sexual energies and remodeling of former ideal-
izations of self and others.” Fanos also emphasized
that parental bonding may be compromised by
genetic testing when the child’s genetic health is
questionable. Parents may react to the possible
loss or impairment of a child by developing an

emotional distance, recognized as the vulnerable
child syndrome.1006 Other aspects, including inter-
ference with the normal development of a child’s
self-concept, introduce issues of survivor guilt or
increase levels of anxiety already initiated by family
illnesses or loss.1006 Predictive testing of children
for later manifesting neurodegenerative or other
disorders would rarely be recommended, except in
circumstances in which early diagnosis could offer
preventive or therapeutic benefit.

Perinatal genetic counseling

A similar spectrum of issues and concerns is faced
after the detection and delivery of a child with a
genetic disorder or an anomaly. Pregnancy with
a defective fetus may have been continued from
the first or second trimester or a diagnosis may be
made in the third trimester or at the delivery of a
living or stillborn child. The principles and pre-
requisites for genetic counseling discussed earlier
apply equally in all these circumstances.1007 Special
attention should be focused on assuaging aspects
of guilt and shame (see Chapter 33). Difficult as it
may be for some physicians,1008, 1009 close rapport,
patient visitation, and sincerity are necessary at
these times, even when faced with commonly
experienced anger. A misstep by the physician
in these circumstances in failing to continue (it
is to be hoped) the rapport already established
during pregnancy care provides the spark that fuels
litigation.184

The rate of stillbirth in the United States in 2013
was 5.96/1,000 livebirths, occurring in 1 in 160
deliveries,1010 with about 23,600 cases ≥20 weeks
of gestation. For twin pregnancies, the rate is about
2.5 times higher. Chromosomal abnormalities
occur in 6–13 percent of stillbirths,1011–1013 but is
greater than 20 percent in those with malforma-
tions. The risk of recurrence following unexplained
stillbirth is between 2.5 and 4.18 percent.1010 In
comparison, stillbirth rates in 2010–2016 in Pak-
istan were 56.9/1,000 births, 25.3/1,000 in India,
21.3/1,000 in Zambia and Kenya, and 19.9/1,000
in Guatemala.1014 Using whole-exome sequencing
in 246 stillbirths, 15 (6.1 percent) had a molecular
diagnosis in one report.1015 The genetic cause of
most stillbirths remains unknown. Women with
a history of stillbirth have an increased risk of
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long-term chronic kidney disease and end-stage
renal disease.1016

Despite anger, grief, and the gamut of expected
emotions, the attending physician (not an inexpe-
rienced healthcare provider) should take care to
urge an autopsy when appropriate. Diagnosis of
certain disorders (e.g. congenital nephrosis) can be
made by promptly collected and appropriately pre-
pared tissue, and by subsequent DNA studies (see
Chapter 10) including whole-exome sequencing
(see Chapter 14). In circumstances in which par-
ents steadfastly withhold permission for autopsy,
radiographs, MRI, computed tomography, and
needle liver biopsy for DNA could provide impor-
tant information when a precise diagnosis has yet
to be made.1017–1019 In most stillbirths, the cause(s)
is not determined. In the long QT syndrome, which
has rarely been diagnosed in utero,1020 and which
we have diagnosed in the first month of life,1021

affected mothers have an increased risk of fetal
death, not only due to an arrhythmia, but also to
putative placental or myometrial dysfunction.1022

Moreover, stillbirth at ≥23 weeks of gestation in
these mothers is associated with an increased risk
of severe maternal morbidity, especially among
those with comorbidities.1023 MRI could provide a
useful acceptable alternative when fetal anomalies
are expected.1017 The autopsy is the last opportunity
parents will have to determine causation, which
may ultimately be critical in their future childbear-
ing plans and also for their previous children. A
formal protocol for evaluating the cause of stillbirth
or perinatal death is important (Box 1.3) to secure a
definitive diagnosis, thereby laying the foundation
for providing accurate recurrence risks and future
precise prenatal diagnosis. In the emotional chaos
that invariably follows stillbirth, necessary actions
may be forgotten. An action checklist (Box 1.4)
serves to orient the process. In addition, in the
face of known or suspected genetic disorders in
which mutation analysis now or in the future may
be critical, care should be taken to obtain tissue
for DNA banking or for establishing a cell line.
Later, parents may return and seriously question
the failure of the physician to secure tissues or
DNA that would have been so meaningful in future
planning (e.g. X-linked intellectual disability).

Psychologic support is important for couples
who have lost an offspring from any cause – a
situation compounded by fetal or congenital

abnormality.1024, 1025 The birth (or prenatal detec-
tion) of twins discordant for a chromosomal
disorder is not rare, given the increased frequency
of multiple pregnancy associated with advanced
maternal age and the use of assisted reproductive
techniques. Pregnancy reduction1026 (see Chapter
32), or the death of one twin, or delivery of both,
evokes severely conflicting emotions that may well
affect the mother’s care for the surviving child.1027

Considerable psychologic skill must be marshaled
by physicians if meaningful care and support are to
be provided.1028

Supporting telephone calls from doctor and staff,
and encouragement to attend appointments every
6 weeks, or more frequently when appropriate,
are often appreciated by patients. Review of the
autopsy report and discussion with reiterative
counseling should be expected of all physicians.
Frequently, parents receive an autopsy report by
mail without further opportunity for explanation
and discussion. In one study, 27 percent failed
to receive autopsy results.1029 Providing contact
with support groups whose focus is the disorder
in question is also valuable. In the United States,
the vast majority of these groups have combined
to form the Alliance of Genetic Support Groups,
which acts as a central clearinghouse and referral
center.

Family matters
Beyond all the “medical” steps taken in the wake
of stillbirth or perinatal death due to fetal defects
are critical matters important to the family and
its future. Active, mature, and informed manage-
ment is necessary in these difficult and frequently
poignant situations. Regardless of the cause of the
child’s defect(s), maternal guilt is almost invariable
and sometimes profound. Recognition of a defini-
tive cause unrelated to a maternal origin should be
explained in early discussions and reiterated later.
For autosomal recessive disorders or with even
more problematic X-linked disorders, maternal
“culpability” is real and not easily assuaged. The
fact that we all carry harmful genes, some of which
we may have directly inherited, while others may
have undergone mutation, will need in-depth
discussion. Mostly, it is possible and important to
reassure mothers that the outcome was not due to
something they did wrong. Where the converse is
true, much effort will be needed for management of
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Box 1.3 Elements of a stillbirth evaluation

Key components Details Comments

Patient history Family history
• Recurrent spontaneous abortions
• Stillbirths
• Monogenic disorder(s)
• Congenital malformations or syndromes
• Chromosomal disorders
• Ethnicity
• Consanguinity
• Neurodevelopmental delay

Maternal history:
• Previous venous thromboembolism
• Diabetes mellitus
• Chronic hypertension
• Thrombophilia
• Systemic lupus erythematosus
• Autoimmune disease
• Epilepsy
• Severe anemia
• Heart disease
• Tobacco, alcohol, drug or medication use

Obstetric history:
• Recurrent miscarriages
• Previous child with congenital malformation, syndrome or genetic

disorder
• Previous child with intrauterine growth restriction
• Previous gestational hypertension or preeclampsia
• Previous gestational diabetes mellitus
• Previous placental abruption
• Previous fetal demise

Current pregnancy:
• Maternal age
• Paternal age
• Gestational age at stillbirth
• Medical conditions complicating pregnancy
• Cholestasis
• Pregnancy weight gain and body mass index
• Complications of multifetal gestation, such as twin–twin

transfusion syndrome, twin reversed arterial perfusion syndrome,
and discordant growth

• Placental abruption
• Abdominal trauma
• Preterm labor or rupture of membranes
• Gestational age at onset of prenatal care
• Intrauterine growth restriction
• Abnormalities seen on an ultrasound image
• Infections or chorioamnionitis
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Box 1.3 Continued

Key components Details Comments

Fetal autopsy If patient declines, external evaluation by a trained perinatal
pathologist. Other options include photographs, X-ray
imaging, ultrasonography, magnetic resonance imaging,
and sampling of tissues, such as blood or skin.

Freeze tissue for future DNA study

If macerated tissue, request permission for needle biopsy
of liver for DNA study

Provides important information in
approximately 30% of cases

Placental examination Includes evaluation for signs of viral or bacterial infection.
Discuss available tests with pathologist

Provides additional

information in 30% of

cases. Infection is more

common in preterm

stillbirth (19 vs. 2% at term)

Fetal karyotype/
microarray

Amniocentesis before delivery provides the greatest yield.
Umbilical cord proximal to placenta if amniocentesis
declined

Whole-exome or whole-genome sequencing/from frozen
tissue or needle biopsy

Abnormalities found in
approximately 8% of cases

Maternal evaluation
at time of demise

• Fetal–maternal hemorrhage screen: Kleihauer–Betke test
or flow cytometry for fetal cells in maternal circulation

• Syphilis
• Lupus anticoagulant
• Anticardiolipin antibodies
• β2 glycoprotein antibodies

Routine testing for inherited
thrombophilias is not
recommended. Consider in cases
with a personal or family history of
thromboembolic disease

In selected cases Indirect Coombs If not performed previously in
pregnancy

Glucose screening (oral glucose tolerance test,
hemoglobin A1C)

In the large-for-gestational-age baby

Toxicology screen In cases of placental abruption or
when drug use is suspected

Source: Modified from American College of Obstetricians and Gynecologists, Society for Maternal-Fetal Medicine.1010

guilt1030 and shame, and for planning actions that
promise a better future with ways to avert another
adverse outcome.

