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Preface

The planar transmission lines form the core of modern
high-frequency communication, computer, and other
related technology. The subject has come up to the pres-
ent level of maturity over the past three to four decades.
The planar transmission lines are used not only as inter-
connects on the PCB board and IC chips; these are
directly needed for the development of microwave and
mm-wave components in the form of microwave inte-
grated circuits (MIC). The types of planar transmission
lines, i.e. their physical structures and material medium,
have been changing with the growth of technology in
many other disciplines. Such efforts during recent years
propelled the MIC to move in many exotic directions –
MMIC, MEMS, LTCC, use of ferroelectrics, and high-
temperature superconductors, optically controlled
microwave devices, nonlinear planar transmission lines,
DGS, EBG, metamaterials, etc. The researchers with
varying backgrounds have contributed much to research
activities. Already the divergent planar technology has
contributed significantly to the advancement of high-
frequency electronics and in the near future, more con-
tribution will be made by it. The exotic planar transmis-
sion lines are not covered comprehensively in a single
book. The present book is an attempt in this direction.
The proposed book aims to provide a comprehensive
discussion of planar transmission lines and their applica-
tions. It focuses on physical understanding, analytical
approach, and circuit models for planar transmission
lines and resonators in the complex environment.
The present book has evolved from the lecture notes,

workshop, seminar presentation, and invited lectures
delivered by the author at many universities and R&D
centers. Some chapters were also initially written for
the Ph.D. students to help them to understand the topics.
Finally, it has evolved from notes prepared by the author
as a scheme for the self-study. The author started his aca-
demic career after 17 years of professional experience in

the field of electrical engineering, broadcast transmit-
ters, and satellite communication.
At present, the planar transmission lines are taught as

part of the course on RF and microwave packaging,
advanced electromagnetic field theory, and microwave
design. It is also taught as an independent paper. How-
ever, a teacher has to consult divergent sources to pre-
pare the lecture notes, as no single source at the
teaching-level is available. Moreover, the classroom
teaching of the planar transmission lines is not as sys-
tematic as the classical metallic waveguide structures.
It is due to the very nature of the subject itself. The avail-
able books are usually not classroom oriented. Usually,
they can be grouped into two categories – 1. Design-
oriented books, 2. Monograph kind of books. Once we
use the first category of books in the classroom, we
end up writing only closed-form expressions without
any systematic derivation of the expressions. The sys-
tematic approach is important in the classroom environ-
ment. The second category of books is suitable for an
experienced researcher or specialist. It is difficult to
use them in the classroom. Thus, a teacher of this subject
has to struggle between these two extremes to balance
teaching throughout the semester. Finally, a teacher
has to depend on personal experience and lecture notes.
There is a need to present, in one cover, the divergent

topics of the planar transmission lines in a student-
friendly format. The researchers with varying back-
grounds in physics, chemistry, engineering, and other
fields have joined activities in the expanding area of
the planar technology. The early researchers, R&D pro-
fessionals in the industry, teachers, and students need a
text that could be useful in faster acquisition of the
physical modeling process and theoretical formulations
used in the classical planar transmission lines. Similar
treatment is also needed for the modern engineered
EBG and metamaterial lines and surfaces.
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Therefore, the real motivation for writing this interme-
diate-level book is to fill the gap for a textbook on the pla-
nar transmission line that caters to the need for
classroom teaching, early researchers with divergent
backgrounds, and designers working in the microwave
industry. The book is intended to help students both
at the undergraduate and postgraduate levels. It also
serves the purpose of a resource book for self-study.
The detailed derivations of results and physical modeling
of the planar transmission lines are two basic concepts fol-
lowed through the book. The present book is neither a
design-oriented book nor an advanced monograph.

The book correlates the physical process with mathe-
matical treatment. The advancedmathematical methods
such as the conformal mapping method, variational
method, and spectral domain method applied to planar
lines are worked out in adequate details. The book fur-
ther covers modern topics such as the DGS/EBG, meta-
material-based planar transmission lines, and surfaces.
The approach used in writing the book is perhaps less
formal than most available texts. This approach is help-
ful for classroom teaching. It also assists the reader to
follow the contemporary developments in planar
technology.
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1

Overview of Transmission Lines

(Historical Perspective, Overview of Present Book)

Introduction

The transmission line is at the core of the communica-
tion technology system. It forms a medium for signal
transmission, and also helps to develop high-frequency
passive components and circuit blocks. Historically,
both experimental investigations and analytical theories
have played significant roles in the growth of transmis-
sion line technology. Each type of distinct line structure
is responsible for the development of distinct commu-
nication technology. The single-wire transmission line
with the Earth as a return conductor is responsible for
the operation of Telegraphy. It evolved into the coaxial
cable that made the Transatlantic Telegraphy possible.
The two-wire open line became a medium for the Tele-
phonic transmission. These two line structures are behind
the development of the monopole and dipole antenna
thatmade possible the growth of the high-frequency com-
munication using the medium wave (MW), short wave
(SW), very high-frequency (VHF), and ultra-high fre-
quency (UHF) bands. The microwave and mm-wave
transmission systems are developed mostly around the
metallic waveguides, and subsequently also using the
nonmetallic dielectric waveguides. Finally, it has resulted
in modern optical fiber technology. The planar transmis-
sion lines are behind the modern advanced microwave
communication components and systems.
The present chapter provides a very brief historical

overview of the classical and modern planar transmis-
sion lines. The chapter presents a historical survey of
the development of the electromagnetic (EM) theory
also. Next, a brief overview of the organization of the
book is discussed.

Objectives

• To present a survey of the developments of the classical
EM-theory.

• To present brief historical notes on the classical transmis-
sion lines and development of transmission line theory.

• To present brief historical notes on planar transmis-
sion lines.

• To present an overview of the contents of the book.

1.1 Overview of the Classical
Transmission Lines

The classical transmission lines such as a single-wire
line with the earth as a return conductor, coaxial cable,
two-wire line, multi-conductor lines, and waveguides
are reviewed very briefly in this section. The historical
development of the Telegrapher’s Equations is also pre-
sented. The developments of the theoretical concepts
of EM-theory are reviewed below. The data related to
the review of the EM-theory and transmission lines
are collected from the published books [B.1–B.7] and
journal articles referred at the end of the chapter.

1.1.1 Telegraph Line

The telegraph is the first coded point-to-point electrical
communication system. As early as 1747, William Wat-
son showed the possibility of transmitting an electrical
current on a wire using the earth as a return conductor.
Thus, overhead single-wirewith the earth as a return con-
ductor is the first transmission line. It is to be noted that
even the voltaic pile, i.e. the chemical battery of Volta
was nonexistent at that time. The Leiden jar, a capacitor
to store the static electrical charges, was invented just
two years before in 1745. However, much earlier in
the year 1663, Otto Von Guericke studied the phenom-
enon of static electricity and designed a machine to pro-
duce it. Thus, the charged Leiden jar became a source of
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electricity, and single-wire transmission was the
communication medium. These were two important
ingredients to establish the telegraph link. The third
ingredient of telegraphy, the electroscope, invented by
William Gilbert around 1600, acted as the receiver for
the coded signals. It is interesting to note that the
telegraph was conceived without any theoretical investi-
gations on electricity. Even Coulomb’s law was discov-
ered later in 1785. However, the proper telegraphy
could be developed only after the invention of voltaic
pile, i.e. a chemical battery by Volta in 1799. Further
development of the telegraph has an involved history.
In 1837, Morse patented his telegraph in the United
States, and on January 6, 1838, the first telegram was
sent over 3 km distance. Cooke commercialized the tel-
egraph in England and established the 21 km link on
April 9, 1839. Thus, an era of electrical communication
heralded. In 1844, long-distance Morse’s telegraph
between Washington, DC, and Baltimore, Maryland
was established. Before further reviewing the growth
of the classical transmission lines, it is useful to have a
quick look at the theoretical developments related to
electricity [B.5].

1.1.2 Development of Theoretical Concepts in
EM-Theory

The ancients unfolded our story of Electromagnetism
through careful observations of the phenomena of static
electricity and natural magnetism. The developments of
basic concepts, analytical modeling, and theoretical for-
mulations used in the EM-Theory are emphasized in the
review. The theoretical concepts of the electric and mag-
netic fields followed themathematical models developed
for the gravitational force by Newton in 1687, and subse-
quently refined by other investigators. The development
of the theoretical models of transmission lines inherited
the modeling process, and mathematical method of
Fourier developed for the transmission of heat in a rod.

Electrostatics and Scalar Potential

Newton published his theory of gravitation in his mon-
ograph Philosophiae Naturalis Principia Mathematica.
Newton viewed the gravitational interaction between
two masses through force. The effect of static electricity
was known for a long time, at least since 600 BC. How-
ever, only in 1600, Gilbert carried out systematic studies
of both magnetism and static electricity. The static elec-
tricity was generated by the rubbing of two specific
objects. He suggested the word electricus for electricity,
and the English word “electricity” was suggested by
Thomas Browne in 1646. Gilbert also suggested that

the electrical effect is due to the flow of a small stream
of weightless particles called effluvium. This concept
helped the formulation of one- and two-fluid model of
electricity. He also invented the first electrical measur-
ing instrument, the electroscope, which helped further
experimental investigations on electricity.
In 1733, Fay proposed that electricity comes in two

forms – vitreous and resinous, and on combination, they
cancel each other. The flow of the two forms of electric-
ity was explained by the two-fluid model. During this
time interval, around up to 1745, the electrical attraction
and repulsion were explained using the flow of Gilbert’s
particle effluvium. In 1750, Benjamin Franklin proposed
the one-fluid model of electricity. The matter containing
a very small quantity of electric fluid was treated as
negatively charged, and the matter with excess electric
fluid was treated positively charged. Thus, the negative
charge was resinous electricity, and the positive charge
was vitreous electricity. Now, the stage was ready for
further theoretical and experimental investigations on
electricity.
In the year 1773, Lagrange introduced the concept of

the gravitational field, now called the scalar potential
field, created by a mass. The gravitational force of
Newton was conceived as working through the gravita-
tional field. The scalar potential field has appeared as a
mechanism to explain the gravitational force interac-
tion between two masses. Thus, a mass located in the
potential field, described by a function called the poten-
tial function, experiences the gravitational force. In
1777, Lagrange also introduced the divergence theorem
for the gravitational field. The nomenclature potential
field was introduced by Green in 1828. Subsequently,
Gauss in 1840 called it “potential.” Laplace in 1782
showed that the potential function ϕ (x,y,z) satisfies
the equation ∇2ϕ = 0. Now the equation is called
Laplace’s equation.
Following the Law of Gravitation, Coulomb postulated

similar inverse square law, now called Coulomb’s law,
for the electrically charged bodies. He experimentally
demonstrated the inverse square law for the charged
bodies in 1785. Thus, the mathematical foundation of
the EM-theory was laid by Coulomb. The law was also
applicable to magnetic objects. The interaction between
charged bodies was described by the electric force. In
the year 1812, Poisson extended the concept of potential
function from the gravitation to electrostatics. Incorporat-
ing the charge distribution function ρ, he obtained the
modified Laplace’s equation, written in modern termi-
nology, ∇2ϕ = −ρ/ε0. This equation now called Poisson’s
equation is the key equation to describe the potential field
due to the charge distribution. In the same year, Gauss
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rediscovered the divergence theorem originally discov-
ered by Lagrange for the gravitational field.
In the year 1828, Green coined the nomenclature –

the potential function, for the function of Lagrange
and modern concept of the scalar potential field
came into existence. Green also showed an important
relation between the surface and volume integrals,
now known as Green’s Theorem. Green applied his
method to the static magnetic field also. Green also
introduced a method to solve the 3D inhomogeneous
Poisson partial differential equation where the consid-
ered source is a point charge. The point charge is
described by the Dirac’s delta function. The solution
of the Poisson’s partial differential equation, using
Dirac’s delta function, is now called Green’s function.
Neumann (1832–1925) extended the Green’s function
method to solve the 2D potential problem and obtained
the eigenfunction expansion of 2D Green’s function
[J.1–J.5, B.2, B.7].

Magnetic Effect of Current

So far, we have paid attention to the electrostatics. At
this stage, Leiden jar was the only source of static elec-
tricity. A source for the continuous electric current
was not available. Volta in 1799 invented the voltaic pile,
i.e. a chemical battery, and the first time a continuous
source of electric current came into existence. On April
21, 1820, it led to the discovery of the magnetic effect of
current flowing in a wire. The electric current became
the source of the magnetic field, encircling the cur-
rent-carrying wire. The magnetic effect of current was
discovered by Orsted (Oersted). In the same year,
Ampere showed that the co-directional parallel currents
flowing in two wires attract each other, and the counter-
currents repel each other. It was a very significant dis-
covery, i.e. creation of the attractive and repulsive
magnetic forces without any physical magnet. It firmly
established the relation between electricity and magnet-
ism. Ampere further developed an equation, presently
called Ampere’s Circuital Law, to connect the current
flowing in a wire to the magnetic field around it and
developed the right-hand rule. He called the new field
of electricity Electrodynamics and Maxwell recognized
him as the Father of Electrodynamics. Ampere further
modeled the natural magnetic materials as the materials
composed of perpetual tiny circulating electric currents.
He demonstrated the validity of his concept using the
current-carrying conductor in the helical form called a
solenoid. The solenoid worked like an artificial bar mag-
net. In the year 1820 itself, Biot–Savart obtained the

equation using the line integral to compute themagnetic
field at a position in the space due to the current flowing
in a wire [J.2, B.6, B.7].

Ohm’s Law

The voltaic pile helped the discovery of the magnetic
effect of current; however, surprisingly the relation
between the current flowing in resistance and voltage
across it, known as the Ohm’s law, remained undiscov-
ered. The primary reason was the unstable voltage
supplied by the voltaic pile. The discovery of thermoelec-
tricity by Seebeck in 1822 provided a constant voltage
source to supply continuous electric current. Using the
thermo-piles in the year 1826, Ohm obtained a simple
but powerful relation among voltage, current, and resist-
ance. It was the beginning of the Electric Circuit Theory.
However, only in 1850 Kirchhoff published his two
circuital laws and opened the path for the development
of the Network Theory. Kirchhoff also showed that Ohm’s
electroscopic force (voltage) and classical potential of
Lagrange, Laplace, and Poisson are identical. Interest-
ingly, Ohm’s law could be viewed as a symbol of the
International Scientific unity relating to Italy (Volta),
Germany (Ohm), and France (Ampere). Based on the
magnetic effect of current, in the same year, Johann
Christian Poggendorff invented the galvanometer to
detect the current in a wire. Kelvin improved its sensitiv-
ity by designing the mirror galvanometer in 1858 [B.1,
B.6, B.7].

Electric Effect of the Time-Varying Magnetic Field

On knowing the magnetic effect created by an electric
current, Faraday argued that the magnetic field can also
produce the electric effect. After some attempts, he rea-
lized that such an effect can’t be produced by the station-
ary magnet. In 1831, he could generate the electric
potential (electromotive force) and electric current by
the time-varying magnetic field of a moving magnet.
The phenomenon is called the induction effect. The volt-
age induction effect demonstrated that electricity could
be generated by a purely mechanical process, converting
the mechanical energy into electrical energy via the
medium of the moving magnetic field. The first DC gen-
erator was demonstrated by Faraday himself, and next
year French instrument maker Hippolyte Pixii built
the first A.C. generator inaugurating the Electrical Age.
Now, the electricity was ready to accelerate the
growth of human civilization at an unprecedented rate
[B.6, B.7].
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Concept of the Magnetic Vector Potential

In the process of discovery of induction, Faraday intro-
duced the concept of fields, and also suggested that the
electric energy resides in the field around the charged
body and the magnetic energy resides in the field around
the magnetized body. Thus, he viewed that the electric
and magnetic energies reside in the space around the
charged or magnetized body, not in the charge or
magnet.
The field concept has greatly influenced the further

development of EM-theory. The field provided a mech-
anism of interaction between charged bodies. Using
Ampere-Biot–Savart law of magnetic forces, and electro-
magnetic induction of Faraday, Neumann in 1845 intro-

duced the concept of the magnetic vector potential A to
describe the magnetic field. Subsequently, Maxwell

showed that the time derivative of A computes the

induced electric field E. Kelvin in 1847 further extended

the concept of the magnetic vector potential A to com-

pute the magnetic field using the relation B = ∇ × A.
This relation comes as a solution of the Gauss divergence

equation ∇ B = 0 due to the closed-loop of the
magnetic field, showing the nonexistence of a magnetic
charge. Kelvin further elaborated on the mathematical
theory of magnetism in 1851. It is interesting to note that
at any location in the space once time-dependent
magnetic vector potential function is known, both the
magnetic and electric fields could be computed as,

B = ∇ × A a

∇ × E = − ∂ B ∂t = ∇ × − ∂A ∂t

E = − ∂A ∂t b

1 1 1

Maxwell shared the views of Neumann and Kelvin.
However, time-retardation was not incorporated in
the scalar and vector potentials. In 1867, Lorentz intro-
duced the concept of retardation in both the scalar and
vector potentials to develop the EM-theory of light,
independent of Maxwell. The time-retardation only
in the scalar potential was first suggested by Riemann
in 1858, but his work was published posthumously in
1867 [J.1, J.2, B.6, B.7].

Maxwell’s Dynamic Electromagnetic Theory

At this stage of developments in the EM-theory, the elec-
tric field was described in terms of the scalar electric
potential, and the magnetic field was described by the
magnetic vector potential. Several laws were in exist-
ence, such as Faraday’s law, Ampere’s law, Gauss’s

law, and Ohm’s law. Now Maxwell, Newton of the
EM-theory, arrived at the scene to combine all the laws
in one harmonious concept, i.e. in the Dynamic Electro-
magnetic Theory. He introduced the brilliant concept of
the displacement current, created not by any new kind of
charge but simply by the time-dependent electric field.
Unlike the usual electric current supported by a conduc-
tor, this new current was predominantly supported by
the dielectric medium. However, both currents were
in a position to generate the magnetic fields. Thus, Max-
well modified Ampere’s circuital law by incorporating
the displacement current in it. The outcome was dra-
matic; the electromagnetic wave equation. Despite such
success, the concept and physical existence of displace-
ment current created a controversy that continues even
in our time, and its measurement is a controversial issue
[J.6–J.8].
In the year 1856, Maxwell formulated the Faraday’s

law of inductionmathematically, andmodified Ampere’s
circuital law in 1861 by adding the displacement current
to it. Finally in 1865 after a time lag of nearly 10 years,
Maxwell could consolidate all available knowledge of
the electric and magnetic phenomena in a set of 20 equa-
tions with 20 unknowns. However, he could solve the
equations to get the wave equations for the EM-wave
with velocity same as the velocity of light. Now, the light
became simply an EM-wave. In the year 1884, Heaviside
reformulated the Maxwell equations in a modern set of
four vector differential equation. The new formulation
of Maxwell equations was in terms of the electric and
magnetic field quantities and completely removed the
concept of potentials, considering them unnecessary
and unphysical. Hertz has independently rewritten the
Maxwell equation in the scalar form using 12 equations
without potential function. Hertz worked out these
equations only after Heaviside. In 1884, Poynting com-
puted the power transported by the EM-waves. Recog-
nizing the contributions of both Heaviside and Hertz
in reformulating Maxwell’s set of equations, Lorentz
called the EM-fields equationsMaxwell–Heaviside–Hertz
equations. However, in due course of time, the other two
names were dropped and the four-vector differential
equations are now popularly known as “Maxwell’s Equa-
tions” [J.1, J.6, J.9, J.10, B.5–B.7].

Generation and Transmission of Electromagnetic Waves

Maxwell’s EM-theory was a controversial theory, and
physicists such as Kelvin never accepted it. Hertz finally
generated, transmitted, and detected the EM-waves in
1887 at wavelengths of 5 m and 50 cm. In the process,
he invented the loaded dipole as the transmitting
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antenna, rectangular wire-loop receiving antenna, and
spark-gap both as transmitter and detector to detect
the propagated EM-waves. Thus, he experimentally
confirmed the validity of Maxwell equations and opened
the magnificent gateway of wireless communication.
In the year 1895, Marconi transmitted and received a

coded telegraphic message at a distance of 1.75 miles.
Marconi continued his works and finally on December
12, 1901, he succeeded in establishing the 1700 miles
long-distance wireless communication link between
England and Canada. The transmission took place using
the Hertzian spark-gap transmitter operating at the
wavelength of 366m. In the year 1895 itself, J.C. Bose
generated, transmitted, and detected the 6 mm EM-
wave. He used circular waveguide and horn antenna
in his system. In 1897, Bose reported his microwave
and mm-wave researches in the wavelengths ranging
from 2.5 cm to 5 mm at Royal Institution, London. Of
course, the Hertzian spark-gap transmitter was at the
core of his communication system. Bose was much
ahead of his time as the commercial communication sys-
tem grew around the low frequency, and the microwave
phase of communication was yet to come in the future.
In 1902, Max Abraham introduced the concept of the
radiation resistance of an antenna [J.11–J.13, B.1–B6].