Attention to details that have a very important
role in the mourning process (see Box 1.4 checklist)
include ensuring that the child be given a name
and, in the case of the death of an abnormal fetus
in the third trimester, that the parents’ wishes for
a marked grave be determined. As noted earlier,
most caretakers feel that parents are helped by both

seeing and holding the baby.1000, 1001, 1031 Although
some may experience initial revulsion when the
subject is mentioned, gentle coaxing and expla-
nations about the experiences of other couples
may help grieving parents. Even with badly dis-
figured offspring, it is possible for parents to
cradle a mostly covered baby whose normal parts,
such as hands and feet, can be held. Important
mementos that parents should be offered are pho-
tographs,1032 a lock of hair, the baby’s name band
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Box 1.4 Action checklist following stillbirth

DATE OF BIRTH

ATTENDING PHYSICIAN

PARENTAL OPTIONS

Infant viewing

Infant holding

Naming of infant

Photographs

Autopsy permission (signature)

Genetic studies

Burial

Cremation

Family members allowed to visit/hold

Religious rites

Lock of baby’s hair

Tissue for DNA Study obtained and frozen

BABY:

Bathed

Death certificate

MRI of brain

(if autopsy decline)

Memory envelop given (baby items)

Grief packed with references given

Grief counseling referral

Genetic counseling referral

Follow up consultation (and to discuss autopsy results)

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

HOSPITAL DISCHARGE:

Nurse Completing Form: Name Signature Date

Weight Length

Dressed Footprints Photos Parents viewed

Declined

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No

No

N/A

Name:

No

No

PARENTAL DECISIONS COMMENTS

NAME OF CLERGY

MET WITH PHYSICIAN

FAMILY PRIVACY SECURED CARD ON DOOR PHYSICIAN CALLED FAMILY

NURSE IN CHARGE

PHONE#

PHONE#

or clothing.1027, 1028 Ultimately, these concrete
emblems of the baby’s existence assist parents
in the mourning process, although the desper-
ate emptiness that mothers especially feel is not
easily remedied.1033 Photos may also be help-
ful in providing comfort for other children and
for grandparents. Parents will also vary in their
choice of traditional or small, private funerals.

Physicians should ensure that parents have the time
to make these various decisions and assist by keep-
ing the child in the ward for some hours when nec-
essary.

Both parents should be encouraged to return
for continuing consultations during the mourning
period.1034 Follow-up contact after pregnancy
has ended includes calls, condolences cards,
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and recommendation for further bereavement
counseling. This appointment will also enable
further discussion about causation, future risks,
and options, as well as coping strategies. Parents
confirm that anxiety blocks the assimilation and
comprehension of facts and recommendations.
Vocalizing the realization is helpful while repeating
information provided previously. Mourning may
run its course for 6–24 months. These consulta-
tions will serve to explore aspects of depression,
guilt, anger, denial, possible marital discord, and
physical symptoms such as frigidity or impotence.
Impulsive decisions for sterilization should be dis-
couraged in the face of overwhelming grief. Advice
should be given about safe, reliable, and relatively
long-term contraception.1035 Similarly, parents
should be fully informed about the consequences
of having a “replacement child” very soon after
their loss.1036, 1037 That child may well become a
continuing vehicle of grief for the parents, who
may then become overanxious and overprotective.
Subsequently, they may bedevil the future of the
replacement child with constant references to the
lost baby, creating a fantasy image of perfection
that the replacement child could never fulfill. Such
a child may well have trouble establishing his or
her own identity.

The surviving children
Distraught parents frequently seek advice about
how to tell their other children. Responses should
be tailored to the age of the child in question, to
the child’s level of understanding, and against a
background of the religious and cultural beliefs
of the family. A key principle to appreciate is that
having reached the stage of cognizance regard-
ing the loss, a child needs and seeks personal
security. Hence, the parents’ attention should be
focused on love, warmth, and repetitive reassur-
ance, especially about (possibly) unstated feelings
of previous wrongdoing and personal culpability.
Advice about grieving together instead of being
and feeling overwhelmed in front of their children
is also helpful. Focusing on the children’s thoughts
and activities is beneficial rather than lapsing into
a state of emotional paralysis, which can only
serve to aggravate the family’s psychodynamics
adversely.

The efficacy of genetic
counseling

Genetic counseling is a communication process
that aims to achieve as complete an understanding
by the counselee(s) as possible, thereby enabling
nondirective rational decision making. Studies
examining the efficacy of genetic counseling in
various settings and using different modalities (e.g.
telephone versus in-person) and self-efficacy of
genetic counselors and students continue.1038–1041

Anxiety, distress, uncertainty, guilt, decisional
conflict, and a deficient knowledge of science,
together with difficulty in understanding a balance
of risks, influence the ultimate efficacy of genetic
counseling. Parental decisions to have additional
affected progeny should not be viewed as a failure
of genetic counseling. Although the physician’s
goal is the prevention of genetic disease, the ori-
entation of the prospective parents may be quite
different. A fully informed couple, both of whom
had achondroplasia, requested prenatal diagno-
sis with the expressed goal of aborting a normal
unaffected fetus so as to be able to raise a child like
themselves. Would this be construed as a failure in
genetic counseling? Would continued pregnancy
with an anencephalic fetus after genetic counseling
be considered a failure of genetic counseling?

Clarke et al.1042 considered three prime facets
that could possibly evaluate the efficacy of genetic
counseling: (i) recall of risk figures and other
relevant information by the counselee(s); (ii) the
effect on reproductive planning; and (iii) actual
reproductive behavior. Their conclusions, reflect-
ing a Western consensus, were that there are too
many subjective and variable factors involved
in the recall of risk figures and other genetic
counseling information to provide any adequate
measure of efficacy. Further, assessing reproductive
intentions may prejudge the service the counse-
lee wishes as well as the fact that there are too
many confounding factors that have an impact on
reproductive planning. Moreover, how many years
after counseling would be required to assess the
impact on reproductive planning? They regarded
evaluation of reproductive plans as “a poor proxy
for reproductive behavior.” In dispensing with
assessments of actual reproductive behavior in the
face of counseling about such risks, they pointed
to the complex set of social and other factors
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that confound the use of this item as an outcome
measure. They did, however, recommend that
efficacy be assessed against the background goals
of genetic counseling aimed at evaluation of the
understanding of the counselee(s) of their own
particular risks and options. A questionnaire study
from the Netherlands questioned 1,479 counse-
lees about their experience of genetic counseling.
Questionnaires were administered before and after
counseling and for the third time after results were
disclosed.1043 They noted improvement in the level
of empowerment, personal control, and anxiety
after the whole process.

Evaluation of the efficacy of genetic counseling
should not only include the degree of knowledge
acquired (including the retention of the counse-
lee(s) with regard to the indicated probabilities),
the rationality of decision making (especially
concerning further reproduction), but also the
potential personal influences outlined in the
Netherlands’ study. Frequent contraceptive failures
in high-risk families highlight the need for very
explicit counseling. A further measure of efficacy
is the frequency and accuracy of a proband’s com-
munication of important risk information to close
relatives. It appears that communication of test
results may be selective, with male relatives and
parents less likely to be informed.1044

Important points made by Emery et al.1045 in
their prospective study of 200 counselors, included
the demonstrated need for follow-up after coun-
seling, especially when it is suspected that the
comprehension of the counselee(s) is not good.
This seemed particularly important in chromoso-
mal and X-linked recessive disorders. They noted
that the proportion deterred from having children
increased with time and that more than one-third
of their patients opted for sterilization within 2
years of counseling.

A number of studies1045–1048 document the
failure of comprehension by the counselee(s).
Such failures are increasingly likely with genome
sequencing resulting in secondary findings and
revelations of unknown significance.1048 The
reports do not reflect objective measures of the
skill or adequacy of genetic counseling and the real
value of a summary letter to the patient of the
information provided after the counseling visit.
Sorenson et al.1049 prospectively studied 2,220
counselees who were seen by 205 professionals in

47 clinics located in 25 states and the District of
Columbia. They gathered information not only
on the counselees but also on the counselors and
the clinics in which genetic counseling was pro-
vided. They, too, documented that 53 percent of
counselees did not comprehend their risks later,
while 40 percent of the counselees given a specific
diagnosis did not appear to know it after their
counseling. They thoroughly explored the multiple
and complex issues that potentially contributed
to the obvious educational failure that they (and
others) have observed. In another study of parents
with a Down syndrome child, Swerts1050 noted that
of those who had genetic counseling, 45 percent
recalled recurrence risks accurately, 21 percent
were incorrect, and 34 percent did not remember
their risks.

In considering the effectiveness of genetic coun-
seling, Sorenson et al.1049 summarized the essence
of their conclusion:

In many respects, an overall assessment of the
effectiveness of counseling, at least the counseling
we assessed in this study, is confronted with the
problem of whether the glass is half full or half
empty. That is, about half of the clients who could
have learned their risk did but about half did not.
And, over half of the clients who could have learned
their diagnosis did but the remainder did not. In
a similar vein, clients report that just over half of
their genetic medical questions and concerns were
discussed, but about half were not. The picture
for socio-medical concerns and questions was
markedly worse, however. And, reproductively, just
over half of those coming to counseling to obtain
information to use in making their reproductive
plans reported counseling influenced these plans,
but about half did not. Any overall assessment must
point to the fact that counseling has been effective
for many clients, but ineffective for an almost equal
number.

A critical analysis of the literature by Kessler1051

concluded that published studies on reproductive
outcome after genetic counseling revealed no major
impact of counseling. Moreover, decisions made
before counseling largely determined reproduction
after counseling.