Further Information on Potentials

Hertz is known for his outstanding experimental works.
However, as a student of Helmholtz, he was a high rank-
ing theoretical physicist. Although, he considered, like
Heaviside, electric and magnetic fields as the real phys-
ical quantities, still he used the vector potentials, now

calledHertzian potentials π
e
and π

m
, to solve Maxwell’s

wave equation for the radiation problem. These poten-
tials are closely related to the electric scalar potential

ϕ and magnetic vector potential A. Stratton further used
Hertzian potentials in elaborating the EM-theory [B.8].
Collin continued the use of Hertzian potentials for the

analysis of the guided waves. He also used the A and
ϕ potentials in the radiation problems [B.9, B.10]. The
use of Hertzian potentials gradually declined. However,
its usefulness in problem-solving has been highlighted
[J.1, J.11, J.12].
Gradually, the magnetic vector potential became the

problem-solving tool if not the physical reality. Further,
by using the retarded scalar and vector potentials and

Lorentz gauge condition ∇ A = − με∂ϕ ∂t connecting
both the vector and scalar potentials, Lorentz formu-
lated the EM-theory of Maxwell in terms of the magnetic
vector potential. In his formulation, a current is the

source of the magnetic vector potential A . So, Lorentz
considered the propagation of both the magnetic vector
and electric scalar potential with a finite velocity that
resulted in the retarded time at the field point. However,
Maxwell’s scalar potential was nonpropagating. Max-
well did not write a wave equation for the scalar poten-

tial, as his use of Coulomb gauge ∇ A = 0 was
inconsistent with it. Later on, even electric vector poten-

tial F was introduced in the formulation of EM-theory.
The nonphysical magnetic current, introduced in Max-
well’s equations by Heaviside, is the source of potential

F . The use of vector potentials simplified the computa-
tion of the fields due to radiation from wire antenna and
aperture antenna. A component of the magnetic/electric
vector potential is a scalar quantity. It has further helped
the reformulation of EM-field theory in terms of the elec-
tric scalar and magnetic scalar potentials [B.9, B.10].
Such formulations are used in the guided-waves analy-
sis. In recent years, it has been pointed out that the
Lorentz gauge condition and retarded potentialswere for-
mulated by Lorenz in 1867, much before the formulation
of famous H. A. Lorentz [J.14, J.15]. However, most of
the textbooks refer to the name of Lorentz.
Both Heaviside and Hertz considered only the electric

and magnetic fields as real physical quantities, and mag-
netic vector and electric scalar potentials as merely aux-
iliary nonphysical mathematical concepts to solve the
EM-field problem. Possibly, this was not the attitude
of Kelvin and Maxwell. They identified the electrical
potential with energy, and magnetic vector potential

withmomentum. Themagnetic vector potential A could
be considered as the potential momentum per unit
charge, just as the electric scalar potential ϕ is the poten-
tial energy per unit charge [J.16]. The potential momen-

tum P is obtained as follows:

F =
d P
dt

= qE = −
∂ qA

∂t
, P = qA

1 1 2

In the above equation, F is the force acting on the

charge q, and E is given by equation (1.1.1b).
Lebedev in 1900 experimentally demonstrated the radi-

ation pressure, demonstrating momentum carried by the
EM-wave. The energy andmomentum carried by the EM-
wave indicate that the light radiation could be viewed as
some kind of particle, not a wave phenomenon. A particle
is characterized by energy and momentum. Such a dual
nature of light is a quantum mechanical duality
phenomenon. Einstein introduced the concept of the light
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particle, called “photon” to explain the interaction of light
with matter, i.e. the photoelectric effect. However, Lorentz
retained the classical wave model to explain the interac-
tion between radiation and matter via polarization of
dipoles in a material creating its frequency-dependent
permittivity.
It is to be noted that at a location in the space, even for

zero B and E fields, the potentials A and ϕ could exist
[B.11]. Aharonov–Bohm predicted that the potential

fields A and ϕ, in the absence of B and E, could influ-
ence a charged particle. Tonomura and collaborators
experimentally confirmed the validity of Aharonov–
Bohm prediction. The Aharonov–Bohm effect demon-

strates that B and E fields only partly describe the
EM-fields in quantum mechanics. The vector potential
also has to be retained for a complete description of
the EM-field quantum mechanically [J.3, J.16, J.17].
However, to solve the classical electromagnetic pro-
blems, such as guided wave propagation and radiation
from antenna, Heaviside formulation of Maxwell equa-
tions and potential functions as additional tools is
adequate.

EM-Modeling of Medium

The above brief review omitted developments in the
electromagnetic properties of the material medium.
A few important developments could be summarized.
In 1837, Faraday introduced the concept of the dielectric
constant of a material. In 1838, he introduced the con-

cept of electric polarization P in dielectrics under the
influence of the external electric field. Soon after the dis-
covery of the electron in 1897 by J.J. Thomson, the mod-
els around electrons were developed to describe the
electromagnetic properties of a material. Around 1898,
John Gaston Leathem obtained an important relation

D = E + P , connecting the displacement of charges
in a material with polarization. Kelvin, in the year
1850, developed the concept of magnetic permeability

and susceptibility with separate concepts of B , M, and

H to characterize a magnetic material. In 1900, Drude
developed the electrical conduction model, now known
as the Drude model, after electron theory. Subsequently,
themodel was extended to the dielectric medium by Lor-
entz in 1905. The model called the Drude-Lorentz model
explains the dispersive property of dielectrics. In the year
1912, Debye developed the concept of dipole moment
and obtained equations relating it to the dielectric
constant. These models laid the foundation to study of
the electric and magnetic properties of natural and

engineered materials under the influence of external
fields [B.4, B.6, B.7, B.12]

1.1.3 Development of the Transmission Line
Equations

Kelvin’s Cable Theory

During the period 1840–1850, several persons conceived
the idea of telegraph across the Atlantic Ocean. Finally,
in the year 1850, the first under-sea telegraphy, between
Dover (Kent, England) and Calais (France), was made
operational. However, no cable theory was available at
that time to understand the electrical behavior of signal
transmission over the undersea cable.
In 1854, Kelvin modeled the under-sea cable as a coax-

ial cable with an inner conductor of wire surrounded by
an insulating dielectric layer, followed by the saline sea-
water acting as the outer conductor [J.18, B.1]. The coax-
ial cable was modeled by him as a distributed RC circuit
with the series resistance R per unit length (p.u.l.) and
shunt capacitance C p.u.l. It was the time of the fluid
model of electricity. Kelvin further conceived the flow
of electricity similar to the flow of heat in a conductor.
Fourier analysis of 1D heat flow was in existence since
1822. Following the analogy of heat equation of Fourier,
Kelvin obtained the diffusion type equation for the trans-
mitted voltage signal over the under-sea coaxial cable:

∂2v
∂x2

= RC
∂v
∂t

1 1 3

This is the first Cable Theory; Kelvin called the above
equation the equation of electric excitation in a subma-
rine telegraph wire. Kelvin’s model did not account for
the inductance L p.u.l. and the conductance G p.u.l. of
the cable. The cable inductance L is due to the magnetic
effect of current, and G is due to the leakage current
between the inner and outer conductors. However,
cable theory was a great success. Following the method
of Fourier, he solved the equation for both the voltage
and current signals. At any distance x on the cable, a
definite time-interval was needed to get the maximum
current of the received signal. The galvanometer was
used to detect the received current. This time-interval
called the retardation time of the received current sig-
nal also depends on the square of the distance. Moreo-
ver, the telegraph signals constituted of several waves
of different frequencies, and their propagation veloci-
ties were frequency-dependent. It limited the speed of
signal transmission for long-distance telegraphy. The
conclusions of Kelvin’s analysis were ignored, and
1858 transatlantic cable worked only for three weeks.
It failed due to the application of 2000 V potential pulse
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on the cable. The speed of transmission was just 0.1
words per minute. Finally, following Kelvin’s advice
and using a very sensitive mirror galvanometer
invented by him, the transatlantic telegraph was suc-
cessfully completed in 1865 with eight words per
minute transmission speed [B.1–B.3].

Heaviside Transmission Line Equation

The limitation of the speed of telegraph signals was not
understood at that time. The RCmodel of the cable, lead-
ing to the diffusion equation, and use of the time-domain
pulse could not explain it. Moreover, it became obvious
that the RC model couldn’t be used to understand the
problems related to voice transmission over telephonic
channels. The telephony was coming into existence.
The modern telephone system is an outcome of the
efforts of several innovators. However, Graham Bell
got the first patent of a telephone in the year 1874. The
transmitted telephonic voice signal was distorted. There-
fore, an analytical model was urgently needed to
improve the quality of telephonic transmission. Heavi-
side in 1876 introduced the line inductance L p.u.l. and
reformulated the cable theory of Kelvin using Kirchhoff
circuital laws [B1, B.3]. The formulation resulted in the
wave equation for both the voltage (V) and current (I)
waves on the line:

∂2T
∂x2

= RC
∂T
∂t

+ LC
∂2T
∂t2

, where T = V, I

1 1 4

In the case of line inductance L = 0, the above equa-
tion is reduced to the diffusion type cable equation (1.1.3)
of Kelvin. Using the Fourier method, Heaviside solved
the aforementioned time-domain equation. Only in
1887, he could introduce the line conductance G p.u.l
in his formulation to account for the leakage current
in an imperfect insulating layer between two conduc-
tors. Finally, Heaviside obtained a set of coupled trans-
mission line equations using all four line constants R, L,
C, and G. Subsequently, the coupled transmission line
equations were called the Telegrapher’s equations. At
the end, Heaviside obtained the following modified
wave equation:

For lossy line

∂2T
∂x2

= RC + LG
∂T
∂t

+ LC
∂2T
∂t2

+ RG T a

For lossless line

∂2T
∂x2

= LC
∂2V
∂t2

, where T = V, I b

1 1 5

To solve the above time-domain equation, Heaviside
developed his own intuitive operational method
approach by defining the operator ∂/∂t p. The use of
the operator reduced the above partial differential equa-
tion to the ordinary second-order differential equation.
Finally, he solved the equation under initial and final
conditions at the ends of a finite length line. In the proc-
ess, he obtained the expressions for the characteristic
impedance and propagation constant in terms of line
parameters. Heaviside could obtain results for the
line under different conditions. For a lossless line,
R = G = 0, the equation (1.1.5b) is obtained. Conceptu-
ally, the characteristic impedance provided a mechan-
ism to explain the phenomenon of wave propagation
on an infinite line. At each section of the line, it behaved
like a secondary Huygens’s source providing the for-
ward-moving wave motion. Heaviside also obtained
the condition for the dispersionless transmission on a real
lossy line, and suggested the inductive loading of a line to
reduce the distortion in both the telegraph and tele-
phone lines. Afterward, his intuitive operational method
approach developed into the formal Laplace transform
method, widely used to solve the differential equa-
tions [J.19, J.20, B.1–B.3, B.13].
The method of Heaviside was further extended by

Pupin in 1899 and 1900. Pupin introduced the har-
monic excitation in the wave equation as a real part
of the source V0e

jpt [J.21, J.22]. This was an indication
of the use of the modern phasor solution of the wave
equation. Similar analytical works, and also practical
inductive loading of the line was done by Campbell
at Bell Laboratory. He published the results in 1903
[J.23]. In July 1893, Steinmetz introduced the concept
of phasor to solve the AC networks of RLC circuits.
In 1893, Kennelly also published the use of complex
notation in Ohm’s law for the AC circuits [J.24]. Carson
in 1921 applied the method to solve Maxwell’s equa-
tions for the wave propagation on closely spaced lines,
and also analyzed for the mutual impedances. Carson
in 1927 developed the electromagnetic theory of the
Electric Circuits, and paved the way for the modeling
of the wave phenomena using the circuit models
[J.25, J.26].
Peijel in 1918, and Levin in 1927 analyzed the wave

propagation on the parallel lines. Levin extended the tel-
egrapher’s equations to the multiconductor transmission
lines using Maxwell’s equations [J.27]. In 1931 Bewley
presented a set of wave equations on the coupled multi-
conductor lines. Subsequently, Pipes introduced the
matrix method to formulate the wave propagation prob-
lem on the multiconductor lines [J.28, J.29]. Thus, the
theoretical foundation was laid to deal with the complex
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technical problems related to transmission lines. Start-
ing with Marconi wireless in 1895, several improve-
ments took place in the long-range wireless
telegraphy. Also, the audio broadcasting was developed
between 1905 and 1906 and commercially, around
1920–1923, in the long-wave, medium-wave, and
short-wave RF frequency bands [B.5]. Now, the time
was ripe for microwave and mm-wave communication.
The above discussion shows that the Telegrapher’s

equations have come in existence due to the contribu-
tions of both Kelvin and Heaviside. To recognize their
contributions, we call in this book the Telegrapher’s
equations as the Kelvin-Heaviside transmission line equa-
tions. Also, as the characteristic impedance behaves as
the secondary Huygens’s source, so it can also be viewed
as the Huygens’s load. Such Huygens’s load distributed
over a surface forms the modern Huygens’s metasurface,
discussed in the chapter 22 of this book.

1.1.4 Waveguides as Propagation Medium

Heaviside reformulated Maxwell equation in 1884. He
rejected the idea of EM-wave propagation in a hollow
metallic cylinder. In his opinion, two conductors, alter-
natively one conductor and the earth as a ground con-
ductor are essential for the EM-wave propagation.
However, in 1893 J.J. Thomson expressed the possibility
of the EM-wave propagation in a hollow cylinder [B.12].
Next year, Oliver Lodge verified it experimentally. In the
year 1895, J.C. Bose used the waveguide and horn
antenna for the mm-wave transmission and reception.
In 1897 he reported the work at Royal Institution in Lon-
don [B.5]. However, it was Rayleigh who carried out a
detailed solution of boundary-value problems. He
obtained the normal mode solution, showing wave prop-
agation in the form of the distinct discrete modes, i.e. the
normal modes. He obtained his solutions for both the TE
and TMmodes, and introduced the concept of the cutoff
frequency for modes. He further examined the EM-
wave propagation on a dielectric waveguide [J.30]. In
1920 Rayleigh, Sommerfeld and Debye continued the
researches in this direction.
However, only in 1930 proper experimental investiga-

tions of the wave propagation in the waveguides were
undertaken by G. C. Southworth at Bell Labs, and
W.L. Barrow atMIT. In 1934,microwave commercial link
was established, and in 1936, Southworth and Barrow
discovered the possibility of using the waveguide as a
transmission medium. However, they published their
works only in 1936 [J.31, J.32, B.5]. During the same
time-period, Brillouin also investigated the wave

propagation in a tube [J.33]. Serious analytical work
on waveguides was further undertaken by J.R Carson,
S.P. Mead, and S.A. Schelkunoff around 1933 [J.34].
Almost forgotten analytical works of Rayleigh was rein-
vented. Chu and Barrow further investigated the EM-
waves propagation in the elliptical and rectangular hol-
low metallic pipes [J.35]. During 1934, Schelkunoff
extended the concept of impedance to the EM-wave
propagation in the coaxial line, and obtained the trans-
mission line equations using the electromagnetic the-
ory [J.36]. In 1937, he further extended the theory to
the TE and TM mode guided wave propagations, and
obtained the circuit models of mode supporting wave-
guides. Finally, Schelkunoff generalized the standard
telegrapher’s equation, using Maxwell’s EM-theory to
represent an infinite set of uncoupled and coupled
modes of a waveguide by the system of uncoupled
and coupled transmission line equations [J.37–J.39].
Subsequently, his method has been extended to planar
lines in an inhomogeneous medium supporting the
hybrid modes [B.13].
During theWorldWar-II period, important theoretical

and practical works were done in the field of waveguide
technology for the development of the waveguide-based
components and systems. The development of Radar
provided the impetus for such research activities.

1.2 Planar Transmission Lines

A brief review of the development of planar transmis-
sion lines, influencing modern microwave technology,
is presented below. A review is also given for the analyt-
ical methods as applied to the planar line parameters.

1.2.1 Development of Planar Transmission Lines

The waveguide is a low-loss transmission medium capa-
ble of handling high power transmission. However, it is
a bulky structure with limited bandwidth. The fabrica-
tion of waveguide-based components is a complex and
expensive machining process. The limitations of the
waveguide provided an impetus for the growth of planar
lines, and technology based on the planar lines. H.A
Wheeler, in 1936, developed a low-loss coplanar stri-
pline, and in 1942 created parallel plate strip transmis-
sion line on a high permittivity substrate. The line
structure was compact and suitable at low RF frequency
from 150MHz to 1500MHz. However, properly docu-
mented stripline was reported by R.M. Barrett only in
1951. Just next year, i.e. in 1952, Grieg and Engelmann
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reported microstrip line. Both structures competed with
each other. Initially, the stripline in the homogeneous
medium was a preferred line, as it is a dispersionless line
with a larger bandwidth. It supports the TEM mode
propagation. As it is a shielded line, so it also has a
higher Q-factor. Whereas, the microstrip in the inhomo-
geneous medium is a dispersive line as it supports the
dominant hybrid mode. It has a smaller bandwidth
and lower Q-factor. During 1960, solid-state components
started appearing, and microstrip became the preferred
line structure for the MIC environment. The microstrip
is an open structure that provided easier access for the
interconnections. It led to the development of miniatur-
ized microstrip integrated circuit (MIC) technology.
Gradually, the discrete active devices were combined
with the planar passive microwave components, and
the hybrid MIC (HMIC) came into existence. The sixties
were a very creative period for the planar line technol-
ogy. In 1968, Cohn reported the slot line followed by
the coplanar waveguide (CPW) that became the medium
of MMIC. C.P. Wen in 1969 developed the CPW. It is an
interesting and unusual coincidence that the abbrevia-
tion of both the line name and inventor’s name is
CPW. The integration of the slot line with waveguide
took place in 1972 whenMeier reported the quasi-planar
fin line [J.40–J.44].
Further compactness in the microwave circuits

and systems took place through the development of
the monolithic MIC (MMIC) circuit concept in the year
1964. At this stage, the MMIC was based on silicon tech-
nology. Unfortunately, the program was not successful
due to the very lossy Si-substrate. The semi-insulating
Si-substrate deteriorated in the process of the formation
of active devices, such as bipolar junction transistors
(BJTs) on a Si-substrate. The next phase of MMIC
development took place for the GaAs substrate-based
technology in 1968. It required nearly 10–12 years for
its more meaningful development. The span of
1980–1986 was a period of rapid growth for MMIC
technology. In 1990s, SiGe based technology was devel-
oped that permitted operation of high-efficiency circuits
at higher frequencies. The MMIC technology achieved
its maturity for the MMIC based on the silicon and
indium–phosphide (InP) substrates apart from the
GaAs substrate. At the core of the development were
the multilayer planar lines and new varieties of active
devices [J.45].
Another kind of Si-based technology, namely the

micro-electro-mechanical system (MEMS) gradually
came to the fields of RF and microwave. Petersen’s
reported the MEMS membrane-based switches in

July 1979. However, after a long gap, Yao and Chang
developed the surface MEMS switch for DC-4 GHz
operation and high-quality MEMS inductor chip could
be realized in 1997. Subsequent years witnessed a reduc-
tion in operating voltage of MEMS switches. The opera-
tion of MEMS in the microwave and mm-wave ranges
expanded their applications in the field of the antenna
and other microwave systems [J.46–J.48].
The robust and compact multilayer ceramic tape-

based microwave technology, called the low-temperature
co-fired ceramics (LTCC) gradually acquired significance
for the development of the hybrid integrated circuits. It
started in 1950–1960 to develop more robust capacitors.
The several layers of different materials are used in a sin-
gle multilayer laminated package to design multi-
functionality circuit-blocks. The planar lines in the
LTCC are used in the multilayer and multilevel formats
as a medium to develop the components and intercon-
nect [J.49, J.50].
Further innovations in the planar microwave technol-

ogy were added by incorporating the periodic reactive
loading of planar lines and planar surfaces resulting in
the electronic band-gap (EBG) lines and EBG surfaces
for awide range of applications. Long ago, the theoretical
basis for the analysis of the periodic structures was sum-
marized by L. Brillouin [B.14]. The theoretical concept of
the metamaterial as a double negative (negative permit-
tivity and negative permeability) material medium, and
its radical impact on behaviors of the electromagnetic
phenomena were worked out by Victor Veselago in
1967. The practical development of the metamaterials
is an outcome of a long history of artificial dielectrics
andmixture medium. However, only in 1996–1999, Pen-
dry and co-workers suggested, and further experimen-
tally demonstrated, the artificial negative permittivity
below the controlled plasma frequency. It was realized
by using the periodic arrangement of thin conducting
wires. Further, in 1999 Pendry and co-workers suggested
and experimentally produced resonance type magnetic
behavior in the split coaxial conducting cylinders. How-
ever, only Smith and co-workers worked out the simul-
taneous negative permittivity and negative permeability
in 2000, and experimentally verified it in 2001. Gradu-
ally, the concept of metamaterials was added to the pla-
nar lines and surfaces resulting in the realization of
metalines and metasurfaces. These artificial structures
have significantly influenced the design and develop-
ment of unique antenna, components, and circuits with
new characteristics and multifunctionality. Present
researches in these fields are in progress in many direc-
tions [J.51–J.55].
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1.2.2 Analytical Methods Applied to Planar
Transmission Lines