A study of patients’ expectations of genetic
counseling revealed that the majority had their
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expectations fulfilled, especially with perceived
personal control.1052 When patients’ expectations
for reassurance and advice were met, they were
subsequently less concerned and had less anxiety
when compared with such expectations that were
not fulfilled, similar to the Netherlands report.1043

The limited efficacy of genetic counseling
revealed in the study by Sorenson et al.1049 reflects
the consequences of multiple factors, not the least
of which were a poor lay understanding of sci-
ence.1036 Efficacy, of course, is not solely related to
counselee satisfaction. Efforts to educate the public
about the importance of genetics in their personal
lives have been made by one of us in a series of

books (one translated into nine languages) over
50 years.184, 331, 335, 337, 338, 1053 In addition to public
education and its concomitant effect of educating
physicians generally, formal specialist certification
in the United States, Canada, the United Kingdom,
and elsewhere, acceptance of clinical genetics as a
specialty, and degree programs for genetic coun-
selors certified by the National Board of Genetic
Counselors, has undoubtedly improved the efficacy
of genetic counseling. There remains, however, a
pressing need to better educate practicing physi-
cians about the “new genetics”184, 185, 199, 1054, 1055 in
this, the golden era of human genetics.
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Preimplantation genetic testing (PGT1) is a
practical option for couples at risk of having
offspring with serious/fatal chromosomal or
monogenic diseases. It has been used for up to
600 monogenic disorders (PGT-M1). Moreover,
it has been used for human leukocyte antigen
(HLA) typing (PGT-HLA1), enabling the births
of many children whose matched bone marrows
have proved life-saving for siblings with congen-
ital and acquired disorders requiring stem cell
transplantation treatment.

Analysis of single cells or a few cells with a lim-
ited amount of available DNA has always presented
a technical challenge, especially when PGT is faced
with the need for accurate and rapid results from
whole-genome amplification (WGA), followed by
polymerase chain reaction (PCR) assays that are
robust and sensitive. Next-generation sequencing
(NGS) has allowed for accurate identification and
transfer of euploid embryos (PGT for aneuploidies
(PGT-A)1).

PGT-M was initially applied for the same indi-
cations as prenatal diagnosis,2–4 but was then
expanded to conditions that had never been con-
sidered, such as late-onset diseases with genetic
predisposition and preimplantation HLA typing
with or without testing for genetic disorders.5–7

PGT represents a natural evolution of the genetic
disease prevention technology, from a period with
limited genetic counseling and no prenatal diag-
nosis or treatment to a time when many options,
including PGT, have become available.8 Further-
more, PGT has been applied in order to improve

access to the new treatment methods for some
severe conditions by stem cell transplantation,
for which no traditional treatment approaches
are available. The impact of PGT and stem cell
treatment on existing policies for the prevention
of genetic disease (see Chapter 36) is clear from
the increasing use of PGT to avoid unnecessary
termination of many wanted pregnancies and for
preimplantation HLA typing.

Approaches to preimplantation
genetic testing

When prenatal genetic diagnosis was first con-
sidered in perspective, in 1984, the World Health
Organization (WHO) emphasized the relevance of
developing earlier approaches for genetic analysis
with the possibility of diagnosis before implanta-
tion.9, 10 The following possibilities for PGT were
mentioned: genetic analysis of the first or second
polar bodies and embryo biopsy at the cleavage or
blastocyst stage.10, 11 However, these approaches
became possible only after introduction of the PCR
assay12 and success in micromanipulation and
embryo biopsy.

First attempts at PGT were undertaken in mam-
malian embryos over 30 years ago,13–18 when it
was demonstrated that cells could be removed
from mammalian preimplantation embryos and
analyzed successfully without destroying the via-
bility of the embryo in in vitro fertilization (IVF).
PGT for human genetic disease was first demon-
strated by Handyside et al.19 for X-linked diseases
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and by Verlinsky et al.20 for autosomal recessive
disorders. Tens of thousands of children without
detectable birth defects have been born following
these procedures,21–25 demonstrating that PGT
can be performed safely in humans. Initially, PGT
was based on polar body sampling and embryo
biopsy at the cleavage stage, but the present stan-
dard shifted to blastocyst biopsy. The polar body
approach is still, however, the only possibility for
the ethnic groups where no embryos micromanip-
ulation is allowed. The Preimplantation Genetic
Diagnosis International Society (PGDIS) and the
European Society of Human Reproduction and
Embryology (ESHRE) Consortium have published
an extensive set of best practice guidelines for
PGT.26, 27 These recommendations cover PGT
organization, genetic and treatment-related coun-
seling, psychologic evaluation, patient selection, all
applicable technical issues, and quality control. The
developments of preconception and PGT and the
existing problems in the application of these early
approaches to clinical practice are presented in this
chapter, based on our 30 years’ experience of over
22,000 PGT cycles, including 15,700 PGT-A, 491
PGT-HLA, and 6,778 PGT-M, involving a spec-
trum of, approximately, 600 different monogenic
conditions (Table 2.1).

Polar body-based preimplantation
genetic testing
The biopsy of gametes opened an intriguing pos-
sibility of preconception diagnosis of inherited
diseases, because genetic analysis of biopsied
gamete material made it realistic to select gametes
containing an unaffected allele for fertilization and
subsequent transfer.28 In this way, not only was
the selective abortion of an affected fetus avoided
but also fertilization involving affected gametes,
as an option for couples at risk of conceiving a
genetically abnormal fetus.

Although preconception genetic testing could
be achieved by genotyping either oocytes or
sperm, the latter approach is still not realistic.
Development of methods for culture of primary
spermatocytes and spermatogonia followed by
genetic analysis of matured spermatides is theoret-
ically possible, but this still remains a subject for
future research, such as in the framework of the
current attempts at haploidization.29, 30 The tech-
nique of sperm duplication has been introduced,

which may allow testing of the sperm duplicate.
However, errors may arise in the reduplication pro-
cedure, making the technique of sperm duplication
inapplicable for clinical practice.31, 32

The only approach for preconception diagnosis
at present, therefore, is genotyping oocytes by
biopsy and subsequent genetic analysis of polar
bodies. The first attempt to obtain oocyte kary-
otypes was undertaken in the mouse model by
testing the second polar body in the early 1980s,
but the technique required much improvement
to be considered for clinical application.33 Polar
bodies were then used to test the possibility of
amplification of β-globin sequences, again in the
mouse model.34 The first clinical application of the
polar body approach was introduced in 1990.20 It
was demonstrated that, in the absence of crossover,
the first polar body will be homozygous for the
allele not contained in the oocyte and second polar
body. However, the first polar body approach will
not predict the eventual genotype of the oocytes
if crossover occurs, because the primary oocyte
in this case will be heterozygous for the abnormal
gene. The frequency of crossover varies with the
distance between the locus and the centromere,
approaching as much as 50 percent for telomeric
genes, for which the first polar body approach
would be of only limited value, unless the oocytes
can be tested further (Figure 2.1). Therefore, the
second polar body analysis is required to detect
hemizygous normal oocytes resulting after the
second meiotic division. In fact, the accumulated
experience shows that the most accurate diagnosis
can be achieved in cases where the first polar body
is heterozygous, so the detection of the normal
or mutant gene in the second polar body predicts
the opposite mutant or normal genotype of the
resulting maternal contribution to the embryo after
fertilization.4

To study a possible detrimental effect of the pro-
cedure, micromanipulated oocytes were followed
and evaluated at different stages of develop-
ment.3, 4, 35 The absence of any deleterious effect of
polar body removal on fertilization, preimplanta-
tion, and, possibly, postimplantation development
made it possible to consider the polar body
approach as a nondestructive test for genotyping
the oocytes before fertilization and implantation.
In another study, to assess the effect of the sec-
ond polar body sampling on the viability and



Table 2.1 List of conditions for which preimplantation genetic testing (PGT) was performed and PGT-M outcome: 30 years of original experience.

Conditions Gene

Type of

inheritance

No.

patients

No.

cycles

No.

embryo

transfers

No.

embryos

transferred

Pregnancy

%

No.

deliveries

3-Hydroxyisobutyryl-CoA hydrolase deficiency (HIBCHD) HIBCH AR 1 1 1 2 0 0

3-Methylglutaconic aciduria with deafness, encephalopathy, and

Leigh-like syndrome (MEGDEL)

SERAC1 AR 1 1 1 1 0 0

Achondroplasia (ACH) FGFR3 AD 8 17 11 14 7 6

Achromatopsia 2 (ACHM2) CNGA3 AR 1 1 1 1 1 1

Achromatopsia 3 (ACHM3) CNGB3 AR 3 4 4 5 2 2

Acromesomelic dysplasia, Maroteaux type (AMDM) NPR2 AR 1 1 2 2 1 1

Acyl-CoA dehydrogenase, medium-chain, deficiency ACADM AR 3 8 7 14 4 4

Acyl-CoA dehydrogenase, very long-chain; (ACADVL) ACADVL AR 5 6 6 11 2 2

Adrenal hyperplasia, congenital, due to 21-hydroxylase deficiency CYP21A2 AR 23 34 26 42 17 17

Adrenoleukodystrophy (ALD) ABCD1 XL 17 33 20 29 11 11

Agammaglobulinemia, X-linked (XLA) BTK XL 4 7 7 13 3 3

Aicardi–Goutieres syndrome 5 (AGS5 + CF) SAMHD1 AR 1 2 2 2 1 1

Alagille syndrome 1 (ALGS1) JAG1 AD 1 1 1 1 1 1

Albinism, ocular, type i (OA1) GPR143 XL 1 12 5 9 4 3

Albinism, oculocutaneous, type ia (OCA1a) TYR AR 4 7 6 9 3 3

Albinism, oculocutaneous, type ii (OCA2) OCA2 AR 3 6 5 9 3 3

Albinism, oculocutaneous, type iii (OCA3) TYRP1 AR 1 1 0 0 0 0

Allan–Herndon–Dudley syndrome (AHDS) SLC16A2 XL 1 2 2 2 1 1

Alopecia universalis congenita (ALUNC) HR AR 1 1 1 2 1 1

Alpha-1-antitrypsin deficiency (A1ATD) SERPINA1 AR 9 16 14 18 9 8

Alport syndrome, autosomal dominant COL4A3 AR 1 4 0 0 0 0

Alport syndrome, X-linked (ATS) COL4A5 XL 8 16 15 22 10 9

Alzheimer disease 3 PSEN1 AD 2 3 3 6 3 3

Alzheimer disease 4 PSEN2 AD 1 1 1 2 0 0

Alzheimer disease (AD) APP AD 2 3 2 4 2 1

Amegakaryocytic thrombocytopenia, congenital (CAMT) MPL AR 1 1 0 0 0 0

Amyloidosis, hereditary, transthyretin-related TTR AD 3 7 5 6 3 2

Amyotrophic lateral sclerosis 1 (ALS1) SOD1 XL 2 2 2 3 2 1

Amyotrophic lateral sclerosis 4, juvenile (ALS4) SETX AD 1 1 1 1 1 1

Anemia, nonspherocytic hemolytic, due to g6pd deficiency G6PD XL 9 12 12 15 6 6

Angelman syndrome (AS) UBE3A AD 2 2 2 3 1 1



Angioedema, hereditary, type i (HAE1) C1NH AD 3 4 3 4 1 1

Aniridia (AN) PAX6 AD 4 7 5 6 4 4

Aortic valve disease 1 (AOVD1) NOTCH1 AD 1 1 2 2 1 1

Argininosuccinic aciduria ASL AR 2 3 3 4 1 1

Arterial tortuosity syndrome (ATS) SLC2A10 AR 1 2 2 2 1 1

Arthrogryposis, distal, type 2a (DA2a) MYH3 AD 1 2 2 2 1 1

Arthrogryposis, distal, type 2b (DA2b) TNNI2 AD 1 2 1 1 0 0

Arthrogryposis, distal, type 2b (DA2b) TNNT3 AD 1 3 2 3 2 1

Arthrogryposis, distal, type 9 (DA9) FBN2 AD 1 2 2 2 2 2

Ataxia-telangiectasia (AT) ATM AD 5 12 7 8 6 5

Auriculocondylar syndrome 2 (ARCND2) PLCB4 AR 1 1 0 0 0 0

Axenfeld–rieger syndrome, type 1 (RIEG1) PITX2 AD 3 13 13 15 5 4

Bardet–Biedl syndrome 10 (BBS10) BBS10 AR 1 2 3 4 1 1

Bardet–Biedl syndrome 2 (BBS2) BBS2 AR 1 1 2 2 2 1

Bardet–Biedl syndrome 4 (BBS4) BBS4 AR 1 1 2 2 1 1

Bartter syndrome, type 3 (BARTS3) CLCNKB AR 1 1 2 2 1 1

Basal cell nevus syndrome (BCNS) (Gorlin) PTCH1 AD 6 7 6 10 4 4

Benign chronic pemphigus (BCPM) ATP2C1 AD 1 1 1 1 1 0

Beta-ureidopropionase deficiency (UPB1D) UPB1 AR 1 1 2 2 2 1

Biotinidase deficiency BTD AR 3 5 2 3 2 2

Birt–Hogg–Dube syndrome (BHD) FLCN AD 1 2 1 1 1 1

Bleeding disorder, platelet-type, 16 (BDPLT16) ITGB3 AD 1 1 0 0 0 0

Blepharophimosis, ptosis, and epicanthus inversus (BPES) FOXL2 AD 3 7 5 7 3 3

Blood group – Kell–Cellano system KEL AR 14 32 19 32 5 5

Brachydactyly, type B1 (BDB1) ROR2 AD 1 3 2 4 2 2

Branchiooculofacial syndrome (BOFS) TFAP2A AD 1 1 1 2 0 0

Breast cancer PALB2 AD 2 4 2 2 1 1

Breast–ovarian cancer, familial, susceptibility to, 1 (BROVCA1) BRCA1 AD 93 175 128 183 89 83

Breast–ovarian cancer, familial, susceptibility to, 2 (BROVCA2) BRCA2 AD 64 123 87 122 55 51

Campomelic dysplasia with autosomal sex reversal SOX9 AD 1 1 0 0 0 0

Camurati–Engelmann disease (CAEND) TGFB1 AD 1 1 1 1 0 0

Canavan disease ASPA AR 4 6 5 7 5 5

Carbamoyl phosphate synthetase i deficiency CPS1 AR 1 1 1 2 0 0

Cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase

deficiency 1

SCO2 AR 2 5 5 10 3 3

Cardiomyopathy, dilated, 1A (CMD1A) LMNA AR 7 17 16 25 10 8

Cardiomyopathy, dilated, 1DD (CMD1DD) RBM20 AD 1 2 2 2 2 2

(Continued)



Table 2.1 (Continued)

Conditions Gene

Type of

inheritance

No.

patients

No.

cycles

No.

embryo

transfers

No.

embryos

transferred

Pregnancy

%

No.

deliveries

Cardiomyopathy, dilated, 1E (CMD1E) SCN5A AD 1 2 2 2 1 1

Cardiomyopathy, dilated, 1G (CMD1G) TTN AD 2 2 3 3 1 1

Cardiomyopathy, dilated, 1S (CMD1S) MYH7 AD 3 6 4 4 2 2

Cardiomyopathy, dilated, with woolly hair, keratoderma, and tooth

agenesis (DCWHKTA)

DSP AD 2 3 2 3 2 1

Cardiomyopathy, familial hypertrophic, 2 (CMH2) TNNT2 AD 1 2 1 1 1 0

Cardiomyopathy, familial hypertrophic, 4 (CMH4) MYBPC3 AD 14 22 16 23 11 9

Cardiomyopathy, familial hypertrophic, 7 (CMH7) TNNI3 AD 1 1 1 1 0 0

Cardiomyopathy, familial hypertrophic, 8 (CMH8) MYL3 AD 1 2 0 0 0 0

Carnitine deficiency, systemic primary (CDSP) SLC22A5 AR 1 2 1 2 1 1

Carnitine palmitoyltransferase II deficiency, infantile CPT2 AR 4 7 4 4 2 2

Cerebral arteriopathy, autosomal dominant NOTCH3 AD 3 7 6 6 6 4

Cerebral creatine deficiency syndrome 1 (CCDS1) SLC6A8 XL 1 1 1 2 1 1

Ceroid lipofuscinosis, neuronal 2, late infantile (CLN2) TPP1 AR 2 3 2 2 2 1

Ceroid lipofuscinosis, neuronal, 10 (CLN10) CTSD AR 1 1 2 3 1 1

Ceroid lipofuscinosis, neuronal, 5 (CLN5) CLN5 AR 1 1 2 3 0 0

Ceroid lipofuscinosis, neuronal, 6 (CLN6) CLN6 AR 2 2 1 2 0 0

Charcot–Marie–Tooth disease, axonal, type 2A2 (CMT2A2) MFN2 AD 2 9 6 7 2 2

Charcot–Marie–Tooth disease, axonal, type 2B (CMT2B) RAB7A AD 1 1 2 4 2 1

Charcot–Marie–Tooth disease, axonal, type 2E (CMT2E) NEFL AD 1 4 4 7 1 1

Charcot–Marie–Tooth disease, axonal, type 2F (CMT2F) HSPB1 AD 1 1 1 1 0 0

Charcot–Marie–Tooth disease, demyelinating, type 1A (CMT1A) PMP22 AD 28 56 38 51 25 21

Charcot–Marie–Tooth disease, demyelinating, type 1B (CMT1B) MPZ AD 2 5 2 5 0 0

Charcot–Marie–Tooth disease, X-linked, 1 (CMTX1) GJB1 XL 6 9 9 14 5 5

Cholestasis, benign recurrent intrahepatic, 2 (BRIC2) ABCB11 AR 1 2 2 4 1 1

Cholestasis, progressive familial intrahepatic, 3 (PFIC3) ABCB4 AR 1 1 1 2 1 1

Chondrodysplasia punctata 1, X-linked recessive (CDPX1) ARSE XL 1 2 2 3 0 0

Choroideremia (CHM) CHM XL 3 5 5 9 3 3

Ciliary dyskinesia, primary, 15 (CILD15) CCDC40 AR 1 1 1 1 1 1

Ciliary dyskinesia, primary, 3 (CILD3) DNAH5 AR 2 2 1 2 1 1

Citrullinemia, classic ASS1 AR 4 7 6 8 3 3



Cleidocranial dysplasia (CCD) RUNX2 AD 1 3 5 5 2 2

Cockayne syndrome A (CSA) ERCC8 AR 1 1 2 2 1 1

Coenzyme Q10 deficiency, primary, 7 (COQ10D7) COQ4 AR 1 1 1 1 1 1

Cohen syndrome (COH1) VPS13B AR 2 2 2 4 2 2

Colorectal cancer, hereditary nonpolyposis, type 1 (HNPCC1) MSH2 AD 11 21 14 17 7 6

Colorectal cancer, hereditary nonpolyposis, type 2 (HNPCC2) MLH1 AD 10 18 15 25 9 9

Colorectal cancer, hereditary nonpolyposis, type 4 (HNPCC4) PMS2 AD 1 2 1 1 0 0

Colorectal cancer, hereditary nonpolyposis, type 5 (HNPCC5) MSH6 AD 5 10 8 11 5 5