Assaudourion and Rimai considered the microstrip in
the quasi-static limit. They assumed the TEM mode
propagation on it. They applied, in 1952, the well-
established conformal mapping method to compute the
characteristic impedance, dielectric, and conductor
losses. Between the years 1954 and 1955, Cohn also used
the conformal mapping method to get the design-
oriented results for the characteristic impedance, dielec-
tric and conductor losses of the stripline. He further used
the conformal mapping method to get the odd-even
mode impedances of the edge-coupled strip lines in
1955 itself. He further obtained these results for the
broadside-coupled strip lines in 1960. Following the con-
formal mapping method, in 1964 and 1965 Wheeler pro-
duced more accurate and design-oriented expressions
for the computation of characteristic impedance of
microstrip line. He extended his analysis to get further
results in 1977 and 1978 [J.56–J.64].
In 1969 Cohn suggested another planar line, i.e. the

slot line. It is a complementary structure of the micro-
strip line. He also presented the equivalent waveguide
model of the slot line, and obtained the frequency-
dependent propagation parameters of the slot line. Next
in the group of the planar lines is the coplanar waveguide
(CPW) proposed by C.P. Wen. He obtained the initial
quasi-static line parameters of CPW using the conformal
mappingmethod. Subsequently, the conformal mapping
method was applied to analyze several variants of the
planar lines [J.65–J.67].
Other quasi-analytical and numerical methods were

also used for the analysis of microstrip lines. For
instance, in 1968 Yamashita and Mitra introduced
the quasi-analytical variational method in the Fourier
domain to obtain the quasi-static line parameters of
the microstrip line. It was the prelude to the quasi-
analytical dynamic spectral domain analysis (SDA) of
microstrip and other planar lines. The dynamic SDA is
a full-wave analysis method that considers the hybrid
mode nature of planar lines. After a gap of nearly 10
years, Itoh used the concept of the discrete Fourier trans-
form and Galerkin’s method to get the static line para-
meters of suspended coupled microstrip lines, and also
extended the method to suspended multiconductor
microstrip structures. The Fourier domain method
was significantly extended by many investigators to
other planar structures such as the CPW [J.68–J.71,
B.15, B.16].
In 1973 and 1974, Itoh and Mitra introduced the

dynamic SDA to obtain dispersion characteristics of

the slot line, and also microstrip line. Jansen extended
the dynamic SDA to analyze the higher order modes
in the microstrip. The method is very powerful and ana-
lytically elegant. It has been used and improved by other
researchers in the field of planar resonators, antenna,
and line structures. Other powerful methods, such as
the method of moments, finite elements, finite-difference
time-domain method, and so on have also been devel-
oped to analyze the 2D and 3D complex planar struc-
tures. The contemporary EM-Simulators are based on
these numerical methods. The closed-form models for
faster computation of the static and frequency-
dependent line parameters of planar lines have also been
developed by several investigators. The closed-form
models of lines, discontinuities, and so on helped
the development of the Circuit Simulators [J.72–J.75,
B.15, B.16].

1.3 Overview of Present Book

The book presents a seamless treatment of the classical
planar transmission lines and modern engineered planar
lines using the concept of the engineered electromag-
netic bandgap (EBG) structures and metamaterials.
The modern EBG and metamaterials based planar lines
are the outcome of the classical researches in the artifi-
cial dielectrics and concept of homogenization of mixing
of inclusions in the host medium. Gradually, the modern
microwave planar transmissions became a complex
medium of wave propagations on the 1D lines and 2D
surfaces. It demanded serious considerations of wave–
matter interactions, especially in the engineered materi-
als by the microwaves researchers and engineers. It
demanded a physical understanding of various electro-
magnetic phenomena taking place in the artificially
engineered complexmedium. It also required the analyt-
ical and circuit modeling of the planar transmission
lines under the complex environment. The present
book: Introduction toModern Planar Transmission
Lines (Physical, Analytical, and Circuit Models
Approach) addresses these problems from the very
basics, making it suitable for the early comers to the
fields. However, the detailed treatment of topics could
be also useful to more experienced professionals and
engineers. The numerical methods used in the analysis
of the planar structures and basis of the EM-simulators
are more specialized topics beyond the scope and line of
thought followed in the present book.
The key concept used throughout the book is the mod-

eling, physical, analytical, and circuit, of the planar
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structures. However, what is the meaning of modeling
itself? Scientific modeling is a process of understanding
the unknown with the help of known. The reverse is not
possible. The method of analogy is a great tool in such
a modeling process. The growth of electromagnetic field
theories at different stages has evolved from the previ-
ously known results of the gravitational field. Likewise,
the gradual development of the transmission line
theory has used the analogy of heat flow. These are
two important illustrative examples discussed in the pre-
vious section. The experimental observation and the
experimental verification of the theoretically predicted
results are further contributors to the modeling process.
The scientific modeling process has been examined in
depth by the modern educationists [B.17]. The reader
can observe such amodeling process in the development
of models for the complex planar medium exhibiting
unique properties.

1.3.1 The Organization of Chapters in This Book

The chapters of this book are organized into four distinct
groups as follows:

i) Introductory transmission line and EM wave
theory.

ii) Basic planar lines and Resonators: Microstrip,
CPW, Slot lines, Coupled lines, and Resonators.

iii) Analytical Methods: Conformal mapping method,
Variational method, Full- wave SDA, and SLR
formulation.

iv) Contemporary engineered planar structures: Peri-
odic planar lines and surfaces, Metamaterials –
Bulk, 1D metalines, 2D metasurfaces.

The group i reviews the transmission line and the
EM-theory to assist the reader to follow the rest of
the chapters with ease. The groups ii and iii form
the classical transmission lines, and the group iv is
the modern transmission lines and surfaces. The book
presents a seamless treatment of the classical planar
transmission lines and the modern engineered planar
lines and surfaces using the concept of EBG and meta-
materials. The modern EBG and metamaterials based
planar lines are the outcome of the classical researches
in the artificial dielectrics and concept of homogeniza-
tion of mixing of inclusions in the host medium. The
topics of the chapters are selected to provide compre-
hensive coverage of the needed background to under-
stand the functioning of both the classical and modern
lines and surfaces. Each chapter follows a uniform
style. The topics within a chapter start with simple
concepts and move to a higher complexity level.

Likewise, the chapters are also arranged from the sim-
pler to complex.
The distribution of the chapters among the groups is

discussed below. The key features of the chapters are
also summarized.

Introductory Transmission Line and EM-Wave Theory

The six chapters, chapters 2–7, on the transmission lines
and various aspects of the EM-theory are introduced in
the book before even commencing with the microstrip
in chapter 8. These topics provide the essential back-
ground to follow smoothly the topics covered in this book.
It could be useful in understanding the analysis andmod-
eling of the planar line structures, the EBG based lines,
and surfaces, and also the metamaterials and metasur-
faces. Moreover, the topics discussed may also help to
understand the modern publications in these fields. The
usual undergraduate textbooks on the EM-theory do not
cover all the topics. However, the reader’s familiarity with
the transmission line and EM-theory is assumed. The
reader interested in a more detailed study of these topics
can follow the references given at the end of the chapters.
Some contents of the chapters are highlighted below.
The chapters 2 and 3 on transmission lines are written

as a review. However, it goes beyond a regular review,
although it starts with the familiar notion of oscillation
and wave propagation on lines. Usually, the available
textbooks present the transmission line equations and
wave equations for the uniform lines only, without
any source. The present book covers the transmission
line equations and wave equations with a source, and
the analysis of the multisection transmission lines is also
introduced. Such formulation is used in the chapters 14
and 16 to obtain the Green’s functions of planar trans-
mission lines used with the variational method and
full-wave spectral-domain analysis (SDA) method. The
chapter on the transmission line adequately covers the
concept of dispersion in the wave supporting medium.
Also, the impact of the reactive loading of the line on
the nature of wave propagation is discussed. Such treat-
ment prepares a reader for the periodically loaded engi-
neered lines and surfaces, both as the bandgap medium
and homogenized metamaterial medium. These topics
are discussed in chapters 19–22. Chapter 3 covers vari-
ous parameters used for the characterization of a line
section. Understanding of this topic is essential for
understanding the microwave components design, the
results obtained from EM-simulation, and to develop
the circuit models.
Chapters 4 and 5 cover the wave’s propagation in the

material medium. Again, primarily it is a review of the
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EM-theory. However, its perspective is very broadly
applicable to the topics discussed in other chapters.
The chapter 4 commences with a basic review of the
electromagnetics and elementary electrical properties
of the material medium, such as linearity, nonlinearity,
homogeneity, inhomogeneity, anisotropy, and losses. It
further covers the topic of the circuit modeling of a
medium. The known topics of Maxwell’s equations in
the differential form, as well as in the vector-algebraic
form are presented. The wave propagation is discussed
not only in the isotropic and conducting media but also
in the anisotropic, uniaxial, gyroelectric, and biaxial
media. The complex media are encountered by the wave
propagating in the metamaterials. While reviewing the
wave polarizations, the Jones matrix description of
polarization states is also discussed. It is needed to follow
the contemporary developments in the metasurfaces.
Chapter 4 ends with the concepts of isofrequency con-
tours and isofrequency surfaces, and the dispersion rela-
tions in the uniaxial medium.
Chapter 5 reviews both the normal and polarization-

dependent oblique incidence of the waves at the inter-
face of two media. It also presents the equivalent trans-
mission line model of the wave’s incidence at the
interface of two media. The model can be extended to
more number of layers. The formulation hasmany appli-
cations. The model is used for instance in chapter 20 on
the EBG surface. The chapter 5 also presents the basic
electrodynamics of the engineered metamaterials and
formulate the basic characteristics of the wave pro-
pagation in the metamaterials. It also discusses some
important directions for applications of metamaterials.
However, the realization of the bulk metamaterials,
metalines, andmetasurfaces are followed up in the chap-
ters 21 and 22.
Chapter 6 covers a review of the electrical properties of

the natural and artificial dielectric media. It also pre-
sents various static and frequency-dependent models
of the mixture media. The artificial dielectric medium
finds its application in modeling the metamaterials.
The Lorentz, Drude, and Debye models applicable to
the frequency-dependent permittivity are discussed.
Chapter 6 further discusses the interfacial polarization
and its circuit model. This important topic is usually
not discussed in popular textbooks. The modeling of
the substrates, using the single term Debye and Lorentz
models, as well as the multi-term and wideband Debye
models are elaborated. These models help to get the
causal effective permittivity of the planar lines of the
substrates, useful in the time-domain analysis of pulse
propagation on the planar lines. Finally, the chapter
ends with a novel concept of artificial metasubstrate.

Chapter 7 comprehensively treats basic waveguide
structures. It begins with the classification of the modal
EM-fields, and the sources of their generation. The
waveguides are analyzed using the scalar electric and
magnetic potentials. The spectral domain analysis
(SDA) method discussed in chapter 16 is based on these
scalar potentials. The concept of the perfect electric con-
ductor (PEC) and the perfect magnetic conductor (PMC)
with boundary conditions are introduced. The analysis
of the rectangular geometry of the waveguides formed
with these surfaces is presented. Thus, apart from the
usual all metallic walls, i.e. the PEC based waveguides,
all PMC and two PEC and two PMC walls waveguides
are also discussed. The dielectric slab waveguides and
surface-waveguides are also presented. The concept of
the odd/even mode analysis is introduced. These con-
cepts are used in the book for the analysis of symmetri-
cally coupled planar lines in chapters 11 and 12. The
simple and powerful transverse resonance method
(TRM) is introduced to get the propagation characteris-
tics of the dielectric-loaded waveguides and the multi-
layer surface-waveguides. Finally, chapter 7 ends with
the contemporary substrate integrated waveguide (SIW)
developed in the environment of the planar technology.

Basic Planar Lines and Resonators

The planar line structures – microstrip, CPW, and slot
line are discussed in chapters 8–10, respectively. The
chapters 11 and 12 cover the theory of the coupled trans-
mission lines and their realization and analysis in the
planar technology environment. The theory of resonat-
ing structures and planar lines version of the resonators
are discussed in chapters 17 and 18, respectively. The
fabrication technologies – MIC, MMIC, MEMS, and
LTCC used in the planar lines and components are
reviewed in chapter 13.
The microstrip is the most commonly used planar

line in planar technology. It is in the inhomogeneous
medium supporting the hybrid-mode that is approxi-
mated as the dispersive quasi-TEM mode. However, at
the lower frequency, it is treated in the nondispersive
static condition. Chapter 8 introduces the concept of
medium transformation from the inhomogeneous
medium to the homogeneous medium using Wheeler’s
transformation for the lossy microstrip medium. The
results on the static microstrip line parameters are sum-
marized. The dispersion law is discussed to get the
dispersion model of microstrip. Some other dispersion
models are also summarized. The losses and their com-
putation are presented in detail. Finally, chapter 8 ends
with the circuit model of the microstrip line giving the
complex frequency-dependent characteristic impedance
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and propagation constant. The circuit model explains
the behavior of the low-frequency dispersion due to
the finite conductivity of the conductors. Several topics
are covered for the first time in a book form. The deriva-
tions of some frequently used expressions are provided.
The coplanar waveguides (CPW) and the coplanar stri-

pline structures (CPS) and their variations are discussed
in chapter 9. The approach used in this chapter is based
on the detailed derivation of the results using the confor-
mal mapping method. Usually, the available books only
summarize the results of the conformal mapping
method. However, chapter 9 briefly presents the confor-
mal mapping method as applied to the CPW and CPS.
The characteristics of the modes, dispersion, and losses
are presented in detail. The results are also presented for
the synthesis of the CPW and CPS line structures.
Finally, the circuit models of the lossy CPW and CPS
are given to get the frequency-dependent complex char-
acteristics impedance and propagation constant.
The modeling of the third important planar line, i.e.

the slot line is presented in chapter 10. The modeling
process is based on the unique waveguide model of Cohn.
The model provides the frequency-dependent character-
istic impedance and propagation constant of the slot
line, supporting the hybrid mode. The waveguide model
of the slot line treats the hybrid-mode as a linear combi-
nation of the TE and TM modes. The equivalent wave-
guide model is further extended to the multilayer and
shielded slot line structures. The chapter ends with the
closed-form integrated model of the slot line to compute
the dispersion and loss parameters.
The next two chapters 11 and 12 cover the basic

characteristic of the coupled lines theory and
implementation of theory in the planar technology.
Chapter 11 discusses the coupling mechanism and
the analysis of symmetrical and asymmetrical coupled
lines. The wave equation of the coupled transmission
is obtained and solved in some cases. Chapter 12
summarizes the design expressions for the edge
coupled and broadside coupled microstrip lines. Sim-
ilar expressions are also summarized for the coupled
CPW line structures. The network parameters for both
symmetrical and asymmetrical coupled line sections
are discussed in detail. Such an analysis is useful for
the design of the filters.
At this stage, the further discussion of the planar line

structure is discontinued and the fabrication technolo-
gies suitable for the planar lines and components are
introduced in chapter 13. The chapter 13 discusses, in
brief, the four kinds of fabrication technologies – the
hybrid microwave integrated circuit (HMIC) suitable for
the PCB board medium, the semiconductor based

monolithic MIC (MMIC) technology, the silicon-based
micro-electro-mechanical systems (MEMS) technology,
and the ceramic tape-based low temperature co-fired
ceramic (LTCC) technology. The typical details of the
material and conductor parameters used in these tech-
nologies are also summarized. The familiarity of the fab-
rication process could be useful to the researchers and
designers developing planar lines models and circuits.
The basic discussion and basic analysis of the resona-

tor circuits, lumped and distributed line type, are pre-
sented in chapter 17. The implementation of the
theory of transmission line resonators, and also the
patch resonators, is the subject matter of chapter 18.
The emphasis is placed on the circuit modeling of the
resonating structures. Chapter 18 also discusses the frac-
tal resonators and the dual-mode resonators with the
illustrative examples of their applications. The resonat-
ing structures are important components for the devel-
opment of the planar EBG and metamaterials.

Analytical Methods

Most of the discussions on the planar transmission lines
and resonators are centered on the physical models and
closed-form expression using circuit modeling. How-
ever, the analytical and quasi-analytical methods have
been developed in the literature for more versatile and
accurate modeling of the planar line structures in the
multilayered medium. The conformal mapping method,
as applied to the CPW and CPS line structures, is pre-
sented in chapter 9. The chapter 14 presents the static
variational methods, both in the space-domain and Four-
ier domain, for the analysis of the microstrip and
coupled microstrip. Using the transverse transmission
line (TTL) technique, the variational method is extended
to the multilayer microstrip lines. The method is
extended to the boxed microstrip line and CPW using
the Galerkin’s method. However, the planar lines are
both lossy and dispersive medium. The closed-form
models are normally not available for the multilayer
lossy planar lines. Chapter 15 presents the scheme of
the single-layer reduction (SLR) formulation that utilizes
the variational method and available single layer closed-
form expressions to compute the dispersion and losses in
the multilayer planar lines. The SLR models could be
incorporated in the microwave CAD packages for the
synthesis of the planar microwave components in the
multilayer environment. Finally, the semi-analytical
full-wave method, i.e. the dynamic SDA is elaborated
in chapter 16. The treatment is at the introductory level
with the detailed derivation of expressions. The method
also incorporates the multilayered planar lines.
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Contemporary Engineered Planar Structures

These are the topics of current interest and have wide-
ranging applications in the development of novel devices
and antenna structures with controlled functionalities.
Chapter 19 is dedicated to the periodically loaded trans-
mission lines and their circuit models. The method
of the circuit models based analysis of the electronic
band-gap (EBG) line is elaborated in detail and applied
to the loaded microstrip and CPW line structures. The
method is extended to the planar EBG surfaces in chap-
ter 20. The accurate circuit model of the EBG surfaces is
presented, and also the process of the EM-simulation
and interpretation of the results are discussed.
The analyses of the engineered artificial media called

the bulk metamaterials, metalines, andmetasurfaces are
presented in the chapters 21 and 22. The modeling and
parameter extraction of the engineered media are also
discussed. The metasurfaces are interesting structures
with several possible applications both in the develop-
ment of the circuits and planar antenna with multi-
dimensional functionalities. The unique generalized
Snell’s laws are discussed in chapter 22 that helps to con-
trol the wave propagation. The polarization control and
conversion of the state of polarization of the incident
waves are also achieved with metasurfaces. Several
applications of the metasurface are summarized.

1.3.2 Key Features, Intended Audience,
and Some Suggestions

Key Features

Possibly, it is the first comprehensive book dedicated
entirely to the planar transmission lines. The book cov-
ers the microstrip lines, CPW, and other classical reso-
nating structures from basic to advanced form in one
cover. The book further covers the EBG and metamate-
rial-based planar transmission lines and surfaces. These
are the topics of current interest. The sequence of the
chapter is logical and of increasing complexity.
The emphasis of the book is on the modeling of the

planar lines and engineered surfaces using the physical
concepts, circuit-models, closed-form expressions, and
the derivation of a large number of expressions. It pro-
vides an in-depth review of the classical transmission
line theory, electromagnetics, modeling of the material
medium, and waveguide structures compactly without
sacrificing the clarity of presentation.
The advanced mathematical treatment of the topics,

such as the variational method, conformal mapping
method, and SDA for several kinds of planar line struc-
tures is carried out in detail to help the new readers unfa-
miliar with these topics. A large number of illustrative

examples from the published literature are given to
clarify the theory and physical principles involved in
the contemporary topics of the EBG lines and surfaces,
metamaterials, metalines, and metasurfaces.
The multilayer structures useful for the MMIC,

MEMS, and LTCC technology are covered. The closed-
formmodeling of dispersion, frequency-dependent char-
acteristic impedance, and losses in the multilayer planar
transmission lines is covered for the first time in a book-
form. Also, the basic fabrication technology of the planar
transmission lines in theMMIC,MEMS, and LTCC tech-
nology is described to help the modelers of the EM-
phenomenon and microwave circuit designers.
Thus, the book prepares the reader to follow the mod-

ern designs of the planar circuits and also to undertake
independent researches in the field of planar microwave
technology.