Combined oxidative phosphorylation deficiency 13 (COXPD13) PNPT1 AR 1 1 3 5 0 0

Cone–rod dystrophy 6 (CORD6) GUCY2D AD 1 1 1 0 0 0

Congenital disorder of deglycosylation (CDDG) NGLY1 AR 1 1 2 2 1 1

Congenital disorder of glycosylation, type Ia (CDG1A) PMM2 AR 5 5 4 4 3 3

Congenital disorder of glycosylation, type IIc (CDG2C) SLC35C1 AR 1 1 2 3 0 0

Congenital disorder of glycosylation, type IIL (CDG2L) COG6 AR 1 2 2 2 0 0

Congenital disorder of glycosylation, type In (CDG1N) RFT1 AR 2 2 2 4 1 1

Cranioectodermal dysplasia 2 (CED2) WDR35 AR 1 1 1 1 1 1

Craniofrontonasal syndrome (CFNS) EFNB1 XL 1 1 1 1 0 0

Creutzfeldt–Jakob disease (CJD); Gerstmann–Straussler disease (GSD) PRNP AD 6 9 9 12 8 7

Crouzon syndrome FGFR2 AD 8 16 14 23 9 8

Currarino syndrome MNX1 AD 1 1 1 2 1 1

Cutis laxa, autosomal dominant 1 (ADCL1) ELN AD 1 4 3 4 2 2

Cutis laxa, autosomal recessive, type IIB (ARCL2B) PYCR1 AR 1 1 2 2 1 1

Cutis laxa, autosomal recessive, type IIIA (ARCL3A) ALDH18A1 AR 1 1 1 1 1 1

Cystic fibrosis (CF) CFTR AR 496 748 627 1072 354 314

Cystinosis, nephropathic (CTNS) CTNS AR 1 1 1 1 0 0

Danon disease LAMP2 XL 1 2 2 2 2 2

Darier–White disease (DAR) ATP2A2 AD 1 1 1 1 1 1

D-bifunctional protein deficiency HSD17B4 AR 1 1 1 1 0 0

Deafness, autosomal dominant 3b (DFNA3b) GJB6 AD 1 2 2 3 1 1

Deafness, neurosensory, autosomal recessive 1 (DFNB1) GJB2 AR 51 68 56 80 33 30

Dentinogenesis imperfecta, shields type III DSPP AD 1 2 2 2 2 1

Developmental delay DHX35 AR 1 1 2 2 1 1

Diabetes insipidus, nephrogenic, X-linked AVPR2 XL 1 3 3 3 1 1

Diabetes mellitus, permanent neonatal (PNDM) INS AD 1 1 1 1 1 1
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Diamond–Blackfan anemia 1 (DBA1) RPS19 AD 1 1 1 2 1 1

Digeorge syndrome (DGS) TBX1 AD 1 1 1 1 1 1

Dihydrolipoamide dehydrogenase deficiency (DLDD) DLD AR 1 1 1 1 1 1

Donnai–Barrow syndrome LRP2 AR 1 1 0 0 0 0

Dyskeratosis congenita, autosomal dominant 3 (DKCA3) TINF2 AD 1 2 2 3 1 1

Dyskeratosis congenita, autosomal dominant 2 (DKCA2) TERT AD 1 3 1 1 0 0

Dyskeratosis congenita, autosomal recessive 5 (DKCB5) RTEL1 AR 1 1 2 2 1 1

Dyskeratosis congenita, X-linked (DKCX) DKC1 XL 1 1 1 2 1 1

Dyskinesia, seizures, and intellectual developmental disorder (DYSEIDD) DEAF1 AR 1 1 1 1 0 0

Dystonia 1, torsion, autosomal dominant (DYT1) TOR1A AD 16 36 35 63 18 18

Dystonia 28, childhood-onset (DYT28) KMT2B AD 1 1 1 1 0 0

Dystonia 3, torsion, X-linked (DYT3) TAF1 XL 1 1 1 2 1 1

Ectodermal dysplasia 10b, hypohidrotic/hair/tooth type, autosomal

recessive (ECTD10B)

EDAR AR 1 1 1 2 1 1

Ectodermal dysplasia, hypohidrotic, X-linked (XHED) EDA XL 6 8 8 10 4 4

Ehlers–Danlos syndrome, classic type COL5A1 AD 2 4 3 4 3 2

Ehlers–Danlos syndrome, type IV, autosomal dominant COL3A1 AD 4 6 4 7 4 3

Ehlers–Danlos syndrome, type VI (EDS6) PLOD1 AR 1 1 2 3 0 0

Emery–Dreifuss muscular dystrophy 1, X-linked (EDMD1) EMD XL 3 4 4 7 3 3

Epidermolysis bullosa dystrophica, autosomal dominant (DDEB) COL7A1 AR 8 9 8 13 4 4

Epidermolysis bullosa simplex with pyloric atresia (EBSPA) PLEC1 AR 1 2 1 3 1 1

Epidermolysis bullosa simplex, dowling-meara type (EBSDM) KRT5 AD 1 2 1 2 1 1

Epidermolysis bullosa, junctional, Herlitz type LAMA3 AR 4 9 7 13 7 7

Epidermolysis bullosa, junctional, non-herlitz type LAMB3 AR 5 6 5 9 2 2

Epidermolytic hyperkeratosis (EHK) KRT10 AD 2 3 2 2 2 2

Epileptic encephalopathy, early infantile, 2 (EIEE2) CDKL5 XL 1 1 1 2 1 1

Epileptic encephalopathy, early infantile, 3 (EIEE3) SLC25A22 AR 1 1 0 0 0 0

Epileptic encephalopathy, early infantile, 5 (EIEE5) SPTAN1 AR 1 1 0 0 0 0

Epiphyseal dysplasia, multiple, 1 (EDM1) COMP AD 3 4 2 2 1 1

Exostoses, multiple, type I EXT1 AD 11 21 17 29 12 10

Exostoses, multiple, type II EXT2 AD 3 8 6 10 3 3

Fabry disease GLA XL 12 19 14 22 9 7



Facioscapulohumeral muscular dystrophy 1 (FSHD1) FRG1 AD 25 51 42 71 23 20

Factor VII deficiency F7 AR 1 1 1 1 0 0

Familial adenomatous polyposis 1 (FAP1) APC AD 23 44 36 57 17 15

Familial cold autoinflammatory syndrome 1 (FCAS1) NLPR3 AD 1 1 1 1 1 1

Familial Mediterranean fever (FMF) MEFV AR 10 18 16 22 11 8

Fanconi anemia, complementation group A (FANCA) FANCA AR 2 5 2 3 2 2

Fanconi anemia, complementation group C (FANCC) FANCC AR 2 5 4 8 1 1

Fetal akinesia deformation sequence (FADS) NUP88 AR 1 1 1 2 1 1

Fetal akinesia deformation sequence (FADS) RAPSN AR 1 1 1 2 1 0

Fragile-X mental retardation syndrome FMR1 XL 312 608 450 662 243 214

Fraser syndrome 1 (FRASRS1) FRAS1 AR 2 2 2 2 1 1

Friedreich ataxia 1 (FRDA) FXN AR 2 6 4 7 2 2

Frontotemporal dementia and/or amyotrophic lateral sclerosis 1

(FTDALS1)

c9orf72 AD 1 1 1 1 1 1

Fructose intolerance, hereditary ALDOB AR 2 7 6 7 3 3

Fumarase deficiency (FMRD) FH AR 1 1 0 0 0 0

Galactosemia GALT AR 3 7 5 6 2 2

Gastric cancer, hereditary diffuse (HDGC) CDH1 AD 1 1 1 2 1 1

Gaucher disease, type I GBA XL 39 52 34 57 24 19

Geroderma osteodysplasticum (GO) GORAB AR 1 2 2 4 1 1

Gitelman syndrome (GTLMNS) SLC12A3 AR 1 1 1 1 0 0

Glaucoma 3, primary congenital, A (GLC3A) CYP1B1 AR 1 1 2 2 1 1

Glut1 deficiency syndrome 1 (GLUT1DS1) SLC2A1 AD 1 2 1 2 0 0

Glutaric acidemia I GCDH AR 1 1 1 2 0 0

Glycine encephalopathy (GCE) GLDC AR 6 7 6 11 6 6

Glycogen storage disease Ia (GSD1A) G6PC AR 1 1 2 2 0 0

Glycogen storage disease II (GSD2) GAA AR 5 7 4 9 1 1

Glycogen storage disease IXa1 (GSD9A1) PHKA2 XL 1 1 0 0 0 0

Glycogen storage disease VII (GSD7) PFKM AR 1 1 1 1 1 1

Gm1-gangliosidosis, type I GLB1 AR 5 5 5 10 4 4

Granulomatous disease, chronic, X-linked (CDGX) CYBB XL 4 5 4 6 3 2

Greig cephalopolysyndactyly syndrome (GCPS) GLI3 AD 1 1 2 2 0 0

Harel–Yoon syndrome (HAYOS) ATAD3A AR 1 3 3 3 1 1

Hemoglobin-alpha locus 1 (HBA1) HBA AR 14 23 21 38 10 10

Hemoglobin-beta locus (HBB) HBB AR 301 470 402 762 192 161

Hemophagocytic lymphohistiocytosis, familial, 2 (FHL2) PRF1 AR 1 1 0 0 0 0
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Hemophagocytic lymphohistiocytosis, familial, 3 (FHL3) UNC13D AR 3 4 4 5 4 3