Intended Audience

The book is intended to help undergraduate students of
third/fourth year and also postgraduate students. It is
useful to the teachers of microwave engineering in pre-
paring lectures, assignments, and projects. The new
researchers in the field of microwave engineering will
find the book useful to improve their skills in the mod-
eling of the planar structures. It is also suitable for the
self-study of the RF/Microwave professionals in the
industries. The selected chapters could be used in class-
room teaching. It could be the main text for conducting
elective courses at the university level. Further, the book
can serve as a reference book even to more experienced
users in the industry.

Some Suggestions

The students and new researchers can have a fast review
of the transmission line theory, EM-theory, and so on
from chapters 2–7. Then it will be much easier to follow
the remaining text. It will be also helpful in following
other advanced books and published current literature.
However, experienced readers can read any chapter or
topic. The concept for the forward and backward referen-
cing of chapters, sections, and subsections are provided
to help the reader to skip the chapters or to go back to an
intended topic inside the book.
A large number of closed-form expressions are given

for the modeling purpose. A reader is encouraged to
write the Matlab codes or codes in any other language
familiar to him/her. The teacher can assign to students
the code development as homework. Such activities will
enhance the learning process and skill development.
More efforts will be needed to write the codes for the

14 1 Overview of Transmission Lines



variational method, Galerkin’s method, and the SDA. Of
course, the effort is rewarding.
The researchers must look into the journals to follow

newer investigations and decide the direction of his/her
research activities. Good luck!
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2

Waves on Transmission Lines – I

(Basic Equations, Multisection Transmission Lines)

Introduction

The two-wire transmission line is a useful medium for
the propagation of the voltage and current waves. It is
also useful in the modeling of planar transmission lines.
The EM-wave propagating onmultilayered planar trans-
mission lines could also be analyzed with the help of the
multisection transmission lines. The primary purpose of
this chapter is to review in detail the wave propagation
on a transmission line without and with sources. Several
other important topics such as the characterization of a
line section, nature of wave velocities, dispersion, and
reactively loaded lines are further discussed in chapter 3.

Objectives

• To formulate Kelvin–Heaviside transmission line
equations.

• To obtain the solution of the wave equation.

• To compute the power flow on a transmission line.

• To use Thevenin’s theorem on a transmission line
section to obtain its transfer function.

• To consider the wave propagation on a multi-section
transmission line with the voltage and current sources.

• To understand the nature of the wave propagation on a
nonuniform transmission line.

2.1 Uniform Transmission Lines

This section presents the basic understanding of wave
propagation on a uniform transmission line. The Kel-
vin–Heaviside transmission line equations are formulated
using the lumped circuit elements model of the uniform
transmission line.
The voltage and current wave equations are obtained

and solved for a terminated line section. The phenome-
non of the standing wave is discussed. The Thevenin the-
orem of the transmission line network is discussed and
the transfer function of a line section is obtained.

2.1.1 Wave Motion

The wavemotion could be treated as the transfer of oscil-
lation from one location to another location. A harmonic
oscillation is described either by a sine or by a cosine
function. A periodic oscillation has a fixed period. An
oscillation repeats itself after the periodic time (T). In
general, an oscillation, i.e. an oscillatory motion can
have any shape such as square, triangular, and so on.
However, with the help of the Fourier series, such peri-
odic oscillations can be decomposed to the harmonic
functions. Likewise, wave motion can also acquire an
arbitrary shape. The arbitrary periodic shape of a wave
can be decomposed into the harmonic waves.
Figure (2.1) shows the instantaneous amplitude v(t) of

the wave generated by an oscillating quantity, such as an
oscillating ball (particle) at the location A. It has an
angular frequency of oscillation ω radian/sec and maxi-
mum amplitude Vmax. The ball is attached to a spring
and immersed in a water tank. It generates a wave
motion at the surface of the water. The water wave tra-
vels with velocity vp and causes another delayed
oscillation, at the location B, in a similar ball attached
to a spring. Through the mechanism of wave motion,
the oscillation is transferred from the location A to the
location B separated by distance x. Likewise, the oscillat-
ing quantity could be a charge, electric field, magnetic
field, or voltage obtained from an oscillator connected
to a cable.
The equation of the harmonic oscillation at location

A is described by the cosine function,

va t = Vmax cosωt 2 1 1

The equation of harmonic oscillation that appears at
location B after a delayed time t is

vb t = Vmax cosω t− t 2 1 2

The wave motion, created by the oscillation at the
location A, travels with velocity vp. The time delay in
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setting up the oscillation at the location B is t = x/vp. So
the equation of oscillation at the location B is

vb t = Vmax cosω t− x vp 2 1 3

Equation (2.1.3) describes the propagating wave
through the medium between locations A and B. It is
called thewave equation. The phase constant β of the pro-
pagating wave is defined as β = ω/vp. On dropping the
subscript “b,” equation (2.1.3) is rewritten in the
usual form,

v t, x = Vmax cos ωt− βx 2 1 4

In equation (2.1.4), the lagging phase ϕ = βx is caused
by the delay in oscillation at the receiving end. The
medium supporting the wave motion is assumed to be
lossless. The wave variable v(t, x) is a doubly periodic
function of both time and space coordinates as shown
in Fig (2.2a and b), respectively.
The temporal period, i.e. time-period T is related to the

angular frequency ω as follows:

T =
2π
ω

=
1
f
, 2 1 5

where f is the frequency in Hz (Hertz), i.e. the number of
cycles per sec. The wavelength (λ) describes the spatial
period, i.e. space periodicity. It is related to the phase-
shift constant (or phase constant), i.e. the propagation
constant β, as follows:

λ =
2π
β

2 1 6

The wave motion or velocity of amonochromatic wave
(the wave of a single frequency) is themotion of itswave-
front. For the 3D wave motion in an isotropic space, the
wavefront is a surface of the constant phase. In the case
of the 1D wave motion, the wavefront is a line, whereas,
for the 2D wave motion on an isotropic surface, the
wavefront is a circle.
Figure (2.3) shows the peak point P at the wavefront of

the ID wave. The motion of a constant phase surface is
known as its phase velocity vp. Thus, the peak point P at
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Oscillating
particle

A B

Vp
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Figure 2.1 Delayed oscillation as a wave motion-initial
oscillation v(t) at location A, and delayed oscillation
v(t − x/vp) at location B. Thewaves propagate from the
locations A to B.

(a) Harmonic variation of the wave with

     respect to time, at the location x = 0.

(b) Harmonic variation of the wave with
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the wavefront has moved to a new location P in such a
way that phase of the propagating wave remains con-
stant, i.e. ωt− βx = constant. On differentiating the con-
stant phase with respect to time t, the expression for the
phase velocity is obtained:

vp =
dx
dt

=
ω
β

2 1 7

In a nondispersive medium, the phase velocity of a
wave is independent of frequency, i.e. the waves of all
frequencies travel at the same velocity. Figure (2.4)
shows the nondispersive wavemotion on the (ω− β) dia-
gram. It is a linear graph. The slope of the point Q on the
dispersion diagram subtends an angle θ at the origin that
corresponds to the phase velocity of a propagating wave,

vp = tan θ =
ω
β

2 1 8

Thus, for a frequency-independent nondispersive
wave, the phase constant is a linear function of angular
frequency.

β = Constant × ω 2 1 9

The dispersive nature of the 1Dwavemotion is further
discussed in sections (3.3) and (3.4) of the chapter 3. The
phase velocity in a dispersive medium is usually fre-
quency-dependent. It is known as the temporal disper-
sion. In some cases, the phase velocity could also
depend onwavevector (β, or k). It is known as spatial dis-
persion. The spatial dispersion is discussed in the sub-
section (21.1.1) of the chapter 21. The dispersion
diagrams of the wave propagation in the isotropic and
anisotropic media are further discussed in the
section (4.7) of the chapter 4, and also in the
section (5.2) of chapter 5.

The one-dimensional (1D) wave travels both in the
forward and in the backward directions. It can have
any arbitrary shape. In general, the 1Dwave propagation
can be described by the following wave function, known
as the general wave equation:

ψ t, x = ψ t
x
vp

2 1 10

On taking the second-order partial derivative of the
wave function ψ(t, x) with respect to space-time coordi-
nate x and t, the 1D second-order partial differential
equation (PDE) of the wave equation is obtained. Simi-
larly, wave functions ψ(t, x, y) and ψ(t, x, y, z) are solu-
tions of two-dimensional (2D) and three-dimensional
(3D) wave equations supported by the surface and free
space medium, respectively. These PDEs are summar-
ized below:

∂2ψ
∂x2

=
1
v2p

∂2ψ
∂t2

a ,
∂2ψ
∂x2

+
∂2ψ
∂y2

=
1
v2p

∂2ψ
∂t2

b

∂2ψ
∂x2

+
∂2ψ
∂y2

+
∂2ψ
∂z2

=
1
v2p

∂2ψ
∂t2

c , ∇2ψ =
1
v2p

∂2ψ
∂t2

d

2 1 11

The dispersion diagram of the 2D wave propagation
over the (x, y) surface is obtained by revolving the slant
line of Fig (2.4) around the ω-axis with propagation con-
stants βx, βy in the x- and y-direction. It is discussed in
subsection (4.7.4) of chapter 4.

2.1.2 Circuit Model of Transmission Line

A physical transmission line, supporting the voltage/
current wave, can be modeled by the lumped R, L, C,
G components, i.e. the resistance, inductance, capaci-
tance, and conductance per unit length (p.u.l.), respec-
tively. The two-conductor transmission line can
acquire many physical forms. A few of these forms are
shown in Fig (2.5). The lines as shown in Fig (2.5a–c)
support the wave propagation in the transverse electro-
magnetic mode, i.e. in the TEM-mode; while Fig (2.5c)
shows the quasi-TEM mode-supporting microstrip. For
TEMmode wave propagation, the electric field andmag-
netic field are normal to each other and also normal to
the direction of wave propagation. For the TEM mode,
there is no field component along the direction of
propagation. However, the quasi-TEM mode also has
component of weak fields along the longitudinal
direction of wave propagation. The quasi-TEM mode
is a hybrid mode discussed in the subsection (7.1.4) of
chapter 7.
All TEM mode supporting transmission lines can be

represented by a parallel two-wire transmission line
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Figure 2.4 The ω-β dispersion diagram of nondispersive wave.
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shown in Fig (2.6a). A transmission line is a 1D wave
supporting structure. Its cross-sectional dimension is
much less than λ/4; otherwise, its TEM nature is chan-
ged. The longitudinal dimension can have any value,
from a fraction of a wavelength to several wavelengths.
The mode theory of the electromagnetic (EM) wave
propagation is further discussed in chapter 7.
A two-conductor transmission line, or any other line

supporting the TEM mode, is modeled as a chain of dis-
crete passive RLCG components. As a matter of fact, by
cascading several sections of discrete L-network of the
series L and shunt C elements, or even discrete L-
network of the series C and shunt L elements, an artifi-
cial transmission line can also be constructed. The artifi-
cial transmission line is discussed in section (3.4) of
chapter 3, and also in the chapters 19 and 22. It plays
a very important role in modern microwave planar tech-
nology. The behavior of a transmission line is deter-
mined in terms of the resistor (R), inductor (L),
capacitor (C), and conductance (G); all line elements
are in per unit length, i.e. p.u.l. Kelvin introduced the
modeling of the telegraph cable laid in the ocean using
the RC circuit model. Heaviside further introduced L and
G components in the circuit model to improve the mod-
eling of the lossy transmission line [B.1, B.2, J.1, J.2].

Kelvin RC-circuit model of the transmission line leads
to the diffusion equation, not to the wave equation.
Whereas using the RLGC circuit model, Heaviside
finally obtained the wave equation for the voltage/cur-
rent on a transmission line. Using the RLCG circuit
model, shown in Fig (2.6b), the voltage, and current
equations are obtained for the transmission line. The
set of the coupled voltage and current equations are nor-
mally called the telegrapher’s equations; as it was origi-
nally developed for the telegraph cables. However, the
set of coupled transmission line equations can be called
the Kelvin–Heaviside transmission line equations to rec-
ognize their contributions.

The Resistance of a Line

The electrical loss in a transmission line, known as the
conductor loss, is due to the finite conductivity of the
line. It is modeled as the resistance R p.u.l. It is also influ-
enced by the skin effect phenomena at a higher fre-
quency. The instantaneous current i(t) flowing
through a lumped resistance Rlum is related to the
instantaneous voltage drop v(t) by Ohm’s law:

v t = Rlumi t 2 1 12

i(t)

Vk (x,t)

Vk + 1 (x,t)

ik (x,t) ik + 1 (x,t)

(k + 1)th node
kth node

v(t)

L R L

GC GC

R

Δi

Δx

(a) Physical two-wire transmission line. (b) Equivalent circuit of the two-wire transmission line.

Figure 2.6 RLCG lumped circuit model of a transmission line.

(a) Two-wire line. (b) Co-axial line. (c) Microstrip line.

Substrate

Strip

conductor

Ground plane

Figure 2.5 Cross-section of a few two-conductor transmission lines.
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The Inductance of a Line

The current flowing in a conductor creates the magnetic
field around itself. So the magnetic energy stored in the
space around the transmission line, i.e. the time-varying
current supporting line section, is modeled by a series
inductor L p.u.l. The inductance of a line is not lumped
at one point, i.e. it is not confined at one point. It is dis-
tributed over the whole length of a line. The instantane-
ous voltage across a lumped inductor Llum is related to
the current flowing through it by

v t = Llum di t
dt

2 1 13

The Capacitance of a Line

In a two-conductor transmission line, the conductors
separated by a dielectric medium form a distributed
system of capacitance. The electric field energy stored
in a line is modeled by the shunt capacitance C p.u.l.
The instantaneous shunt current through a lumped
capacitor Clum is related to the instantaneous voltage
across it by

ish t = Clum dv t
dt

2 1 14

The Conductance of a Line

If the medium between two conductors of the transmis-
sion line is not a perfect dielectric, i.e. if it has finite con-
ductivity, then a part of the line current shunts through
the medium causing the dielectric loss. The dielectric loss
of the line is modeled by shunt conductance G p.u.l. The
instantaneous shunt current is related to the instantane-
ous voltage across a lumped conductance by

ish t = Glumv t 2 1 15

Figure (2.6a) shows a physical transmission line that
supports the TEM mode wave propagation.
Figure (2.6b) shows that this line could be modeled as
a chain of the lumped RLCG structure. More numbers
of RLCG sections per wavelength are needed to model
a transmission line. The RLCG model is the modeling
of a transmission line by the lossy series inductor and
lossy shunt capacitor. The transmission line supports
the wave propagation from power AC to RF and above.
Likewise, the corresponding lumped components model
of a transmission line also supports such waves. The
transmission line structure behaves like a low-pass filter.

2.1.3 Kelvin–Heaviside Transmission Line
Equations in Time Domain

Figure (2.6b) shows the lumped element equivalent cir-
cuit model of a section Δx of the transmission line.
The primary line constants R, L, C, G on the per unit
length (p.u.l.) basis are related to the lumped circuit ele-
ments as Rlum = RΔx, Llum = LΔx, Clum = CΔx, and
Glum = GΔx. Figure (2.6b) shows the voltage loop equa-
tion and the current node equation for a small line
section Δx. These are written as follows:

The Loop Equation

Differential voltage change across line length Δx =
Voltage drop across inductor + Voltage drop across
resistance

vk − vk + 1 = Δv = − LΔx
∂i
∂t

− RΔx i

2 1 16

The instantaneous line voltage v(t) and the instantane-
ous line current i(t) are functions of the space–time vari-
ables x and t. In the limiting case of Δx 0,
equation (2.1.16) is written as

∂v
∂x

= − Ri + L
∂i
dt

2 1 17

The Node Equation

Differential shunt current at the node = Current
through conductance + Current through capacitor

ik − ik+1 = Δi = − GΔx v− CΔx
∂v
∂t

2 1 18

In the limiting case,Δx 0; and the above equation is
written as

∂i
∂x

= − Gv + C
∂v
∂t

2 1 19

The pair of coupled voltage and current transmission
line equations in the time-domain summarized below is
known as “the time domain telegrapher’s equations”:

∂v
∂x

= − Ri + L
∂i
∂t

a ,
∂i
∂x

= − Gv + C
∂v
∂t

b

2 1 20

The above pair of equations can also be called the
Kelvin–Heaviside transmission line equations. The
coupled Kelvin–Heaviside transmission line equations
relate the voltage and current on a transmission line
through the line parameters, RLCG. These parameters
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are known as the primary constants of a line. The RLCG
parameters depend on the physical configuration of a
line, i.e. on its physical shapes, dimensions, and the
electrical properties of the medium. They could be fre-
quency-dependent parameters also. For simple trans-
mission lines such as a pair of wires and coaxial lines,
the closed-form formulas are available to compute them.
However, these parameters could also be obtained
through measurements. The empirical expressions for
the RLCG parameters of a microstrip line are also avail-
able [J.3]. The transmission line equations are the com-
plementary parts of Maxwell’s field equations that relate
the time-varying electric and magnetic fields in a phys-
ical medium through the primary constants of a
medium-conductivity (σ), permittivity (ε) and permea-
bility (μ). It is discussed in chapter 4. The transmission
line equations can be obtained from Maxwell’s equa-
tions. It is discussed in section (7.3) of chapter 7.
The voltage and current coupled variables of equa-

tion (2.1.20) can be separated. The separation of the vari-
ables leads to the wave equations for the voltage and
current waves on a transmission line. On differentiating
equation (2.1.20a) with respect to the variable x, the volt-
age wave equation is obtained:

∂2v
∂x2

= − R
∂i
∂x

+ L
∂

∂x
∂i
∂t

= − R
∂i
∂x

+ L
∂

∂t
∂i
∂x

2 1 21

On substituting
∂i
∂x

from equation (2.1.20b) in equa-

tion (2.1.21), the voltage wave equation is

∂2v
∂x2

= RGv + RC + LG
∂v
∂t

+ LC
∂2v
∂t2

2 1 22

The above partial differential equation describes the
time-domain voltage wave on a lossy transmission line.
Likewise, an equation could be written to describe the
current wave on a transmission line:

∂2i
∂x2

= RGi + RC + LG
∂i
∂t

+ LC
∂2i
∂t2

2 1 23

A lossless transmission line has, R = G = 0. The volt-
age and current waves on a lossless line are given by the
following 1D PDEs:

∂2v
∂x2

= LC
∂2v
∂t2

2 1 24

∂2i
∂x2

= LC
∂2i
∂t2

2 1 25

On comparing the above equations with equa-
tion (2.1.11a), the velocity of propagation, for both the
current and voltage waves, is

vp =
1

LC
2 1 26

It is like the velocity of propagation of an electromag-
netic wave in a dielectric medium obtained from Max-
well’s equations, where the primary constant of the
line L and C are replaced by the medium constants per-
meability μ and permittivity ε. The EM-wave is discussed
in chapter 4.