Hemophilia A (HEMA) F8 XL 62 103 88 145 50 42

Hemophilia B (HEMB) F9 XL 5 6 6 9 6 6

Hereditary leiomyomatosis and renal cell cancer (HLRCC) FH AD 1 1 1 2 0 0

Hereditary motor and sensory neuropathy, type IIC (HMSN2C) TRPV4 AD 1 1 2 2 1 1

Hermansky–Pudlak syndrome 1 (HPS1) HPS1 AR 1 4 3 6 2 2

HLA + myelodysplastic syndrome (MDS) GATA2 AD 1 2 1 1 1 1

HLA + Shwachman–Diamond syndrome (SDS) SBDS AR 4 10 3 4 2 2

HLA + adenosine deaminase deficiency (ADA) ADA AR 1 1 1 1 1 1

HLA + adrenoleukodystrophy ABCD1 XL 3 7 2 2 1 1

HLA + Diamond–Blackfan anemia 1 (DBA1) RPS19, AD 6 13 10 15 5 5

HLA + Diamond–Blackfan anemia 2 (DBA2) RPS20 AD 1 1 1 1 1 1

HLA + Diamond–Blackfan anemia 3 (DBA3) RPS 24 AD 1 1 1 1 0 0

HLA + Diamond–Blackfan anemia 5 (DBA5) RPL35A AD 1 1 1 1 1 1

HLA + Diamond–Blackfan anemia 9 (DBA9) RPS10 AD 1 1 2 2 1 1

HLA + ectodermal dysplasia, hypohidrotic, with immune deficiency IKBKG XL 2 9 6 8 2 2

HLA + Fanconi anemia, complementation group A (FANCA) FANCA AR 18 52 29 43 14 10

HLA + Fanconi anemia, complementation group C (FANCC) FANCC AR 2 5 5 8 1 1

HLA + Fanconi anemia, complementation group D2 (FANCD2) FANCD2 AR 1 3 2 3 1 1

HLA + Fanconi anemia, complementation group F (FANCF) FANCF AR 2 5 2 3 0 0

HLA + Fanconi anemia, complementation group G (FANCG) FANCG AR 2 2 2 3 2 2

HLA + Fanconi anemia, complementation group I (FANCI) FANCI AR 1 2 2 3 0 0

HLA + Fanconi anemia, complementation group J (FANCJ) BRIP1 AR 1 1 1 1 1 1

HLA + Fanconi anemia, complementation group JI (FANCJ) BRIP1 AR 1 3 1 3 0 0

HLA + Glanzmann thrombasthenia (GT, +DMD) ITGA2B DMD 1 2 2 4 1 0

HLA + granulomatous disease, chronic, autosomal recessive, cytochrome

b-positive, type I (CDG1)

NCF1 AR 1 3 2 2 1 1

HLA + granulomatous disease, chronic, X-linked (CDGX) CYBB XL 6 16 13 17 7 6

HLA + hemoglobin-beta locus (HBB) HBB AR 92 188 119 177 41 31

HLA + hyper-IgE recurrent infection syndrome, autosomal recessive DOCK8 AR 1 1 0 0 0 0

HLA + Krabbe disease GALC AR 1 1 1 2 1 1

HLA + myotonic dystrophy 1 (DM1) DMPK AD 1 2 1 2 1 1

HLA + neutropenia, severe congenital, 1, autosomal dominant (SCN1) ELANE AD 2 3 2 5 2 1



HLA + polycystic kidney disease 1 (PKD1) PKD1 AD 1 1 1 2 1 1

HLA + sickle cell anemia HBB AR 18 29 18 27 12 8

HLA + thrombocythemia 1 (THCYT1 ) SH2B3 AR 1 2 2 2 2 1

HLA + thrombotic thrombocytopenic purpura, congenital (TTP) ADAMTS13 AR 1 2 2 4 1 1

HLA + Wiskott–Aldrich syndrome (WAS) WAS XL 1 1 0 0 0 0

HLA immunodeficiency with hyper-IgM, type 1 (HIGM1) CD40LG XL 8 15 9 13 5 4

HLA + pyruvate kinase deficiency of red cells PKLR AD 1 2 1 1 0 0

Holoprosencephaly 2 (HPE2) SIX3 AD 1 1 1 2 0 0

Holt–Oram syndrome (HOS) TBX5 AD 5 8 8 9 4 4

Homocystinuria due to cystathionine beta-synthase deficiency CBS AR 4 6 4 9 3 3

Homocystinuria due to deficiency of n(5,10)-methylenetetra-

hydrofolate reductase activity

MTHFR AR 1 1 1 2 0 0

Homocystinuria-megaloblastic anemia, cblG complementation type

(HMAG)

MTR AR 1 2 1 1 0 0

Human leukocyte antigens HLA AR 60 119 73 108 25 20

Huntington disease (HD) HTT AD 141 209 171 267 107 97

Hurler syndrome IDUA AR 7 10 8 13 3 3

Hyaline fibromatosis syndrome (HFS) ANTXR2 AR 1 1 1 2 1 1

Hydrocephalus due to congenital stenosis of aqueduct of Sylvius (HSAS) L1CAM XL 11 16 16 34 8 6

Hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA

hydratase, alpha subunit (HADHA)

HADHA AR 4 4 4 13 3 3

Hyperinsulinemic hypoglycemia, familial, 1 (HHF1) ABCC8 AR 2 11 8 19 4 2

Hyperuricemic nephropathy, familial juvenile, 1 (HNFJ1) UMOD AD 1 1 1 1 0 0

Hypogonadotropic hypogonadism 1 with or without anosmia (HH1) ANOS1 XL 1 1 2 2 0 0

Hypogonadotropic hypogonadism 1 with or without anosmia (HH1) KAL1 XL 1 2 1 1 1 1

Hypoparathyroidism–retardation–dysmorphism syndrome (HRDS) TBCE 1R 1 1 1 2 0 0

Hypophosphatasia, infantile ALPL AR 6 7 6 9 4 4

Ichthyosis, congenital, autosomal recessive 1 (ARCI1) TGM1 AD 2 9 7 10 1 1

Ichthyosis, lamellar, 2 (LI2) ABCA12 AR 2 2 1 2 0 0

Ichthyosis, spastic quadriplegia, and mental retardation (ISQMR) ELOVL4 AR 1 1 1 1 0 0

Ichthyosis, X-linked (XLI) STS XL 2 3 3 4 1 1

Ifap syndrome with or without Bresheck syndrome MBTPS2 XL 2 3 2 5 2 1

Immunodeficiency with hyper-IgM, type 1 (HIGM1) CD40LG XL 4 14 14 22 6 6

Immunodysregulation, polyendocrinopathy, and enteropathy, X-linked

(IPEX)

FOXP3 XL 2 3 3 3 1 1

Incontinentia pigmenti (IP) IKBKG XL 15 35 28 43 11 11
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Infantile cerebellar-retinal degeneration (ICRD) ACO2 AR 1 1 1 2 2 2

Infantile liver failure syndrome 1 (ILFS1) LARS AR 1 1 2 2 1 1

Isovaleric acidemia (IVA) IVD AR 1 1 1 2 0 0

Joubert syndrome 1 (JBTS1) INPP5E AR 1 1 2 2 1 1

Joubert syndrome 17 (JBTS17) CPLANE1 AD 1 1 1 2 1 1

Joubert syndrome 2 (JBTS2) TMEM216 AR 1 1 2 2 1 1

Joubert syndrome 21 (JBTS21) CSPP1 AR 2 5 4 7 1 1

Joubert syndrome 23 (JBTS23) KIAA0586 AR 1 1 1 2 1 1

Joubert syndrome 3 (JBTS3) AHI1 AR 1 1 0 0 0 0

Joubert syndrome 6 (JBTS6) TMEM67 AR 2 3 2 2 2 2

Krabbe disease GALC AR 11 12 11 19 7 5

Larsen syndrome (LRS) FLNB AD 2 2 1 1 1 1

Leber congenital amaurosis 2 (LCA2) RPE65 AR 1 1 0 0 0 0

Leigh syndrome (LS) NDUFS8 AR 1 1 0 0 0 0

Leigh syndrome (LS) SURF1 AR 1 1 1 3 0 0

Lesch–Nyhan syndrome (LNS) HPRT1 XL 1 4 3 3 2 2

Leukoencephalopathy with vanishing white matter (VWM) EIF2B2 AR 1 1 1 2 1 0

Li–Fraumeni syndrome 1 (LFS1) TP53 AD 16 22 17 24 13 11

Lipoid congenital adrenal hyperplasia (LCAH) STAR AR 1 2 2 3 1 1

Lissencephaly, X-linked, 2 (LISX2) ARX XL 1 1 1 2 0 0

Loeys–Dietz syndrome 1 (LDS1) TGFBR2 AD 2 5 4 6 2 1

Long QT syndrome 1 (LQT1) KCNQ1 AD 4 5 2 2 2 2

Long QT syndrome 2 (LQT2) KCNH2 AD 3 3 2 2 1 1

Long QT syndrome 8 (LQT8) CACNA1C AD 1 1 1 1 1 1

Lymphedema, hereditary, III (LMPH3) PIEZO1 AR 1 1 0 0 0 0

Lymphoproliferative syndrome, X-linked, 1 (XLP1) SH2D1A XL 1 1 2 3 2 2

Lysosomal acid lipase deficiency LIPA AR 2 2 2 4 2 2

Machado–Joseph disease (MJD) ATXN3 AD 4 7 6 8 6 6

Macular dystrophy, vitelliform, 2 (VMD2) BEST1 AD 1 1 1 1 1 1

Maple syrup urine disease (MSUD) BCKDHB AR 1 2 2 2 1 1

Marfan syndrome (MFS) FBN1 AD 30 58 46 78 27 21

Marinesco–Sjogren syndrome (MSS) SIL1 AR 1 3 3 5 1 1



Meckel syndrome, type 1 (MKS1) MKS1 AR 2 5 5 9 2 2

Meckel syndrome, type 4 (MKS4) CEP290 4 6 6 10 4 4

Meckel syndrome, type 6 (MKS6) CC2D2A AR 2 5 5 9 2 2

Meckel syndrome, type 6 (MKS6) CCD2DA2 AR 1 1 1 2 1 1

Meckel syndrome, type 8 (MKS8) TCTN2 AR 1 1 2 2 1 1

Mental retardation, autosomal dominant 35 (MRD35) PPP2R5 AD 1 1 2 2 1 1

Mental retardation, autosomal recessive 38 (MRT38) HERC2 AR 1 2 2 3 1 1

Metachromatic leukodystrophy due to saposin B deficiency PSAP AR 1 1 0 0 0 0

Metachromatic leukodystrophy (MLD) ARSA AR 3 4 3 4 4 2

Metaphyseal chondrodysplasia, Schmid type (MCDS) COL10A1 AD 2 7 3 4 2 2

Methylmalonic aciduria and homocystinuria, cblC type MMACHC AR 3 6 6 11 5 5

Methylmalonic aciduria due to methylmalonyl-CoA mutase deficiency MUT AR 2 4 4 4 2 2

Methylmalonic aciduria, cblB type MMAB AR 3 3 2 3 1 1

Microcephalic osteodysplastic primordial dwarfism, type I (MOPD1) RNU4ATAC AR 1 1 1 1 1 1

Microcephaly 2, primary, autosomal recessive (MCPH2) WDR62 AR 1 1 1 1 0 0

Microcephaly 5, primary, autosomal recessive (MCPH5) ASPM AR 2 3 2 3 2 2

Microcephaly 6, primary, MCPH6) CENPJ AR 1 2 2 2 1 1

Microphthalmia, isolated, with coloboma 3 (MCOPCB3) VSX2 AR 2 2 1 1 1 1

Midface hypoplasia, hearing impairment, elliptocytosis, and

nephrocalcinosis (MFHIEN)

AMMECR1 XL 2 8 6 9 2 2

Migraine, familial hemiplegic, 1 (FHM1) CACNA1A AD 1 1 1 2 1 1

Mitochondrial complex i deficiency due to acad 9 deficiency ACAD9 AR 1 1 1 2 1 1

Mitochondrial DNA depletion syndrome 13 FBXL4 AD 1 1 3 4 1 1

Mitochondrial DNA depletion syndrome 4a (Alpers type) (MTDPS4A) POLG AR 3 5 5 5 4 4

Molybdenum cofactor deficiency, complementation group B (MOCODB) MOCS2 AR 1 1 3 4 0 0

Mosaic variegated aneuploidy syndrome 1 (MVA1) BUB1B AR 1 1 1 2 1 0

Mucolipidosis II alpha/beta GNPTAB AR 2 3 2 2 2 2

Mucopolysaccharidosis, type II (MPS2) IDS XL 9 20 15 29 10 6

Mucopolysaccharidosis, type IIIA (MPS3A) SGSH AR 2 2 2 3 0 0

Mucopolysaccharidosis, type IVA (MPS4A) GALNS AR 1 4 4 12 2 2

Multinucleated neurons, anhydramnios, renal dysplasia, cerebellar

hypoplasia

CEP55 AR 1 1 1 2 1 1

Multiple congenital anomalies–hypotonia–seizures syndrome 2 (MCAHS2) PIGA XL 1 1 0 0 0 0

Multiple endocrine neoplasia, type I (MEN1) MEN1 AD 8 21 16 23 7 4

Multiple endocrine neoplasia, type IIA (MEN2A) RET AD 6 11 11 17 8 8

Multiple endocrine neoplasia, type IV (MEN4) CDKN1B AD 1 3 1 1 1 1
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Muscular dystrophy, congenital merosin-deficient, 1A (MDC1A) LAMA2 AR 6 7 7 14 7 6

Muscular dystrophy, Duchenne type (DMD) DMD XL 69 115 103 169 57 48

Muscular dystrophy, limb-girdle, type 2A (LGMD2A) CAPN3 AR 1 1 0 0 0 0

Muscular dystrophy, limb-girdle, type 2S (LGMD2S) TRAPPC11 AR 1 1 2 2 2 2

Muscular dystrophy–dystroglycanopathy (congenital with brain and eye

anomalies), type A, 5 (MDDGA5)

FKRP AR 1 3 3 3 1 1

Muscular dystrophy–dystroglycanopathy (congenital with brain and eye

anomalies), type A, 4 (MDDGA4)

FKTN AR 2 2 2 3 2 2

Myoglobinuria, acute recurrent, autosomal recessive LPIN1 AR 1 1 1 1 1 1

Myopathy, areflexia, respiratory distress, and dysphagia, early-onset

(EMARDD)

MEGF10 AR 1 1 1 1 1 1

Myopathy, centronuclear, X-linked (CNMX) MTM1 XL 5 6 4 6 4 4

Myopathy, myofibrillar, 1 (MFM1) DES AD 1 1 1 1 1 1

Myotonia congenita, autosomal dominant CLCN1 AD 1 1 1 2 1 1

Myotonic dystrophy 1 (DM1) DMPK AD 94 147 107 188 55 46

Myotonic dystrophy 2 (DM2) CNBP AD 1 2 2 4 2 2

Nail–patella syndrome (NPS) LMX1B AD 3 4 3 4 1 1

Nemaline myopathy 2 (NEM2) NEB AR 6 6 6 10 3 3

Nephrotic syndrome, type 1 (NPHS1) NPHS1 AR 1 3 3 7 1 0

Nephrotic syndrome, type 2 (NPHS2) NPHS2 AR 1 1 1 1 1 1

Nephrotic syndrome, type 5 LAMB2 AR 1 2 2 4 2 1

Neurofibromatosis, type I (NF1) NF1 AD 51 90 80 123 46 41

Neurofibromatosis, type II (NF2) NF2 AD 7 10 9 17 7 7

Neuropathy, hereditary sensory and autonomic, type III (HSAN3) IKBKAP AR 13 19 17 28 9 9

Neuropathy, hereditary sensory and autonomic, type VI (HSAN6) DST AD 1 2 2 2 2 2

Neutropenia, severe congenital, 1, autosomal dominant (SCN1) ELANE AD 1 1 1 1 1 1

Niemann–Pick disease, type A SMPD1 AR 3 5 3 6 2 2

Nijmegen breakage syndrome (NBS) NBN AR 1 1 2 2 1 1

Noonan syndrome 1 (NS1) PTPN11 AD 5 7 7 9 4 3

Norrie disease (ND) NDP XL 5 8 6 12 2 2

Omenn syndrome RAG1 AD 2 6 5 12 1 1

Optic atrophy 1 (OPA1) OPA1 AD 3 5 5 9 1 1

Ornithine transcarbamylase deficiency OTC XL 11 24 19 32 11 10



Osteogenesis imperfecta, type I (OI1) COL1A1 AD 24 61 44 72 17 17

Osteogenesis imperfecta, type II (OI2) COL1A2 AD 5 5 5 5 3 2

Osteogenesis imperfecta, type IX (OI9) PPIB AR 1 2 2 4 2 2

Osteopathia striata with cranial sclerosis (OSCS) AMER1 XL 1 1 1 1 1 1

Osteopetrosis, autosomal recessive 1 (OPTB1) TCIRG1 AR 5 7 7 13 3 3

Pachyonychia congenita 3 (PC3) KRT6A AD 1 2 2 2 2 1

Pancreatitis, hereditary (PCTT) PRSS1 AD 1 1 1 2 1 1

Paraganglioma and gastric stromal sarcoma SDHB AD 1 1 0 0 0 0

Paramyotonia congenita of von Eulenburg (PMC) SCN4A AD 3 3 3 4 3 2

Pelizaeus–Merzbacher disease (PMD) PLP1 XL 7 12 10 15 7 7

Periventricular nodular heterotopia 1 (PVNH1) FLNA XL 1 3 3 5 2 1

Peroxisome biogenesis disorder 1A (Zellweger) (PBD1A) PEX1 AR 3 3 3 6 3 3

Peroxisome biogenesis disorder 2A (Zellweger) (PBD2A) PEX5 AR 1 2 2 4 0 0

Peroxisome biogenesis disorder 3A (Zellweger) (PBD3A) PEX12 AR 1 3 3 4 2 1

Peroxisome biogenesis disorder 5A (Zellweger) (PBD5A) PEX2 AR 1 4 3 5 2 2

Peutz–Jeghers syndrome (PJS) STK11 AD 4 9 7 9 6 4

Pfeiffer syndrome FGFR1 AD 2 2 2 4 2 2

Phenylketonuria (PKU) PAH AR 15 20 14 16 8 7

Platelet disorder, familial, with associated myeloid malignancy (FPDMM) RUNX1 AD 1 1 1 1 1 1

Pleuropulmonary blastoma (PPB) DICER1 AD 1 1 1 1 1 1

Polycystic kidney disease 1 (PKD1) PKD1 AD 48 84 64 98 37 34

Polycystic kidney disease 2 (PKD2) PKD2 AD 7 10 9 15 3 3

Polycystic kidney disease, autosomal recessive (ARPKD) PKHD1 AR 16 29 26 42 17 16