2.1.4 Kelvin–Heaviside Transmission Line
Equations in Frequency-Domain

The time-harmonic instantaneous voltage in the fre-
quency domain, i.e. in the phasor form, is written as

v t = Vmax cos ωt + ϕ = Re Vejωt 2 1 27

where “Re” stands for the real part of the voltage phasor
V . The voltage phasor V is given by the following
expression:

V = Vmaxejϕ 2 1 28

The phasor is nothing but a polar form of a complex
quantity. Likewise, the instantaneous current in the
phasor form is

i t = Imax cos ωt + φ = Re Iejωt , 2 1 29

where current phasor is

I = Imaxejφ 2 1 30

The phasor is either a constant or a function of only
the space variable. It is not a function of time t. The pha-
sor is shown with a tilde (~) sign in this chapter. How-
ever, in the subsequent chapters, the tilde (~) sign is
dropped. The phasor is used at a single frequency. Using
the phasor notation, the voltage across R, L, and the cur-
rent through C, G; given by equations (2.1.12)–(2.1.15) in
the time domain, can be rewritten in the frequency-
domain:

V = RI a , V = jωLI b

I = jωCV c , I = GV d
2 1 31

In the above equations, the time derivative ∂/∂t is
replaced by jω converting the expression from the
time-domain to frequency-domain. Following the conver-
sion process, the time-domain coupled voltage-current
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transmission line equation (2.1.20), is rewritten in the fre-
quency-domain:

dV
dx

= − R + jωL I a

dI
dx

= − G + jωC V b

2 1 32

On separation of the voltage and current variables, the
following voltage and current wave equations are
obtained in the frequency-domain:

d2V

dx2
= R + jωL G + jωC V a

d2I

dx2
= R + jωL G + jωC I b

2 1 33

It is noted that the second-order partial differential
wave equations in the time-domain are converted to
the second-order ordinary differential equations in the
frequency-domain. The factors at the right-hand side
of the above equations help to define a secondary param-
eter γ, known as the complex propagation constant of a
transmission line:

γ = R + jωL G + jωC
1
2, 2 1 34

where γ = α+ jβ. The real part α(Np/m) of the complex
propagation constant γ is called the attenuation constant
and the imaginary part β (rad/sec) is the propagation
constant of a lossy transmission line. The parameter β
is also known as the phase-shift constant or phase con-
stant. On separating the real and imaginary parts of
the above equation, the following expressions are
obtained:

α = Re γ

=
RG−ω2LC + RG−ω2LC 2 + ω2 LG + RC 2

2

1
2

2 1 35

β = Im γ

=
ω2LC−RG + RG−ω2LC 2 + ω2 LG + RC 2

2

1
2

2 1 36

The attenuation constant α, and propagation constant
β are given in terms of the primary line constants, R, L,
C, G. Normally α and β are frequency-dependent. Thus,
the phase velocity of both the current and voltage waves,
given by vp = ω/β is frequency-dependent. This kind of

transmission line is known as the dispersive transmission
line. A complex wave traveling on a lossy dispersive line
gets distorted as each component of the complex wave
travels with different phase velocity.
Using the complex propagation constant, the wave

equation (2.1.33a and b) are rewritten as

d2V

dx2
− γ2V = 0 a

d2I

dx2
− γ2I = 0 b

2 1 37

The above homogeneous wave equations on a trans-
mission line could be treated as a boundary value prob-
lem to get the voltage and current at any location on the
line. If a transmission line is infinitely long and excited
from one end, then the voltage and current waves on the
line always move in the forward direction without any
reflection. At any location on the line, the voltage and
current are related by another secondary parameter
called “the characteristic impedance” of a transmis-
sion line:

V

I
= Z0 2 1 38

The characteristic impedance of a transmission line
could be viewed as a mechanism that explains the wave
propagation on a line. It recasts theHuygens’ Principle of
the secondary wave formation in terms of the character-
istic impedance. The characteristic impedance could be
called the Huygens’ load. It is an unusual load imped-
ance with a special property. It absorbs power from
the source and itself becomes a secondary source for
the further transmission of power in the form of wave
motion. In this manner, the wave on a transmission line
moves; as the characteristic impedance, i.e. Huygens’
load, acts both as a load and also as a source of the wave
motion. The process is similar to the Huygens’ secondary
source for the wavefront propagation. The concept of the
Huygens’ load is further extended to engineer the Huy-
gens’ metasurface with unique characteristics to control
the reflected and transmitted (refracted) EM-waves. It is
discussed in subsection (22.5.2) of chapter 22.
The characteristic impedance, i.e. Huygens’ load of a

lossy line is a complex quantity. Its real part does not dis-
sipate energy like the real part of a normal complex load.
The imaginary part of Huygens’s load indicates the pres-
ence of losses in a transmission line, whereas in the case
of a normal complex load its imaginary part shows the
storage of the reactive energy. For a lossless transmission

line, Huygens’ load is a real quantity L C that is non-
dissipative. Huygens adopted the secondary source
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model to explain the propagation of the light wave in the
space [B.3, B.4]. The expression for the characteristic
impedance of a line is obtained from equation (2.1.32).

Z2
0 =

ΔV
I

×
V

ΔI
=

R + jωL
G + jωC

, Z0 =
R + jωL
G + jωC

2 1 39

In general, the characteristic impedance of a lossy
transmission line is a complex quantity. However, for
a lossless line, the lossy elements are zero, i.e.
R = G = 0. It leads to the following expressions:

α = 0 a , β = ω LC b , Z0 =
L
C

c

2 1 40

There is no attenuation in the propagating wave on a
lossless line. If the line inductance L and the line capac-
itance C are frequency-independent, the transmission
line is nondispersive. The characteristic impedance is
a real quantity. The line parameters such as the attenu-
ation constant (α), propagation constant (β), and charac-
teristic impedance (Z0) are known as the secondary
parameters of a transmission line. These secondary para-
meters are finally expressed in terms of the physical
geometry and the electrical characteristics of material
medium of a line. A microwave circuit designer is more
interested in these secondary parameters as compared to
the primary line constants, RLCG, of a transmission line.
The secondary parameters are more conveniently meas-
ured and numerically computed for a large class of the
transmission line structures. For any practical transmis-
sion line, the losses are always present on a line.

2.1.5 Characteristic of Lossy Transmission Line

A transmission line, such as a coaxial cable, a flat cable,
used in the computer, or a feeder to TV receiver, is
embedded in a lossy dielectric medium. The loss in a die-
lectric medium is known as the dielectric loss of a trans-
mission line. Of course, when the line is in the air
medium, the dielectric loss could be neglected. Likewise,
there is another kind of loss, known as the conductor
loss, on a transmission line. It is due to the finite conduc-
tivity of the conducting wires or the strip conductors
forming a line. All open transmission lines tend to radi-
ate some power, leading to radiation loss. In the case of a
planar transmission line, there are also other mechan-
isms of losses. However, this section considers only
the conductor and the dielectric losses of a line and their
effect on the propagation characteristics of the line.

Characteristic Impedance

The characteristic impedance Z0 of a uniform lossy
transmission line is given by equation (2.1.39). In the
limiting case, ω 0, i.e. at a lower frequency, it is
reduced to a real quantity that is dominated by the lossy
elements of a line:

Z0 =
R
G

2 1 41

The characteristic impedance Z0 at very high fre-
quency, i.e. for ω ∞, is also reduced to a real quantity.
However, now it is dominated by the lossless reactive
elements:

Z0 =
L
C
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At higher frequency, we have ωL >> R and ωC>>G.
Therefore, the R and G are normally ignored for the
computation of characteristic impedance of a low-loss
microwave transmission line. In the intermediate fre-
quency range, the characteristic impedance of a line is
a complex quantity. Its imaginary part indicates the pres-
ence of the loss in a line. Equation (2.1.42) is also appli-
cable to a lossless line.
The characteristic impedance of transmission line in

the lossless dielectric medium, or a moderately lossy
medium where G could be neglected, is obtained in
equation (2.1.43). However, the conductor loss is present
on the line:

Z0 =
R + jωL
G + jωC

1
2

=
L
C

1 +
R
jωL

1
2

≈
L
C

1− j
R

2ωL
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The measured or computed complex characteristic
impedance of a line, over a certain frequency range, with
a negative imaginary part, indicates that the loss in the
line is mainly due to the conductor loss [J.4].
The alternative case of a lossy line, with G 0, R = 0,

could be also considered. In this case, the conductor loss
is ignored; however, the dielectric loss is dominant. The
characteristic impedance of such line is approximated as
follows:

Z0 =
jωL

G + jωC

1
2

≈
L
C

1 + j
G

2ωC
2 1 44

If the imaginary part of the characteristic impedance
of a line is positive over some frequency range, then
the dielectric loss dominates the loss in the line.
However, if both R and G are moderately present, with
ωL >> R and ωC>>G, the real and imaginary parts of
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the characteristic impedance could be approximated by
using the binomial expansion as follows:

1 ± x
1
2 ≈ 1 ±

x
2
−

x2

8
2 1 45

Z0 =
L
C

1− j
R
ωL

1 + j
G
ωC

1
2
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Z0 =
L
C

1 +
R2

8ω2L2 +
G2

8ω2C2 +
RG

4ω2LC

+ j
G

2ωC
−

R
2ωL
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In the above expression,ω3 andω4 terms are neglected.
If we neglect ω2 terms and also take G= 0 or R = 0, equa-
tion (2.1.47) reduces to either equation (2.1.43) or equa-
tion (2.1.44), respectively. It is also possible that with the
change of frequency, the imaginary part of characteristic
impedance changes from a positive to a negative value
indicating that the dominant loss can change from the
dielectric loss to the conductor loss. For such cases,
R and G are usually frequency-dependent [J.4]. Over a
band of frequencies, the imaginary part of the character-
istic impedance could be zero leading to

R
L

=
G
C

2 1 48

It is well known as Heaviside’s condition. On meeting
it, a lossy line becomes dispersion-less and the propaga-
tion constant β becomes a linear function of frequency,
while the attenuation constant becomes frequency-inde-
pendent. Following the above equation (2.1.48), a lossy
line could be made dispersionless by the inductive load-
ing [B.5, B.6].

Propagation Constant

The propagation constant γ of a uniform lossy transmis-
sion line is given by equation (2.1.34). It could be
approximated under the low-loss condition. Its real
and imaginary parts are separated to get the frequently
used approximate expressions for the attenuation and
phase constants of a line:

γ = jω LC 1− j
R
ωL

1− j
G
ωC

1
2

γ≈ jω LC 1− j
R

2ωL
+

R2

8ω2L2

1− j
G

2ωC
+

G2

8ω2C2 2 1 49

On neglecting ω2, ω3, and ω4 terms, the real part of the
propagation constant γ provides the attenuation

constant, whereas the imaginary part gives the propaga-
tion constant:

α≈
R

2 L C
+

G L C
2

=
R
2Z0

+
GZ0

2
a

β≈ω LC b 2 1 50

The first term of the above equation (2.1.50a) shows
the conductor loss of a line, while the second term shows
its dielectric loss. If R and G are frequency-independent,
the attenuation in a line would be frequency-
independent under ωL >> R and ωC>>G conditions.
However, usually, R is frequency-dependent due to the
skin effect. In some cases, G could also be frequency-
dependent [B.7].
The dispersive phase constant β is obtained from the

imaginary part of equation (2.1.49):

β≈ω LC 1−
RG

4ω2LC
+

R2

8ω2L2 +
G2

8ω2C2
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On neglecting the second-order term, β becomes a lin-
ear function of frequency and the line is dispersionless.
In that case, its phase velocity is also independent of fre-
quency. A lossy line is dispersive. However, it also becomes
dispersionless under the Heaviside’s condition – (2.1.48).
A transmission line, such as a microstrip in the inhomo-
geneous medium, can have dispersion even without
losses.

2.1.6 Wave Equation with Source

In the above discussion, the development of the voltage
and current wave equations has ignored the voltage or
current source. However, a voltage or current source is
always required to launch the voltage and current waves
on a line. Therefore, it is appropriate to develop the
transmission line equation with a source [B.8]. The con-
sideration of a voltage/current source is important to
solve the electromagnetic field problems of the layered
medium planar lines, discussed in chapters 14 and 16.

Shunt Current Source

Figure (2.7) shows the lumped element model of a trans-
mission line section of length Δx with a shunt current

source IsΔx located at x = x0. It is expressed through Dir-

ac’s delta function as IsΔxδ x− x0 . The lumped line
constants R, L, C, G are given for p.u.l.
The loop and node equations are written below to

develop the Kelvin–Heaviside transmission line equa-
tions with a current source:
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The Loop Equation

V− R + jωL Δx 2 I− R + jωL Δx 2 I + ΔI

− V + ΔV = 0

−ΔV− R + jωL Δx I− R + jωL ΔxΔI 2 = 0,

By taking ΔxΔI 2≈ 0

ΔV
Δx

= − R + jωL I

The Node Equation

I + IsΔxδ x− x0 − I + ΔI − Ish = 0

I + IsΔxδ x− x0 − I + ΔI − G + jωC Δx

V− I R + jωL Δx 2 = 0

ΔI
Δx

= − G + jωC V− I R + jωL Δx 2 + Isδ x− x0

For Δx 0, the above equations are reduced to

dV
dx

= − R + jωL I a

dI
dx

= − G + jωC V + Isδ x− x0 b
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The above equations are rewritten below in term of the
characteristic impedance (Z0) and propagation constant
(γ) of a transmission line:

dV
dx

= − γZ0I a ,
dI
dx

= −
γ
Z0

V + Isδ x− x0 b

2 1 53

On solving the above equations for the voltage, the fol-
lowing inhomogeneous voltage wave equation, with a
current source, is obtained:

d2V

dx2
− γ2V = − γZ0Isδ x− x0 2 1 54

Away from the location of the current source, i.e. for
x x0, equation (2.1.54) reduces to the homogeneous
equation (2.1.37a). The wave equation for the current
wave, with a shunt current source, could also be rewritten.

2.1.7 Solution of Voltage and Current-Wave
Equation

The voltage and current wave equations in the phasor
form are given in equation (2.1.37). The solution of a wave
equation is written either in terms of the hyperbolic func-
tions or in terms of the exponential functions. The first
form is suitable for a line terminated in an arbitrary load.
A section of the line transforms the load impedance into
the input impedance at any location on the line. The
impedance transformation takes place due to the standing
wave formation. The hyperbolic form of the solution also
provides the voltage and current distributions along the
line. The exponential form of the solution demonstrates
the traveling waves on a line, both in the forward and
in the backward directions. A combination of the for-
ward-moving and the backward-moving waves produces
the standing wave on a transmission line.

The Hyperbolic Form of a Solution

Figure (2.8a) shows a section of the transmission line

having a length ℓ. It is fed by a voltage source, Vg with
Zg internal impedance. The general solutions for the line

voltage V x and line current I x of the wave equa-
tion (2.1.37) are

V x = A1 cosh γx + B1 sinh γx a

I x = A2 cosh γx + B2 sinh γx b
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At any section on the line, its characteristic impedance

Z0 relates the line voltage V x and line current I x . So
the constants A2, B2 are related to the constants A1

and B1. In Fig (2.8a), the point P on the line is located
at a distance x from the source end, i.e. at a distance
d = (ℓ− x) from the load end. The load is located at

d = 0, and the source is located at d = − ℓ. The Vs ,

and Is are the input voltage and the input current at

the port-aa, i.e at x = 0. At x = ℓ, i.e. at the port-bb, VR

and IR are the load end voltage and current, respectively.

+ +

– –

V

IsΔx δ(x-x0)

∼

I
∼

I + ΔI
∼ ∼

V + ΔV
∼ ∼

Ish

∼
jωL/2

jωC

jωL/2R/2 R/2

G

x0

Δx

Figure 2.7 Equivalent lumped circuit of a transmission line with
a shunt current source.

28 2 Waves on Transmission Lines – I



The ideal voltage generator Vg has the internal imped-

ance, Zg = 0, i.e. VS = Vg. The phasor form of the line
current, from equations (2.1.32b) and (2.1.55a), is writ-
ten below:

I x = − G + jωC A1 cosh γx + B1 sinh γx dx

I x = −
1
Z0

A1 sinh γx + B1 cosh γx

2 1 56

On comparing the coefficients of sinh(γx) and cosh
(γx), of equations (2.1.55b) and (2.1.56), two constants
A2 and B2 are determined:

B2 = −
A1

Z0
, A2 = −

B1

Z0
2 1 57

The phasor line voltage and line current are written as
follows:

V x = A1 cosh γx + B1 sinh γx a

I x = −
1
Z0

A1 sinh γx + B1 cosh γx b

2 1 58

The constants A1 and B1 are determined by using the
boundary conditions at input x = 0 and output x = ℓ.

• At x = 0, the line input voltage is VS, giving the value
of A1:

V x = 0 = A1 = VS 2 1 59

At the receiving end, x = ℓ, the load end voltage and
current are

V x = ℓ = VR = VS cosh γℓ + B1 sinh γℓ a

I x = ℓ = IR = −
1
Z0

VS sinh γℓ + B1 cosh γℓ b

2 1 60

• At x = ℓ, i.e. at the receiving end, the voltage across
load ZL is

VR = ZLIR 2 1 61

The constant B1 is evaluated on substituting VR and IR,
from equation (2.1.60), in the above equation:

B1 = −
VS Z0 cosh γℓ + ZL sinh γℓ
ZL cosh γℓ + Z0 sinh γℓ

2 1 62
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(a) Finite length transmission line with a voltage source

      and a load termination.

(b) Input equivalent circuit at plane a-a.

(c) A standing wave on the line.
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Figure 2.8 Transmission line circuit. The distance x is measured from the source end; whereas the distance d is measured from the load.
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On substituting constants A1 and B1 in equa-
tion (2.1.58a), the expression for the line voltage at loca-
tion P, from the source or load end, is

V x = VS
ZL cosh γ ℓ− x + Z0 sinh γ ℓ− x

ZL cosh γℓ + Z0 sinh γℓ
a

V d = VS
ZL cosh γd + Z0 sinh γd
ZL cosh γℓ + Z0 sinh γℓ

b

2 1 63

Similarly, the line current at the location P is obtained
as follows:

I x =
VS

Z0

ZL sinh γ ℓ− x + Z0 cosh γ ℓ− x
ZL cosh γℓ + Z0 sinh γℓ

a

I d =
VS

Z0

ZL sinh γd + Z0 cosh γd
ZL cosh γℓ + Z0 sinh γℓ

b

2 1 64

At any location P on the line, the load impedance is
transformed as input impedance by the line length
d = (ℓ− x):

Zin x =
V x

I x
= Z0

ZL + Z0 tanh γ ℓ− x
Z0 + ZL tanh γ ℓ− x

a

Zin d =
V d

I d
= Z0

ZL + Z0 tanh γd
Z0 + ZL tanh γd

b

for α = 0, Zin d = Z0
ZL + jZ0 tan βd
Z0 + jZL tan βd

c

2 1 65

Equations (2.1.65a,b) take care of the losses in a line
through the complex propagation constant, γ = α+ jβ.
However, for a lossless line α = 0, γ = jβ and the
hyperbolic functions are replaced by the trigonometric
functions shown in equation (2.1.65c). It shows the
impedance transformation characteristics of d = λ/4
transmission line section.
Equations (2.1.63) and (2.1.64) could be further writ-

ten in terms of the generator voltage Vg for the case,
Zg 0. Figure (2.8b) shows that at the source end
x = 0, the load appears as the input impedance Zin.
The sending end voltage is obtained as follows:

Vs = Vg −ZgIs, where Is =
Vg

Zg + Zin
, and

Zin x = 0 = Z0
ZL + Z0 tanh γℓ
Z0 + ZL tanh γℓ

.

Vs = Vg −Vg
Zg

Zin + Zg
= Vg

Zin

Zin + Zg

Vs = Vg
ZoZL + Z2

0 tanh γℓ
Z0ZL + ZoZg + Z2

0 + ZLZg tanh γℓ
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The line voltage, in terms of Vg, Zg, and ZL, is obtained
on substituting equation (2.1.66) in equation (2.1.63):

V x = Vg
Z0 ZL cosh γ ℓ− x + Z0 sinh γ ℓ− x

Z0ZL + Z0Zg cosh γℓ + Z2
0 + ZLZg sinh γℓ

2 1 67

Likewise, from equations (2.1.64) and (2.1.66), an
expression for the line current is obtained:

I x = Vg
ZL sinh γ ℓ− x + Z0 cosh γ ℓ− x

Z0ZL + Z0Zg cosh γℓ + Z2
0 + ZLZg sinh γℓ

2 1 68

The above equations could be reduced to the following
equations for a lossless line, i.e. for α = 0, γ = jβ,
cosh(jβ) = cos β and sinh(jβ) = j sin β:

V x = Vg
Z0 ZL cos β ℓ− x + jZ0 sin β ℓ− x

Z0ZL + Z0Zg cos βℓ + j Z2
0 + ZLZg sin βℓ

2 1 69

I x = Vg
Z0 cos β ℓ− x + jZL sin β ℓ− x

Z0ZL + Z0Zg cos βℓ + j Z2
0 + ZLZg sin βℓ

2 1 70

Equation (2.1.65c), for the input impedance, could be
obtained from the above two equations. The sending end
voltage and current are obtained at the input port –
aa, x = 0:

Vs = V x = 0

= Vg
Z0 ZL cos βℓ + jZ0 sin βℓ

Z0ZL + Z0Zg cos βℓ + j Z2
0 + ZLZg sin βℓ
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Is = I x = 0

= Vg
Z0 cos βℓ + jZL sin βℓ

Z0ZL + Z0Zg cos βℓ + j Z2
0 + ZLZg sin βℓ

2 1 72

Likewise, the expressions for the voltage and current
at the output port – bb, i.e. at the receiving end for
x = ℓ, are obtained:

VR = V x = ℓ

= Vg
Z0ZL

Z0ZL + Z0Zg cos βℓ + j Z2
0 + ZLZg sin βℓ

2 1 73
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IR = I x = ℓ

= Vg
Z0

Z0ZL + Z0Zg cos βℓ + j Z2
0 + ZLZg sin βℓ

2 1 74

Two special cases of the load termination, i.e. the
short-circuited load and the open-circuited load, are dis-
cussed below. The voltage and current distributions on a
transmission line for both the cases are also obtained.