Polymicrogyria, bilateral frontoparietal (BFPP) ADGRG1 AR 2 2 1 2 1 1

Polymicrogyria, bilateral frontoparietal (BFPP) GPR56 AR 1 1 1 2 0 0

Pontocerebellar hypoplasia, type 1B (PCH1B) EXOSC3 AR 1 1 2 2 1 1

Popliteal pterygium syndrome (PPS) IRF6 AD 2 2 1 2 1 1

Porphyria, congenital erythropoietic UROS AR 1 1 1 1 1 1

Propionic acidemia PCCA, AR 3 3 3 5 2 2

PCCB

Prothrombin deficiency, congenital; F2 F5 AR 2 3 3 3 2 2

Factor V deficiency

Pseudovaginal perineoscrotal hypospadias (PPSH) SRD5A2 AR 1 2 2 4 1 1

Rap guanine nucleotide exchange factor 6 (RAPGEF6) RAPGEF6 AD 1 2 3 4 3 1

Renal cell carcinoma, papillary, 1 (RCCP1) MET AD 1 1 2 2 1 1

Renal tubular acidosis, distal, autosomal recessive (RTADR) ATP6V0A4 AR 1 1 2 3 2 1

Renal tubular dysgenesis (RTD) ACE AR 1 4 3 4 2 2
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Restrictive dermopathy, lethal ZMPSTE24 AR 2 2 2 3 1 1

Retinal dystrophy, early-onset, with or without pituitary dysfunction,

included

OTX2 AD 1 1 0 0 0 0

Retinitis pigmentosa 2 (RP2) RP2 XL 1 1 1 2 1 1

Retinitis pigmentosa 3 (RP3) RPGR XL 5 6 6 8 4 3

Retinitis pigmentosa 4 (RP4) RHO AD 3 5 2 4 1 0

Retinoblastoma (RB1) RB1 AD 17 31 26 43 14 13

Retinoschisis 1, X-linked, juvenile (RS1) RS1 XL 1 2 1 2 1 0

Rett syndrome (RTT) MECP2 XL 3 5 4 4 3 1

Rhabdoid tumor predisposition syndrome 1 (RTPS1) SMARCB1 AD 1 1 1 1 0 0

Rhesus blood group, D antigen (RHD) RHD AD 7 9 9 16 6 6

Sandhoff disease HEXB AR 4 6 5 8 4 4

Seckel syndrome 1 (SCKL1) ATR AR 1 1 2 2 0 0

Severe combined immunodeficiency, autosomal recessive IL7R AR 1 1 2 4 1 1

Severe combined immunodeficiency, autosomal recessive RAG2 AR 2 5 4 5 3 3

Severe combined immunodeficiency, X-linked (SCIDX1) IL2RG XL 3 4 3 3 2 2

Short stature, idiopathic, X-linked (ISS) SHOX XL 2 2 2 3 2 2

Short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3) DYNC2H1 AR 1 1 1 1 1 1

Smith–Lemli–Opitz syndrome (SLOS) DHCR7 AR 18 30 23 32 15 15

Sonic hedgehog (SHH) SHH AD 1 2 2 3 1 1

Sotos syndrome 1 (SOTOS1) NSD1 AD 2 3 2 2 2 2

Spastic paraplegia 3, autosomal dominant (SPG3A) ATL1 AD 1 1 1 1 1 1

Spastic paraplegia 4, autosomal dominant (SPG4) SPAST AD 6 10 8 12 7 5

Spherocytosis, type 2 (SPH2) SPTB AD 1 1 2 2 2 1

Spinal and bulbar muscular atrophy, X-linked 1 (SMAX1) AR XL 3 5 5 6 2 1

Spinal muscular atrophy, distal, autosomal recessive, 1 (DSMA1) IGHMBP2 AR 2 3 2 4 1 1

Spinal muscular atrophy, type I (SMA1) SMN1 AR 102 151 125 199 78 69

Spinocerebellar ataxia 1 (SCA1) ATXN1 AD 4 7 6 8 4 4

Spinocerebellar ataxia 2 (SCA2) ATXN2 AD 7 14 14 27 6 8

Spinocerebellar ataxia 6 (SCA6) CACNA1A AD 2 5 2 3 1 1

Spinocerebellar ataxia 7 (SCA7) ATXN7 AD 2 3 3 7 2 1

Spinocerebellar ataxia 8 (SCA8) ATXN80S AD 1 1 1 1 1 1



Spondyloepiphyseal dysplasia tarda, X-linked (SEDT) TRAPPC2 AD 1 1 2 2 1 1

Stargardt disease 1 (STGD1) ABCA4 AR 4 10 5 6 2 2

Stickler syndrome, type I (STL1) Col2A1 AD 4 4 3 5 2 2

Stickler syndrome, type II (STL2) COL11A1 AD 2 7 6 15 1 1

Stickler syndrome, type II (STL2) COL18A1 AR 1 1 1 1 1 1

Succinic semialdehyde dehydrogenase deficiency (SSADHD) ALDH5A1 AR 3 4 4 9 2 2

Sulfocysteinuria SUOX AR 1 1 2 2 1 1

Supranuclear palsy, progressive, 1 (PSNP1) MAPT AD 2 3 3 5 1 1

Surfactant metabolism dysfunction, pulmonary, 3 (SMDP3) ABCA3 AR 1 2 2 4 1 1

Symphalangism, proximal (SYM1) NOG AD 1 3 3 7 2 2

Tay–Sachs disease (TSD) HEXA AR 25 46 29 52 19 17

Telangiectasia, hereditary hemorrhagic, of Rendu, Osler, and Weber (HHT) ENG AD 4 11 6 7 3 3

Telangiectasia, hereditary hemorrhagic, type 2 (HHT2) ACVRL1 AD 4 8 7 8 4 4

Temtamy syndrome (TEMTYS) C12orf57 AR 1 1 1 2 0 0

Thrombocytopenia-absent radius syndrome (TAR) RBM8A AR 4 6 5 7 4 4

Treacher Collins syndrome 1 (TCS1) TCOF1 AD 6 8 8 14 7 7

Treacher Collins syndrome 2 (TCS2) POLR1D AD 1 1 1 1 0 0

Tuberous sclerosis 1 (TSC1) TSC1 AD 20 30 27 52 16 14

Tuberous sclerosis 2 (TSC2) TSC2 AD 8 14 10 14 5 4

Tyrosinemia, type I (TYRSN1) FAH AR 1 7 7 13 5 3

Ulnar–Mammary syndrome (UMS) TBX3 AD 1 3 3 4 1 1

Usher syndrome, type I (USH1) MYO7A AD 1 3 2 2 1 1

Usher syndrome, type IF (USH1F) PCDH15 AR 2 4 4 6 4 2

Usher syndrome, type IIA (USH2A) USH2A AR 3 4 5 6 2 2

Usher syndrome, type IIC (USH2C) ADGRV1 AR 1 1 1 2 1 1

Usher syndrome, type IIC (USH2C) GPR98 AR 1 1 0 0 0 0

Van der Woude syndrome 1 (VWS1) IRF6 AD 3 3 3 3 3 3

Von Hippel–Lindau syndrome (VHL) VHL AD 19 25 21 30 15 14

Waardenburg syndrome, type 2A (WS2A) MITF AD 2 6 6 6 4 4

Wilson disease ATP7B AR 3 3 3 5 3 2

Wiskott–Aldrich syndrome (WAS) WAS XL 6 15 13 20 9 8

Wolfram syndrome 1 (WFS1) WFS1 AR 1 2 1 1 1 1

Xeroderma pigmentosum, complementation group g (XPG) ERCC5 AR 1 1 0 0 0 0

TOTAL 3463 5869 4683 7443 2644 2332

1.59 56.4%
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Figure 2.1 Scheme demonstrating
the principle of preimplantation
genetic analysis by sequential DNA
analysis of the first and second
polar body, using the cystic fibrosis
(CF) locus as an example.
Source: Verlinsky Y, Kuliev AMA.
Preimplantation genetic diagnosis.
In: Milunsky A, Milunsky JM, eds.
Genetic disorders and the fetus:
diagnosis, prevention and
treatment, 6th edn. Oxford, UK:
John Wiley & Sons, 2010.

developmental potential of the resulting embryo,
343 biopsied and 445 nonbiopsied mouse embryos
were compared for the percentage of embryos
reaching the blastocyst stage.36

The results of PGT-M performed by polar body
biopsy, representing the world’s largest series, is
shown in Table 2.2. A total of 1,016 PGT-M cycles
were performed, for 538 autosomal recessive, 191
autosomal dominant, and 287 X-linked disor-
ders. Of 1,016 cycles initiated, 838 (82.5 percent)

resulted in transfer of 1,656 embryos (1.98 embryos
per transfer on the average), 349 (41.6 percent)
clinical pregnancies, and 385 babies born. Only two
misdiagnoses were observed in the case of PGT
for fragile-X syndrome and muscular dystrophy,
which were due to consented transfer of additional
embryo with insufficient marker analysis to exclude
the probability of allele dropout (ADO) (see later).
The example of PGT-M by polar body sampling is
shown in Figure 2.2.

Table 2.2 Clinical outcome of PGT-M performed by polar body approach.

Conditions/mode of inheritance/

sampling type Patient Cycles

Embryo

transfer

No.

embryos Pregnancy

Spontaneous

abortions Baby

Autosomal recessive

Polar bodies 76 131 99 204 36 10 36

Polar bodies + blastomere/blastocyst 254 407 344 701 143 21 168

Subtotal 330 538 443 905 179 31 204

Autosomal dominant

Polar bodies 29 52 40 84 22 4 21

Polar bodies + blastomere/blastocyst 79 139 122 233 49 7 61

Subtotal 108 191 162 317 71 11 82

X-linked

Polar bodies 39 86 63 110 22 4 20

Polar bodies + blastomere/blastocyst 116 201 170 324 77 12 79

Subtotal 155 287 233 434 99 16 99

Total 593 1016 838 1656 349 (41.6%) 58 (17%) 385