Short-Circuited Receiving End

For the short-circuited load ZL = 0, the line voltage at the

load end is zero V x = ℓ = 0. However, the voltage on
the line is not zero. Equations (2.1.63) and (2.1.64) pro-
vide the voltage and current distributions on a short-
circuited line:

V x = VS
sinh γ ℓ− x

sinh γℓ
a

I x =
VS

Z0

cosh γ ℓ− x
sinh γℓ

b 2 1 75

The input impedance at any distance (ℓ− x) from the
source end is

Zin x = Z0 tanh γ ℓ− x a

Zin d = Z0 tanh γd b

for α = 0, Zin d = jZ0 tan βd c 2 1 76

At the load end, the voltage is zero. However, the line
current is not infinite like the lumped element circuit
with a short-circuited termination at output. A short-
circuited transmission line draws only a finite current
from the source. The ℓ< λ/4 short-circuited line
section behaves as an inductive element. The electrical
nature of the line section can be controlled by changing
its electrical length [B.9–B.15].

Open-Circuited Receiving End

The load impedance is ZL ∞ for an open-circuited

transmission line and the load current I x = ℓ = 0 .
Again, equations (2.1.63) and (2.1.64) provide the volt-
age and current distributions on an open-circuited trans-
mission line. The voltage and current waves and the
input impedance at location P from the load end can
be computed for the open-circuited load as follows:

V x = VS
cosh γ ℓ− x

cosh γℓ
a

I x =
VS

Z0

sinh γ ℓ− x
cosh γℓ

b 2 1 77

Zin x = Z0coth γ ℓ− x a

Zin d = Z0coth γd b

for α = 0, Zin d = − jZ0 cot βd c 2 1 78

The ℓ< λ/4 open-circuited line section behaves as a
capacitive element. The electrical nature of the line
section can be controlled by changing its electrical
length.

Matched and Mismatched Termination

The input impedance at any location on a line is Zin

(x) = Z0 if it is matched terminated in its characteristic
impedance, i.e. ZL = Z0. Normally, the characteristics
impedance of a microwave line is a real quantity. The
line terminated in Z0 does not create any reflected wave
on a transmission line. However, for the mismatched
termination ZL Z0, there is a reflected wave on a trans-
mission line, traveling from the load end to the
source end.

Exponential Form of Solution

The wave nature of the line voltage and line current
becomes more obvious from the exponential form of
solutions of the wave equations. The solution of wave
equation (2.1.37), for the phasor line voltage and line
current, can also be written in the exponential form:

V x = V + e− γx + V− eγx a

I x =
1
Z0

V + e− γx −V− eγx b 2 1 79

The distance x is measured from the source end. The
time-dependent harmonic form of the voltage wave is

v x, t = Re V x exp jωt . Finally, it is written as
follows:

v x, t = V + e− αx cos ωt− βx + V− eαx cos ωt + βx

Forward traveling wave Backward traveling wave

2 1 80

For an outgoing wave on a lossy line, the wave ampli-
tude decays and its phase lags; whether the distance is
measured from source end or load end. It is accounted
for by the proper sign of distance x. The amplitude of
a wave is exponentially decaying due to the line losses.
It is expressed by the attenuation constant α (Np/m).
The expression of the traveling current wave on a line

could be written as follows:
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i x, t =
1
Z0

V + e− αx cos ωt− βx −V− eαx cos ωt + βx

Forward traveling wave Backward traveling wave

2 1 81

If the source at x = 0 is connected to a line of infinite
extent, there is no reflection from the load end, as the
wave will never reach to the load end to get reflected.
Therefore, for the forward traveling voltage and current
waves on an infinite line, V−= 0 and the above solutions
of the wave equations are written as follows:

V x = V + e− γx a

I x =
V + e− γx

Z0
b

v x, t = V + e− αx cos ωt− βx c

i x, t =
V +

Z0
e− αx cos ωt− βx d

2 1 82

The input impedance of an infinite line at any location
x is Zin (x) = Z0. Thus, a finite line terminated in its char-
acteristic impedance, i.e. ZL = Z0 behaves as an infinite
extent transmission line without any reflection. The char-
acteristic impedance shows a specific feature of a line
that is determined by the geometry and physical
medium of the line. Once a finite extent line is termi-
nated in any other load impedance, i.e. ZL Z0, the volt-
age and current waves are reflected from the load. The
wave reflection is expressed by the reflection coefficient,
Γ(x). The reflection coefficient is a complex quantity
and its phase changes over the length of a line. However,
its magnitude remains constant over the length of a loss-
less line. The interference of the forward-moving and
backward-moving reflected waves produces the standing
wave with maxima and minima of the voltage and cur-
rent on a line. Figure (2.8c) shows the voltage standing
wave. The position and magnitude of the voltage max-
ima Vmax and voltage minima Vmin are measurable
quantities. Their positions are measured from the load
end. The reflection coefficient, and also the voltage stand-
ing wave ratio, VSWR, i.e. S, is defined using the Vmax

and Vmin. The VSWR could be measured with a VSWR
meter. Therefore, the reflection on a transmission line is
expressed by both the reflection coefficient and the
VSWR. The reflection at the input terminal of a line is
also expressed as the return-loss, RL = − 20 log10|Γin|.
The wave behavior in terms of the reflection parameter
is an important quantity in the design of circuits and
components in the microwave and RF engineering.

At the load end, the total line voltage is a sum of the
forward and reflected waves, and it is equal to the volt-
age drop VR across the load impedance ZL. It is shown in
Fig (2.8a). To simplify expressions for the line voltage
and current, the origin is shifted from the source end
to the load end. In that case, expressions for both the line
voltage and line current, given by equation (2.1.79), have
to be modified for the new distance variable x < 0. Now
the source and load are located at x = − ℓ and at x = 0,
respectively. For the origin at the load end, the reflected
wave V−e(ωt + γx) appears as the “forward-traveling
wave” from load to the source, whereas the wave inci-
dent at the load V+e(ωt− γx) appears as the “backward-
traveling” wave. The voltage drop across the load is

VR = ZLIR 2 1 83

Keeping in view that the origin of the distance (x = 0)
is at the load, the line voltage and current at the load end
are written, from equation (2.1.79), as follows:

VR = V x = 0 = V + + V− a

IR = I x = 0 =
1
Z0

V + −V− b 2 1 84

The voltage reflection coefficient at the load end is
defined as follows:

ΓL =
Amplitude of reflected voltage

Amplitude of forward incident voltage
=

V−

V +

2 1 85

The expression to compute the reflection coefficient at
the load end is obtained from the above equations
(2.1.83) – (2.1.85): equations:

1 + ΓL =
ZL

Z0
1−ΓL a

ΓL =
ZL −Z0

ZL + Z0
b 2 1 86

The mismatch of a load impedance ZL with the char-
acteristic impedance Z0 of a line is the cause of the reflec-
tion at the load end. For the condition ZL = Z0, the
matched load terminated line avoids the reflection on
a line, as ΓL = 0. At any distance x, the reflection coef-
ficient is a complex quantity with both the magnitude
and phase expressed as follows:

Γ x = Γ x ejϕ = Γr x + jΓi x a

Γ x = Γr x
2 + Γi x

2

ϕ = tan − 1 Γi x Γr x b 2 1 87

A lossless line has |Γ(x)| = |ΓL|, i.e. on a lossless line
magnitude of the reflection is the same at all locations
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on a line. However, the lagging phase ϕ changes with
distance. It has 180 periodicity, i.e. for an inductive
load, the range of phase is 0 < ϕ< π, and a capacitive
load has the phase in the range −π< ϕ< 0. Using equa-
tion (2.1.79), the line voltage and line current are written
in term of the load reflection coefficient:

V x = V + e− γx 1 + ΓLe2γx a

I x =
V + e− γx

Z0
1−ΓLe2γx b 2 1 88

For a lossless transmission line, the above equations
are written as follows:

V x = V + 1 + ΓL ej ϕ + 2βx a

I x =
V +

Z0
1− ΓL ej ϕ + 2βx b 2 1 89

In the above equations, the origin is at the load end, i.e.
x < 0. The maxima and minima of the voltage and cur-
rent waves along the line occur due to the phase varia-
tion along the line. The voltage maximum occurs at
ej(ϕ+ 2βx) = + 1. In this case, both the forward and
reflected waves are in-phase. The voltage minimum
occurs at ej(ϕ+ 2βx) = − 1. In this case, both the forward
and reflectedwaves are out of phase. Finally, themaxima
and minima of the voltage on a line are given as follows:

Vmax x = V + 1 + ΓL a

Vmin x = V + 1− ΓL b 2 1 90

The reflection coefficient Γ(x) at any location x from
the load end is related to the reflection coefficient at
the load ΓL by

For a lossy line Γ x = ΓLe2γx a

for a lossless line Γ x = ΓLej2βx b 2 1 91

The measurable quantity voltage standing wave ratio
(VSWR) is defined as follows:

S = VSWR =
Vmax x

Vmin x
=

1 + Γ x
1− Γ x

2 1 92

For a lossless line, the VSWR is constant along the length
of a line. Likewise, the current standing wave ratio is also
defined.
The wave reflection also takes place at the sending end

when the source impedance Zg is not matched to the
characteristic impedance of a line. The reflection coeffi-
cient at x = − ℓ, i.e. at the generator (source) end is
defined as Γ(x = − ℓ) = Γg. The voltage and current at
the generator end are obtained from equation (2.1.88),

Vs x = V x = − ℓ = V + e + γl 1 + ΓLe− 2γℓ a

Is x = I x = − ℓ =
V + e + γl

Z0
1−ΓLe− 2γℓ b

2 1 93

The amplitude factor V+ is determined by the reflec-
tions at both the source and load ends.

Figure (2.8b) shows that the port voltage Vs and the

line current Is , at the input port – aa, are related to

the source voltage Vg and its internal impedance Zg by

Is =
Vg −Vs

Zg
2 1 94

On substitution of equation (2.1.93) in (2.1.94), the
voltage wave amplitude V+ is obtained as follows:

V + Zg + Z0 e + γl − Zg −Z0 e− γlΓL = Z0Vg

2 1 95

However, the reflection coefficient at the source end is

Γg =
Zg −Z0

Zg + Z0
2 1 96

Therefore, the amplitude of the voltage wave launched
by the source is

V + = Vg
Z0e− γℓ

Zg + Z0 1−ΓgΓLe− 2γℓ 2 1 97

Equation (2.1.88a and b) give the voltage and current
waves on a transmission line with the amplitude
factor V+. The amplitude factor V+ is given by
equation (2.1.97).

2.1.8 Application of Thevenin’s Theorem to
Transmission Line

Thevenin’s theorem is a very popular concept used in the
analysis of the low-frequency lumped element circuits. It
is equally applicable to a transmission line network. At

the output end of the line, the input source voltage Vg

and the line section are replaced by the equivalent The-

venin’s voltage, VTH x = 0 with internal impedance, i.e.
the Thevenin’s impedance ZTH [B.12]. Figure (2.8d)
shows it. The distance is measured from the load end.
Thevenin’s voltage is an open-circuit voltage at the load
end. In the case of the open-circuited load, ZL ∞,
equation (2.1.86) provides a reflection coefficient ΓL = 1.
Thevenin’s voltage is obtained from equations (2.1.88a)
and (2.1.97):
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VTH x = 0 =
2VgZoe− γℓ

Zg + Zo 1−Γge− 2γℓ 2 1 98

On replacing Γg from equation (2.1.96), Thevenin’s
voltage is

VTH x = 0 =
VgZo

Zo cosh γℓ + Zg sinh γℓ
2 1 99

Thevenin’s impedance ZTH is obtained from equa-
tion (2.1.88b) by computing Norton current, i.e. the
short-circuit current at x = 0. Under the short-circuited
load condition at x = 0, ΓL = − 1, and the Norton cur-
rent is

IN x = 0 =
2Vge− γℓ

Zg + Zo 1 + Γge− 2γℓ 2 1 100

Thevenin’s impedance is obtained as follows:

ZTH =
VTH

IN
, ZTH = Z0

1 + Γge− 2γℓ

1−Γge− 2γℓ

2 1 101

Transfer Function

The transmission line section could be treated as a cir-
cuit element. Its transfer function is obtained either with
respect to the source voltage Vg or with respect to the
input voltage Vs at the port- aa, as shown in Fig (2.8a).
The load current is obtained from Fig (2.8d):

IL =
VTH

ZTH + ZL
2 1 102

The voltage across the load is

VR = ZLIL =
2Z0ZLVg

ZTH + ZL Zg + Z0

e− γℓ

1−Γge− 2γℓ

2 1 103

The transfer function of a transmission line with

respect to the source voltage Vg is

H ω =
VR

Vg
=

2Z0ZL

ZTH + ZL Zg + Z0

e− γℓ

1−Γge− 2γℓ

2 1 104

For a lossless transmission line connected to a
matched source and amatched load, i.e.γℓ= jβℓ, Zg = Z0,
ZTH = Z0, ZL = Z0, Γg = 0 the transfer function is

H ω =
e− γℓ

2
2 1 105

However, if the transfer function is defined by the ratio

of the input voltage Vs at the port – aa to the output

voltage VR, H(ω) = e−γℓ. It is obtained from equa-
tion (2.1.104) for Zg = 0.

2.1.9 Power Relation on Transmission Line

The average power over a time-period T in any time-
harmonic periodic signal is [J.5, B.10]

Pav =
1
T

T

0
v t i t dt 2 1 106

where the time-harmonic instantaneous voltage and
current waveforms are

v t = V0 cos ωt + ϕ a

i t = I0 cos ωt + ϕ b

2 1 107

The voltage and current in the phasor form are written
as follows:

V = V0e
jϕ a , I = I0e

jϕ b

2 1 108

A complex number X = a + jb has its complex conju-
gate, X∗ = a− jb. Thus, the real (Re) and imaginary (Im)
parts of a complex number are written as follows:

Re X =
1
2

X + X∗ a

Im X =
1
2

X−X∗ b

2 1 109

On using the above property, the instantaneous volt-
age and current are written as follows:

v t =
1
2

Vejωt + V
∗
e− jωt a

i t =
1
2

Iejωt + I
∗
e− jωt b

2 1 110

The average power in phasor form is obtained from
equations (2.1.106) and (2.1.110),

Pav =
1
2
Re VI

∗
2 1 111

It can be expressed in the usual AC form,

Pav =
1
2
Re V0ejϕ I∗0e

− jϕ =
1
2
V0I∗0 cos ϕ−ϕ

2 1 112
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Available Power from Generator

Figure (2.9a) shows that the maximum available power
from a source is computed by directly connecting the
load to it. The average power supplied to the load is

Pav =
1
2
Re VL I∗ =

1
2
Re I 2ZL =

1
2
I 2RL

2 1 113

The load current is

I =
Vg

Zg + ZL
=

Vg

Rg + RL + j Xg + XL

I 2 =
Vg

2

Rg + RL
2
+ Xg + XL

2

Therefore, the average power supplied to the load is

Pav =
1
2

Vg
2
RL

Rg + RL
2
+ Xg + XL

2 2 1 114

Under the conjugate matching, XL =−Xg and RL = Rg,
the average power supplied to load is maximum:

Pav =
1
8

Vg
2

Rg
2 1 115

This is themaximumpower available from a generator
under thematching condition and delivered to a load RL.
At this stage, the maximum power delivered to a load is
computed in the absence of the transmission line. For a
matched terminated lossless line, the maximum availa-
ble power from the source is delivered to the load. It is
examined below.
The voltage and current waves on a line under no

reflection case are

V x = VSe− jβx a , I x =
VSe− jβx

Z0
b

2 1 116

The average power on the line is

Pav =
1
2
Re V x I

∗
x =

1
2
Re VSe− jβx V

∗
S

Z0
ejβx =

VS
2

2Z0

2 1 117

On a lossless line, the average power is independent of
the distance x from a source. Physically it makes a sense,
as the same amount of power flows at any location on
the line. Under the matched load termination, ZL =
Z0, the input impedance at the source end is Z0 itself.
It is shown in Fig (2.9b). The sending end voltage at
the input port – aa of a transmission line is

VS =
VgZ0

Zg + Z0
2 1 118

The maximum power is transferred from a generator
to the transmission line under the matching condition,
Rg = Z0. The maximum available power from the gener-
ator to feed the line is given by equation (2.1.115). It is
identical to the power determined from equa-

tion (2.1.117), as Vs = Vg 2.
If the line is not terminated in its characteristic imped-

ance, then a reflection takes place at the load end. The
reflected wave travels from the load toward the genera-
tor given by

V x = V− e + jβx a , I x = −
V− e + jβx

Z0
b

2 1 119

The average power in the reflected wave is

Pav =
1
2
Re V x I

∗
x = −

V− 2

2Z0
2 1 120

However, at the load end amplitude of the reflected

voltage wave is V− = ΓLV+; where V + = Vs. Therefore,
the average reflected power on the line is

+

–

I
∼

Vg

∼
VS

Zin =

Z0

∼

Zg

a

a

+

–

I
∼

(a) Load directly connected to a source. (b) Line terminated in a matched load.

Vg

∼
VL

ZL
∼

Zg

b

b

Figure 2.9 Load connections to a source.
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Pav = −
ΓL

2 V + 2

2Z0
= −

ΓL
2V

2
s

2Z0
2 1 121

The negative sign (−) shows that the reflected power
travels from the load toward the source. Finally, under
the mismatched load, the power delivered to the load
is obtained from equations (2.1.117) and (2.1.121)

PL =
V
2
S

2Z0
1− ΓL

2 2 1 122

For a lossless line, the power balance is written as
follows:

Pin =
1
2Z0

Vs
2
1− ΓL

2 = Pout

Incident power Reflected power

2 1 123

In equation (2.1.123), input power Pin at the input
port – aa of the line enters into the line. It is supplied

by a source. The output power Pout is the power supplied
to the load.

2.2 Multisection Transmission Lines
and Source Excitation

This section extends the solution of the voltage wave
equation to the multisection transmission line [B.8,
B.16]. Next, the voltage responses are obtained for the
shunt connected current source, and also the series-
connected voltage source, at any location on a line. This
treatment is used in chapters 14 and 16 for the spectral
domain analysis of the multilayer planar transmis-
sion lines.

2.2.1 Multisection Transmission Lines

Figure (2.10a) shows a multisection transmission line,
consisting of the N number of line sections. Each line
section has different lengths (d1, d2,…,dN), different

Line section

x=0
Location of

junction

Vg

∼ Z01 =
Y01

#1 #2 #3 #n N

Load at

junction

Voltage at

junction

Reflection coeff.

at junction

VS V1

Y1
in Y2

in Y3
in Yn

in YN
1O = YL

X0 X1 X2 X3 Xn–1
Xn XN–1 XN

β1 β2

d1 d2 d3 dn dN

Γ1

V1

Γ1

V3

Γ3

Vn

Γn

VN

ΓN

VN–1

ΓN–1

Vn–1

Γn–1

1
Z02 =

Y02

1

β3

Z03 =
Y03

1

βn

Z0n =
Y0n

1

βN

Z0N =
Y0N ZL

1

YL

=
1

(a) Analysis of multi-section line structure.

(b) Isolated first line section.

Input Output

VS Z01, β1

X0 X1
X = 0

d1

Γ1
Yʹin =

Zʹin
1

Figure 2.10 The multisection transmission line.
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characteristic impedances (Z01, Z02,…,Z0N), or different
characteristic admittances (Y01, Y02,…,Y0N) and different
propagation constants (β1, β2,…, βN). At each junction of
two dissimilar lines, the voltage wave reflection occurs
with the reflection coefficient Γ1, Γ2,…, ΓN. At each junc-
tion, the input admittance of all succeeding line sections
appears as a load. The input admittances at junctions (x1,
x2, …, xN) are Y1

in, Y
2
in,…, YN

in . The distances of the junc-
tions are measured from the origin that is located on the
left-hand side. The input terminals of line sections 1,2,…,
N− 1 are located at the junctions (x0, x1, x2,…,xN). The
voltage source Vs is located at the input of the first line
section. The last line section is terminated in the load
ZL = 1/YL.
The objective is to find the voltage at each junction of the

multisection line. Further, the voltage distribution on each

line section is determined due to the input voltage Vs.
The solutions for the voltage and current wave equa-

tions involve four constants. The constants of the current
wave are related to two constants of the voltage wave
through the characteristic impedance of a line. Out of
two constants of the voltage wave, one is expressed in
terms of the reflection coefficient at the load end; that
itself is expressed by the characteristic impedance and
the terminated load impedance. The reflection coeffi-
cient can also be expressed by the characteristic admit-
tance and the terminated load admittance. The second
constant is evaluated by the source condition at the
input end. Figure (2.10b) shows the first isolated line sec-
tion. The voltage and current waves, with respect to the
origin at the load end x1, on the line section (x0≤ x≤ x1)
are written from equation (2.1.88):

V x = V + e− jβ1 x− x1 + Γ1ejβ1 x− x1 a

I x =
V +

Z01
e− jβ1 x− x1 −Γ1ej x− x1 , x0 ≤ x ≤ x1 b

2 2 1

The reflection coefficient Γ1 at the load end, i.e. at
x = x1 is given by

Γ1 =
Z1
in −Z01

Z1
in + Z01

=
Y01 −Y1

in

Y01 + Y1
in

2 2 2

The load at the x = x1 end is formed by the cascaded
line sections after location x = x1. The voltage amplitude
V+ is evaluated by the boundary condition at the input,
x = x0, of the first line section. At x = x0, shown in

Fig (2.10b), the source voltage V x0 is Vs and V+ is eval-
uated as follows:

V x0 = VS = V + e− jβ1 x0 − x1 + Γ1ejβ1 x0 − x1

V + =
VS

e− jβ1 x0 − x1 + Γ1ejβ1 x0 − x1
2 2 3

The voltage wave on the transmission line section #1 is

V1 x =
VS e− jβ1 x− x1 + Γ1ejβ1 x− x1

e− jβ1 x0 − x1 + Γ1ejβ1 x0 − x1
2 2 4

The above expression is valid over the range x0≤ x≤ x1.
The voltage at the output of the line section #1 (x = x1),
that is at the junction of line #1 and line #2, is

V1 x1 =
VS 1 + Γ1

e− jβ1 x0 − x1 + Γ1ejβ1 x0 − x1
=

VS 1 + Γ1

e + jβ1d1 + Γ1e− jβ1d1
,

2 2 5

where d1 = x1− x0 is the length of the line section #1.
The above voltage is input to the line section #2. Equa-
tions (2.2.4) and (2.2.5) apply to any line section and at

any junction. The voltage Vn− 1 xn− 1 is treated as the
input voltage of the nth line section. It is the same as
the output voltage of the (n− 1)th line section. The line
length d1 and reflection coefficient Γ1 are replaced by dn
and Γn, respectively. The cascaded line sections to the
right-hand side of any junction act as a load at the junc-
tion and the reflection coefficient at the junction is

At load end of the line section#1

Γ1 =
Y01 −Y1

in

Y01 + Y1
in

a

At load end of the line section#n

Γn =
Y0n −Yn

in

Y0n + Yn
in

b

Length of the line section#n

dn = xn − xn− 1, n = 1, 2,…N c

2 2 6

Equation (2.2.4) is applied to Fig (2.10a) to compute
the voltage distribution on any line section. The voltage
on line section #2 is

V2 x =
V1 e− jβ2 x− x2 + Γ2ejβ2 x− x2

e− jβ2 x1 − x2 + Γ2ejβ2 x1 − x2
, x1 ≤ x ≤ x2

2 2 7

The voltage at the output of the line section #2, i.e. the
junction voltage of the line sections #2 and # 3 at x = x2,
is obtained from the above equation:
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V2 x2 =
V1 1 + Γ2

e + jβ2d2 + Γ2e− jβ2d2
2 2 8

Using equation (2.2.5) and above equations, the volt-
age distribution on the line section #2, and also the junc-
tion voltage at x = x2, are obtained:

V2 x =
VS 1 + Γ1

e + jβ1d1 + Γ1e− jβ1d1

e− jβ2 x− x2 + Γ2ejβ2 x− x2

e + jβ2d2 + Γ2e− jβ2d2

2 2 9

V2 x2 =
VS 1 + Γ1

e + jβ1d1 + Γ1e− jβ1d1

1 + Γ2

e + jβ2d2 + Γ2e− jβ2d2

2 2 10

Finally, the voltage distribution on the nth line
section and the voltage at the nth line junction can be
written as follows:

Vn x =
N

n = 1

VS 1 + Γn− 1

ejβn− 1dn− 1 + Γn− 1e− jβn− 1dn− 1

e− jβn x− xn + Γnejβn x− xn

e + jβndn + Γne− jβndn
2 2 11

Vn xn =
N

n = 1

VS 1 + Γn

ejdnβn + Γne− jdnβn
2 2 12

2.2.2 Location of Sources

The shunt voltage Vs could be located at any junction
and the voltage distribution is computed on any line
section due to it. However, it is also interesting to con-
sider a shunt current source and a series voltage source
located anywhere on a multisection transmission line.
Both kinds of sources create the voltage wave on a line.

Current Source at the Junction of Finite Length Line and
Infinite Length Line

Figure (2.11a) shows a transmission line circuit with a
current source IS located at x = 0 that is the junction
of two lines of different electrical characteristics. The
open-circuited line #1, with length x = −d1, is located
at the left-hand side of the current source. Its character-
istics impedance/admittance is (Z01/Y01) and its propa-
gation constant is β1. The infinite length line #2, with

Line #1 Line #2

Open

x = –d1 x = 0 x ∞

β1,Y01 (Z01) β2,Y02 (Z02)

IS

∼

(a) Transmission line circuit with a shunt current source.
x = –d1

Line #1 Line #2

Open

x = +d2x = 0

Y– Y+

β1,Y01 (Z01) β2,Y02 (Z02)

IS

∼ YL =

Y02

(b) Equivalent circuit.

+

–

∼

IS

∼

Yin =

Y+ + Y–VS

(c) Replacement of shunt current source by the equivalent voltage source.

Figure 2.11 A shunt current source at the junction of two-line sections.
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characteristics impedance/admittance (Z02/Y02) and the
propagation constant β2, is located at the right-hand side
of the current source. It can be replaced by a load admit-
tance YL = Y02 at a distance x = d2, shown in Fig (2.11b).
The objective is to find out the voltage waves on both the
lines as excited by the current source.
The current source IS can be replaced by an equivalent

voltage source Vs, shown in Fig (2.11c), at x = 0:

VS =
IS
Yin

=
IS

Y− + Y + , 2 2 13

where Yin is the total load admittance at the plane con-
taining the current source IS. Y

− and Y+ are left-hand
and right-hand side admittances at x = 0 given by

Y− = Y01 tanh γ1d1

= jY01 tan β1d1 For a losslessline , Y + = Y02

2 2 14

The general solution of a voltage wave is given by
equation (2.1.79a). The constants V+ and V− are evalu-
ated for the left-hand side of a lossless transmission line.
At x = 0, V(x = 0) = Vs. On using this boundary condi-
tion in equation (2.1.79a): VS = V+ + V−. At x = −d1
the line is open-circuited with I (x = −d1) = 0. On using
this boundary condition in equation (2.1.79b):
V + ejβ1d1 −V− e− jβ1d1 = 0 . The constants V+ and V−,
from these two equations, are obtained as

V + =
VS

1 + ej2β1d1
a , V− = V + ej2β1d1 b

2 2 15

The voltage wave on the left-hand line #1 is obtained
by substituting equation (2.2.15) in equation (2.1.79a):

V x =
VS

cos β1d1
cos β1 x + d1 , − d1 ≤ x ≤ 0

2 2 16

The line at the right-hand side of the current source is
an infinite length line that supports a traveling wave
without any reflection. Therefore, at x = 0, V− = 0 and
V+ = VS. The voltage wave on line #2 at the right-hand
side is

V x = VSe
− jβ2x, x ≥ 0 2 2 17

The method can be easily extended to a multi-
section line structure. For this purpose, the left-hand
and right-hand side admittances Y− and Y+ are deter-
mined at the plane containing the current source.

Series Voltage Source

Figure (2.12a) shows the series-connected voltage source
VS at x = 0. The location x = 0 is a junction of two trans-
mission lines – line #1 open-circuited finite-length line
and line #2 infinite length line. The lines at the left-hand
and right-hand sides of the voltage source can be
replaced by the equivalent impedances Z− and Z+,
respectively. It is shown in the equivalent circuit,
Fig (2.12b). Again, the voltage waves on both lines,
excited by a series voltage source, could be determined.
The voltages across loads Z− (Z1) and Z+ (Z2), shown

in Fig (2.12b), are obtained as follows:

Line current I =
VS

Z− + Z + a

Voltage across Z1 V x = 0− = −
VSZ1

Z1 + Z2
b

Voltage across Z2 V x = 0 + =
VSZ2

Z1 + Z2
c

2 2 18

Line #1 is open-circuited and line #2 is of infinite
extent. Therefore, their input impedances at x = 0−

and x = 0+ are

∼
VS

∼
VS I

∼
Line #1 Line #2

(a) Transmission line circuit with a series

     voltage source.

(b) Equivalent circuit.

Open β1

Y01 =
Z01

Z– Z+

1

β2

Y02 =
Z02

–

+

Z1

+

–

Z2

1

x = –d1 x = 0 x = 0x = ∞

Figure 2.12 A series voltage source at the junction of two-line sections.
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Z1 = − jZ01 cot β1d1 a , Z2 = Z02 b

2 2 19

The voltage at x = 0+ from equations (2.2.18c) and
(2.2.19) is

V x = 0 + = VS
1
Y02

×
1

1
jY01 tan β1d1

+
1
Y02

= VS
jY01 tan β1d1

Y02 + jY01 tan β1d1
2 2 20

For a lossy transmission line, the above equation could
be written as follows:

V x = 0 + = VS
Y01 tanh γ1d1

Y02 + Y01 tanh γ1d1
2 1 21

The voltage wave on the infinite extent lossy line #2 is

V x = V x = 0 + e− γ2x

= VS
Y01 tanh γ1d1

Y02 + Y01 tanh γ1d1
e− γ2x, x ≥ 0

2 2 22

The voltage at x = 0− on the lossless line #1 is

V x = 0− = −VS
Y02

Y02 + jY01 tan β1d1
2 2 23

However, the voltage at x = 0− on a lossy line #1 is

V x = 0− = −VS
Y02

Y02 + Y01 tanh γ1d1
2 2 24

The voltage wave on the open-circuited lossless line #1
is obtained from equations (2.2.16) and (2.2.23):

V x =
V x = 0−

cos β1d1
cos β1 x + d1

V x = −VS
Y02

Y02 + jY01 tan β1d1

×
cos β1 x + d1

cos β1d1
, − d1 ≤ x ≤ 0 2 2 25

2.3 Nonuniform Transmission Lines

The previous sections have presented the voltage and
current waves on the uniform transmission line that
has no change in the geometry along the direction of
propagation. For a uniform line, the relative

permittivity and relative permeability also do not
change along the line. For such a uniform lossless or
low-loss transmission line, the voltage and current
waves travel at a definite velocity from low frequency
to high frequency. The uniform transmission line
behaves as a low-pass filter (LPF) section. The propaga-
tion constant for such a uniform transmission line is
the same at any section of the line. The line also has
a unique characteristic impedance that is independent
of the location on a line. However, if the geometry of a
transmission line or an electrical property of the
medium of a line changes in the direction of propaga-
tion, such a line is no longer a uniform transmission
line. It is a nonuniform transmission line. Its electrical
properties, such as the RLCG primary constants, prop-
agation constant, phase velocity, and characteristic
impedance, become a function of the space coordinate
along the direction of propagation. The characteristic
impedance of a nonuniform transmission line changes
from one end to another end; therefore, it finds appli-
cation in the broadband impedance matching [B.9,
B.10, B.12]. It is also used for the design of delay equal-
izers, filters, wave-shaping circuits, etc. [J.6–J.9]. It is
an essential section of the on-chipmeasurement system
[J.10].Unlike a uniform transmission line, it shows a cut-
off phenomenon, i.e. the wave propagates on the line only
above the cut-off frequency. Below the cut-off frequency,
the wave only attenuates with distance. Thus, the non-
uniform transmission line behaves like a high-pass fil-
ter (HPF) section [J.11–J.13, B.17].
The present section obtains the wave equations for a

nonuniform transmission line. However, like the uni-
form transmission lines, the nonuniform transmission
lines do not have closed-form solutions for the voltage
and current waves. The numerical methods have been
used to determine the response of an arbitrarily
shaped nonuniform transmission line [J.10, J.11].
However, this section discusses only the exponential
nonuniform transmission line to understand its
characteristics.

2.3.1 Wave Equation for Nonuniform
Transmission Line

Figure (2.13) shows a nonuniform transmission line.
The line parameters (primary line constants) R(x),
L(x), C(x), G(x) are distance-dependent. It results in
the distance-dependent characteristic impedance,
Z0(x), and propagation constant, γ(x). Using equa-
tion (2.1.20), the voltage and current equations for a
nonuniform transmission line are written as follows:
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∂v
∂x

= − R x i + L x
∂i
∂t

a

∂i
∂x

= − G x v + C x
∂v
∂t

b 2 3 1

The following expressions are obtained on differentiat-
ing equation (2.3.1a) with x and equation (2.3.1b) with t:

∂2v
∂x2

= − R x
∂i
∂x

+ i
∂R x
∂x

+ L x
∂2i
∂x∂t

+
∂i
∂t
∂L x
∂x

2 3 2

∂2i
∂t∂x

= − G x
∂v
∂t

+ C x
∂2v
∂t2

2 3 3

On substituting equations (2.3.1b) and (2.3.3) in
equation (2.3.2):

−
∂2v
∂x2

= −R x G x v + C x
∂v
∂t

+ i
∂R x
∂x

−L x G x
∂v
∂t

+ C x
∂2v
∂t2

+
∂i
∂t
∂L x
∂x

2 3 4

This equation has both the voltage and current vari-
ables v(x, t) and i(x, t). However, most of the transmis-
sion lines are low-loss lines. Thus, using R(x) 0 G
(x) 0 in equations (2.3.1a) and (2.3.4), the following
voltage wave equation is obtained for a lossless nonuni-
form transmission line:

∂2v
∂x2

= L x C x
∂2v
∂t2

+
1

L x
∂L x
∂x

∂v
∂x

2 3 5

Likewise, the current wave equation is obtained as,

∂2i
∂x2

= L x C x
∂2i
∂t2

+
1

C x
∂C x
∂x

∂i
∂x

2 3 6

If L(x) and C(x) are not a function of x, then equa-
tions (2.3.5) and (2.3.6) reduce to the familiar wave
equations (2.1.24) and (2.1.25) on a uniform transmis-
sion line.
For a lossy nonuniform transmission line, it is not pos-

sible to get separate voltage and current wave equations
in the time domain. However, separate voltage and cur-
rent wave equations can be obtained in the frequency
domain by using the phasor form of voltage and current.
The transmission line equations in the phasor form are

dV x
dx

= −Z x I x a

dI x
dx

= −Y x V x b ,

2 3 7

where the line series impedance and shunt admittance
p.u.l. are given by

Z x = R x + jωL x a

Y x = G x + jωC x b 2 3 8

The following wave equations for the nonuniform
transmission line are obtained:

d2V x

dx2
−

1
Z x

dZ x
dx

dV x
dx

−Z x Y x V x = 0

2 3 9

d2I x

dx2
−

1
Y x

dY x
dx

dI x
dx

−Z x Y x I x = 0

2 3 10

If Z(x) and Y(x) are not a function of x, the above wave
equations reduce to wave equation (2.1.37a and b) for a
uniform transmission line. For a lossless nonuniform
line, the series impedance and shunt admittance per unit
length are Z(x) = jωL(x), Y(x) = jωC(x). The voltage
wave equation (2.3.9) could be written as

d2V x

dx2
−

1
L x

dL x
dx

dV x
dx

+
ω

vp x

2

V x = 0,

2 3 11

where position-dependent nominal phase velocity of a
nonuniform transmission line is given by

vp =
1

L x C x
2 3 12

x = 0 x = ℓ
x

Figure 2.13 Nonuniform transmission line.
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It is difficult to get a general solution for the above
wave equations. However, under the case of no reflec-
tion on a line, and the line with a small fractional change
in L(x) and C(x) over a wavelength, Lewis andWells, and
Wohler [B.17, J.11] have given the following solution of
wave equation (2.3.11):

V x = V 0
Z0 x
Z0 0

1
2

exp − jω
x

0

dx
vp x

2 3 13

In this expression Z0(x) is the nominal characteristic
impedance at any location x on the nonuniform trans-
mission line, whereas characteristic impedance Z0(0) is
the nominal characteristic impedance at x = 0. For a uni-
form line, the phase velocity vp(x) is constant and

Z0 x = Z0 0 ,
dL x
dx

= 0. The wave equation (2.3.11)

is reduced to the wave equation of a uniform transmis-
sion line. The solution (2.3.13) is also reduced to the

standard solution, V x = V 0 e− jβx.
Equation (2.3.13) shows that for increasing character-

istic impedance Z0(x) along the line length, the voltage
amplitude also increases as the square root of nominal
characteristic impedance. Lewis and Wells [B.17] have
also given an expression for the reflection coefficient
of the nonuniform transmission line terminated in the
load ZL at x = ℓ:

Γ x =
1−

1
j2ω

vp x = ℓ

Z0 x = ℓ

dZ0 x
dx x = ℓ

ZL −Z0 x = ℓ

1 +
1
j2ω

vp x = ℓ

Z0 x = ℓ

dZ0 x
dx x = ℓ

ZL + Z0 x = ℓ

2 3 14

For a uniform transmission line Z0(x = ℓ) = Z0, and
equation (2.3.14) is reduced to the nominal reflection
coefficient,

Γnom x =
ZL −Z0 x = ℓ

ZL + Z0 x = ℓ
=

ZL −Z0

ZL + Z0
2 3 15

At higher operating frequency ω, the reflection coeffi-
cient for any termination, given by equation (2.3.14), is
also reduced to equation (2.3.15). However, reflection
occurs at a lower frequencyω on a nonuniform transmis-
sion line, even if the nominal reflection coefficient
Γnom(x = ℓ) zero, i.e. even if the line is matched at the
load end. This behavior is different from that of a uni-
form transmission line.

2.3.2 Lossless Exponential Transmission Line

The general solution of the wave equation for a nonuni-
form transmission line is not available. However, the
closed-form solution is obtained for an exponential
transmission line [J.11, J.13]. This case demonstrates
the properties of a nonuniform line. The following expo-
nential variation is assumed for the line inductance and
capacitance of a nonuniform transmission line:

L x = L0e2px, C x = C0e− 2px, 2 3 16

where L0 and C0 are primary line constants at x = 0 and p
is a parameter controlling the propagation characteristics.
The above choice of line inductance and capacitance
maintains a constant phase velocity that is independent
of the location along the line length. The characteristic
impedance of a lossless exponential transmission line
changes exponentially along the line length. Its propaga-
tion constant is also frequency-dependent. Therefore, a
lossless nonuniform line is dispersive. The nominal char-
acteristic impedance at any location x on the line is

Z0 x =
L x
C x

=
L0

C0
e2px = Z0 x = 0 e2px

2 3 17

The parameter p, defined below, could be determined
from the characteristic impedance at the input and out-
put ends of the line:

p =
1
2ℓ

log e
Z0 ℓ

Z0 x = 0
2 3 18

If the impedances at both ends of a line are fixed, chan-
ging the line length, ℓ, can change the parameter p. The
parameter p also determines the propagation character-
istics of a nonuniform transmission line. The series
impedance and shunt admittance p.u.l. of the exponen-
tial line can be written as follows:

Z x = jωL0e
2px a , Y x = jωC0e

− 2px b

2 3 19

In case of an exponential line, the voltage and current
wave equations (2.3.9) and (2.3.10) reduce to

d2V x

dx2
− 2p

dV
dx

+ ω2L0C0V x = 0 2 3 20

d2I x

dx2
+ 2p

dI
dx

+ ω2L0C0I x = 0 2 3 21

Let us assume the following exponential form of the
solution for the above wave equations with separate
propagation constants for the voltage and current waves:
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V x = V0e− γ1x a , I x = I0e− γ2x b

2 3 22

The above differential equations provide the following
characteristic equations:

γ21 + 2pγ1 + ω2L0C0 = 0 a

γ22 − 2pγ2 + ω2L0C0 = 0 b

2 3 23

On solving the above equations, the following expres-
sions are obtained for the complex propagation
constants:

γ1 = α1 ± jβ1 = − p ± p2 −ω2L0C0 a

γ2 = α2 ± jβ2 = p ± p2 −ω2L0C0 b

2 3 24

In the case of a uniform transmission line (p = 0), the
propagation constants for the voltage and current waves
are identical. The parameter p determines the attenua-
tion constant, i.e. α of a nonuniform line. It is positive
for the condition Z0(x = ℓ) > Z0(x = 0). Thus, there is
an attenuation factor even for a lossless nonuniform
line. The factor under the radical sign provides the prop-
agation constant, i.e. the phase-shift constant β. At the
cut-off frequency, ω= ωc, β is zero. The cut-off frequency
is given by

ωc =
p

L0C0
, 2 3 25

where phase velocity of the voltage and current waves on
the line at x = 0 is

Vp x = 0 =
1

L0C0
2 3 26

The complex propagation constants can be rewritten
as follows:

γ1 = α1 ± jβ1 = − p ± jp
ω
ωc

2

− 1 a

γ2 = α2 ± jβ2 = p ± jp
ω
ωc

2

− 1 b

2 3 27

The propagation constants β1 and β2 are imaginary
quantities for the signal below the cut-off frequency
ω< ωc. Under such conditions, no wave propagates on
the nonuniform line. The initial signal only gets attenu-
ated. It is called the evanescent mode. The wave propaga-
tion takes place only forω> ωc. Therefore, a nonuniform
transmission line behaves like a high-pass filter (HPF).

However, real parts of the complex propagation con-
stants γ1 and γ2 are nonzero. For p > 0, the voltage wave
gets attenuated while the current wave is increased in
the positive direction of wave propagation. In the back-
ward direction, the reflected voltage and current waves
have opposite behavior. The attenuation in the signal is
not due to any ohmic loss of a line. It is due to the con-
tinuous reflection of the wave as it progresses on the line.
The opposite behavior of the voltage and current waves
maintains the constant flow of power (P) at any location
on a line:

P x =
1
2
V x I

∗
x =

1
2
V0I0e

− γ1+γ∗2 x, 2 3 28

where γ1 + γ∗2 = 0. Unlike a lossless uniform transmis-
sion line, the phase velocity of the voltage and current
waves on a lossless nonuniform transmission line is
dispersive as given below:

vp =
ω
β

=
ω

p
ω
ωc

2

− 1

2 3 29

The phase velocity shows singularity at the cut-off fre-
quency. After the cut-off frequency, i.e. for ω> > ωc, it
decreases, with an increase in frequency, to a value given
by expression (2.3.26).
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3

Waves on Transmission Lines – II

(Network Parameters, Wave Velocities, Loaded Lines)

Introduction

The transmission line sections are used to develop various
passive components. These are characterized by several
kinds of matrix parameters. This chapter discusses the
matrix parameters and their conversion among them-
selves. It also discusses various kinds of dispersion and
wave propagation encountered on transmission lines.
The transmission lines could be loaded by the reactive ele-
ments and resonating circuits to modify the nature of the
wavepropagationonthe lines.Suchloaded linesare impor-
tant inmodernplanarmicrowave technology. Such loaded
linesare introducedin this chapter.Theprimarypurposeof
this chapter is to review in detail the matrix description of
linesandwavepropagationsonthedispersive transmission
line that supports various kinds of wave phenomena.

Objectives

• To review the matrix representations of the two-port net-
works using the [Z], [Y], and [ABCD] parameters.

• To discuss the basic properties and use of the scattering
[S] parameters.

• To understand the process of de-embedding of true [S]
parameters of a device.

• To understand the process of extraction of the propaga-
tion constant from the [S] parameters.

• To understand the phase and group velocities in a disper-
sive medium.

• To discuss the circuit modeling of the reactively loaded
line supporting both the forward and backward waves.

3.1 Matrix Description of Microwave
Network

At low frequency, the circuit is described in terms of sev-
eral kinds of matrices that relate the port voltages to the
port currents. These matrices could be the impedance

matrix [Z], admittance matrix [Y], and hybrid matrix
[H]. The transmission matrix is defined as the [ABCD]
matrix. It is useful in cascading of two or more networks
or transmission line sections. At low radio frequency, the
voltage and current are measurable parameters. There-
fore, the matrix elements of a network and device could
be experimentally determined.
Normally, the microwave passive components, cir-

cuits, and networks are constructed around the trans-
mission lines supporting the TEM or the quasi-TEM
mode. Sometimes, the lumped elements are also used.
The waveguide sections supporting non-TEM mode
are also used to develop components and circuits. As a
matter of fact, the voltage and current can be uniquely
defined only for the TEM mode supporting structures.
However, for non-TEM line structures, only the equiva-
lent voltage and current, based on the power equivalence
principle, is defined [B.1, B.2].
The abovementioned parameters are discussed in

this section, as these are important for the analysis
of the line networks and the networks involving both
the line sections and lumped circuit elements. The
results of the analysis and measurement are also pre-
sented using these parameters. The reader can study
these parameters in detail from any of the excellent
textbooks [B.1, B.3–B.7]. One basic difference could
be seen between the lumped elements based low-
frequency circuits and the transmission line sections
based on high-frequency circuits. The low-frequency
circuits are the oscillation type circuits, whereas the
high-frequency microwave circuits are the wave type
circuits. In the case of the low-frequency oscillation
type circuits, the port voltage and port current are
described by a single voltage or current. In general
at any port, for the high-frequency wave-type circuits,
the port voltage is described by a sum of the incident
and reflected voltages, also the port current is a sum of
the incident and reflected currents. It is illustrated in
the discussions on the evaluation of the parameters.
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How to characterize the components, circuits, and net-
work made of the transmission line sections and wave-
guide sections? At the microwave frequency, port
voltage and port current are not the measurable quanti-
ties. However, from the analysis point of view, the net-
works can be characterized by the [Z], [Y], and
[ABCD] parameters. But these are not the measurable
parameters at microwave frequencies. A different
kind of matrix parameter, called the scattering or
[S]-parameters, is used for the practical characterization
of the microwave network and the transmission line
structures [J.1]. The [S] parameter is a measurable quan-
tity. A Scalar Network Analyzer is used to measure the
magnitude |S| of S-parameter of any microwave circuit
and network. For the measurement of the complex [S]
parameters, i.e. both the magnitude and phase response
of a network, a Vector Network Analyzer (VNA) is used.
The Circuit Simulators and the EM-Simulators (Electro-
magnetic field simulators) are also used to get the fre-
quency-dependent [S] parameters response of the
microwave circuits.

3.1.1 [Z] Parameters

The [Z] matrix defines the impedance parameter of a
two-port or a multiport network. The matrix elements
are evaluated by open circuiting the ports. Therefore,
the [Z] parameters or the impedance parameters are also
called the open-circuit parameters. The port voltage (VN)
and the port current (IN) are the sums of the reflected and
incident voltages and currents, respectively. The port
current is an independent variable, whereas the
port voltage is the dependent variable. Therefore, the
port currents are the excitation sources creating the port
voltages as the response. The response voltage is propor-
tional to the excitation current and the proportionality
constant has the dimension of impedance.
The impedance matrix could be obtained for a general

linear two-port network, shown in Fig (3.1). The wave
entering the port is the incident voltage (V +

n ) or the inci-
dent current (I +n ) wave. The reflected voltage (V−

n ) and
reflected current (I−n ) waves are also present at the ports.
The total port voltage (Vn) or current (In) is the sum of
the incident and reflected voltage or current:

Vn = V +
n + V−

n a , In = I +n − I−n b ; n = 1, 2

3 1 1

In equation (3.1.1), n = 1, 2 is the port number, i.e.
port-1, port-2. The power entering the network is taken
as a positive quantity for the incident wave, so the power

coming out of the network, i.e. the power of the reflected
wave, is taken as a negative quantity. The reflected volt-
age (V−

n ) is positive. To maintain the negative direction
of power flow, the reflected current wave (I−n ) is taken as
negative in the above equation. At each port, the current
entering the port from outside is positive, whereas the
current leaving the port is negative. For the linear net-
works, the voltage at any port is a combined response
of the currents applied to all ports. On using the super-
position of the voltage responses, the following set of
equations is written:

V1 = Z11I1 + Z12 I2
V2 = Z21I1 + Z22 I2

3 1 2

Equation (3.1.2) is written in a more compact
matrix form:

V = Z I , 3 1 3

where [V] and [I] are the columnmatrices. The two-port
impedance matrix is

Z =
Z11 Z12

Z21 Z22
3 1 4

The [Z] parameter can be easily extended to the N-port
networks [B.1, B.3–B.5]. The Z-parameters are the open-
circuited parameters. The coefficient of the matrix can be
defined in terms of the open circuit condition at
the ports:

Zii =
Vi

Ii Ik = 0
, i = 1, 2…, and k i 3 1 5

All the ports are open-circuited, except the ith port at
which the matrix element Zii is defined. For instance,
in the case of a two-port network, Z11 is obtained when
current I1 is applied to port-1 and the voltage response is
also obtained at the port-1, while keeping the port-2
open-circuited, i.e. I2 = 0. The coefficient, Z11, is known
as the self-impedance of the network. These are the
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Figure 3.1 Two-port network to determine [Z] and [Y]
parameters.
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diagonal elements of a [Z] matrix. The off-diagonal ele-
ments of a [Z] matrix are defined as follows:

Zij =
Vi

Ij Ik = 0

, k j 3 1 6

In this case, the current excitation is applied at the
port-j and the voltage response is obtained at the port-i.
All other ports are kept open-circuited allowing Ik = 0,
except at the port-j. For instance, in the case of a two-port
network to evaluate Z12, the current source is applied at
the port-2, and the voltage response is obtained at the
port-1, while keeping the port-1 open-circuited. The
coefficient Z12 is the mutual impedance that describes
the coupling of port-2 with the port-1. A network can
have Z11 = Z22, i.e. both of the ports are electrically iden-
tical. Such a network is known as the symmetrical net-
work. Furthermore, the voltage response of a network
at the port-1 due to the current at the port-2 can be iden-
tical to the voltage response at the port-2, due to the cur-
rent at the port-1. This kind of network is a reciprocal
network. It has a Z12 = Z21. If Z12 = Z21 = 0, the ports
are isolated one.

Example 3.1
Figure (3.2) shows lumped elements T-network. Determine
the [Z] parameter of the network.

Solution

For the port-2 open-circuited, I2 = 0. The voltage at the
port-1 is

V1 = ZA + ZC I1, Z11 =
V1

I1 I2 = 0

= ZA + ZC

V2 = I1ZC, Z21 =
V2

I1 I2 = 0

= ZC

Likewise, for the port-1 open-circuited, I1 = 0, and the
parameters are Z22 = ZB + ZC, Z12 = ZC. The [Z] matrix
description of a T-network is

Z =
ZA + ZC ZC

ZC ZB + ZC
3 1 7

The given circuit is asymmetrical. However, it is a
reciprocal circuit. It becomes symmetrical for ZA = ZB.

Example 3.2
Determine the [Z]-parameter of a section of the transmis-
sion line of length ℓ shown in Fig (3.3).

Solution

Let the port-2 be open-circuited and an incident voltage
Vinc = V +

1 is applied at the port-1. The voltage wave
reaches to the port-2 and reflects from there. It reaches
the port-1 as the voltage wave V +

1 e− 2 γℓ. The maximum
of the voltage wave occurs at the port-2. The total port
voltages are given below:

At the port-1 V1 = Vinc + Vref = V +
1 + V +

1 e− 2 γℓ

At the port-2 V2 = Vinc + Vref = 2V +
1 e− γℓ

At the port-1 I1 = Iinc − Iref =
V +
1

Z0
−

V +
1

Z0
e− 2 γℓ

At the port-2 I2 = 0

Thus, the [Z] parameters are obtained as follows:

Z11 =
V1

I1 I2 = 0

= Z0
1 + e− 2γℓ

1− e− 2γℓ = Z0 coth γℓ

Z21 =
V2

I1 I2 = 0

= Z0
2 e− γℓ

1− e− 2γℓ = Z0 cos ech γℓ

The following [Z] matrix of a line section is obtained
by keeping in view that the uniform transmission line
is a symmetrical and reciprocal network:

Z =
Z0 coth γℓ Zo cosech γℓ
Z0 cosech γℓ Z0 coth γℓ

a

For the lossless transmission line, γ = j β, α = 0 and
[Z] is

Z = −
j Z0 cot βℓ j Zo cosec βℓ
j Z0 cosec βℓ j Z0 cot βℓ

b

3 1 8

+ +
ZA

Port #1 Port #2
– –

I1 I2

V1 V2

ZB

ZC

Figure 3.2 Lumped T-network.

+ +

Port #1 Port #2
– –

I1 I2

V1

Z0, γVinc

Vref Vref

Vinc

V2

ℓ

Figure 3.3 A transmission line section.
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3.1.2 Admittance Matrix

To define the [Y] parameters, the voltage is taken as an
independent variable and current as of the dependent
one for a two-port network shown in Fig (3.1). In this
case, the voltage is a source of excitation, and current
at the port is the response. Thus, for a linear network,
the total port current is a superposition of currents
due to the voltages applied at both the ports:

I1 = Y11V1 + Y12 V2

I2 = Y21V1 + Y22 V2
a , I = Y V b ,

3 1 9

where [V] and [I] are the voltage and current column
matrices. The admittance matrix of the two-port net-
work is

Y =
Y11 Y12

Y21 Y22
3 1 10

The Y-parameters are defined as the short-circuited
parameters. For the short-circuited port-2, V2 = 0, and
Y11 and Y21 are defined from equation (3.1.9):

Y11 =
I1
V1 V2 = 0

, Y21 =
I2
V1 V2 = 0

3 1 11

Likewise, for the short-circuited port-1, the Y-
parameters are

Y22 =
I2
V2 V1 = 0

, Y12 =
I1
V2 V1 = 0

3 1 12

The [Y] parameters are extended to a multiport net-
work by defining its matrix elements as follows:

Yii =
Ii
Vi Vk = 0

, i = 1, 2…, and k i 3 1 13

Equation (3.1.13) shows that to get Yii, i.e. the diagonal
elements of the [Y] matrix, all the ports are short-
circuited, except the ith port. The current is evaluated
at the ith port for the voltage applied at the ith port itself.
To get Yij, i.e. the off-diagonal elements of the [Y]matrix,
the voltage is applied at the jth port. Yij is the mutual
admittance describing the coupling between the jth port
and the ith port. The current at the ith port is evaluated or
measured, while all other ports are short-circuited. The
admittance element Yij is evaluated as

Yij =
Ii
Vj Vk = 0

, i = 1, 2…, and k j 3 1 14

Example 3.3
Fig (3.2) shows the T-network. Determine the [Y] parame-
ter of the network.

Solution

The loop equations for the circuit are written as

V1 = ZA + ZC I1 + ZC I2, V2 = ZC I1 + ZB + ZC I2

For the short-circuited port-2,V2= 0: I2 = − ZC
ZB + Zc

I1.

From the above equations:

Y11 =
I1
V1

=
ZB + ZC

ZA + ZC ZB + Zc −Z2
C

Y21 =
I2
V1

= −
ZC

ZA + ZC ZB + Zc −Z2
C

Likewise, the expressions for Y22 and Y12 could be
computed by short-circuiting the port-1, V1 = 0. Final
[Y] matrix of the T-network is

Y =
1
ΔZ

ZB + ZC −ZC

−ZC ZA + ZC

, where

ΔZ = ZA + ZC ZB + ZC −Z2
C

3 1 15

The above matrix is a reciprocal of the [Z] matrix,
given in of length ℓ equation (3.1.7).

Example 3.4
Determine the [Y] parameter of a section of the transmis-
sion line of length ℓ shown in Fig (3.3).

Solution

The incident voltage Vinc = V +
1 excites the port-1, and it

reaches the port-2 as V +
1 e− γℓ The port-2 is short-

circuited to determine the [Y] parameter. Under the
short-circuit condition, the reflected voltage at
the port-2 is −V +

1 e− γℓ such that the total voltage at
the port-2 is zero. The reflected voltage at the port-1 is
−V +

1 e− 2γℓ . The total voltage and the total current at
the port-1 are

V1 = Vinc + Vref , V1 = V +
1 −V +

1 e− 2γℓ

I1 = Iinc − Iref , I1 =
V +
1

Z0
+

V +
1

Z0
e− 2γℓ

At the port-1, the incident current Iinc enters the port,
so it is positive, whereas at the port-1, the reflected cur-
rent Iref leaves the port, so it is negative. At the port-2, the
incident current Iinc enters the port-2 from the port-1
side and leaves the port-2, so it is negative, whereas at
the port-2, the reflected current Iref from the terminated
load, enters the port-2, so it is positive. The total voltage
and the total current at the port-2 are
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V2 = V +
1 e− γℓ + −V +

1 e− γℓ = 0, I2 = − Iinc + Iref

I2 = −
V +
1

Z0
e− γℓ + −

V +
1

Z0
e− γℓ = −

2 V +
1

Z0
e− γℓ

Y11 =
I1
V1 V2 = 0

=
1
Z0

1 + e− 2γℓ

1− e− 2γℓ = Y0 coth γℓ

Y21 =
I2
V1 V2 = 0

= −
2e− γℓ

Z0 1− e− 2γℓ = −Y0 cos ech γℓ

The line section is symmetrical and reciprocal giving
the [Y] parameter:

for the lossy line section

Y =
Y0 coth γℓ −Yo cos ech γℓ

– Y0 cos ech γℓ Y0 coth γℓ
a

and for the lossless line section

Y =
– j Y0 cot βℓ j Yo cos ec βℓ

jY0 cos ec βℓ − j Y0 cot βℓ
b

3 1 16

3.1.3 Transmission [ABCD] Parameter

On many occasions, two or more circuit elements or cir-
cuit blocks are interconnected in such a way that the
output voltage and current of the first circuit block
become the input to the next circuit block. To facilitate
such combination or cascading, the circuit elements and
blocks are characterized using the transmission para-
meters, i.e. the [ABCD] matrix, instead of [Z] or [Y]
matrix. The great strength of the transmission parame-
ter, i.e. the [ABCD] parameter, is due to its ability to pro-
vide [ABCD] matrix of the complete cascaded network,
as a multiplication of the [ABCD] matrices of the indi-
vidual circuit element or circuit block. The [ABCD]
parameter, different from the T-matrix, is applicable to
a two-port network only.
To obtain the transmission matrix description of a

two-port network, the output voltage and current are
treated as the independent variables. The following
expressions relate to the input and output voltage and
current of the two-port network shown in Fig (3.4):

V1 = A V2 + B I2
I1 = C V2 + D I2

3 1 17

These expressions can be written in the matrix form,

V1

I1
=

A B

C D

V2

I2
3 1 18

In the case of the [Z] and [Y] parameters, the positive
current I2 enters the port, while in the above network
defining the [ABCD] parameter in Fig (3.4), the output
current I2 leaving the port is taken as positive [B.1, B.3].
It is an input to the next circuit block, as shown in
Fig (3.5). However, like defining the [Z] and [Y] para-
meters, to define the [ABCD] parameter current, I2 could
be taken as the current entering the output port. In this
case, I2 in equation (3.1.18) is replaced by (−I2) [B.1, B.4].
The matrix elements A, B, C, D can be determined

from the open and short circuit conditions at the output
port. When the output is open-circuited, I2 = 0. Equa-
tion (3.1.17) provides the parameter-A and C:

A =
V1

V2 I2 = 0
a , C =

I1
V2 I2 = 0

b

3 1 19

TheparameterA is the voltage ratio that is a reciprocal of
the voltage gain. The parameter C is the trans-admittance
of anetwork. It relates theoutputvoltageofanetwork to its
input current source.
When the output is short-circuited, V2 = 0. Equa-

tion (3.1.17) again provides the parameters-B and D:

B =
V1

I2 V2 = 0
, D =

I1
I2 V2 = 0

3 1 20

The parameter B is the trans-impedance of a network.
It provides the output current when the input of a net-
work is excited by the voltage source. The parameter
D is the current ratio giving a reciprocal of the current
gain of a network.
Fig (3.5) demonstrates the usefulness of the transmis-

sion parameters to obtain an equivalent [ABCD] param-
eter of the cascaded networks. The [ABCD] parameters
for the first and the second network are written as

V1

I1
=

A1 B1

C1 D1

V2

I2
,

V3

I3
=

A2 B2

C2 D2

V4

I4

At the junction of two networks, I2 = I3 and V2 = V3.
Therefore, from the above equations, the following
expression is obtained:

V1

I1
=

A1 B1

C1 D1

A2 B2

C2 D2

V4

I4
3 1 21

I1 I2

V2

+

–

+

–
V1

Port #1 Port #2

A B

C D

Figure 3.4 Two-port network for transmission parameter.
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Finally, two cascaded networks can be replaced by one
equivalent 2-port network having equivalent [ABCD]
parameter. It is given by the following expression:

A B

C D
=

A1 B1

C1 D1

A2 B2

C2 D2
3 1 22

Expression (3.1.22) can be extended to the cascading of
N-networks bymultiplying the individual matrix of each
network.

Example 3.5
Determine the [ABCD] parameters of the series impedance
as shown in Fig (3.6).

Solution

The output port is open-circuited, I2 = 0. Therefore,
equation (3.1.17) provides V1 = A V2 and I1 = CV2.
For the port 2 of Fig (3.6) open-circuited, I2 = 0,
V1 = V2 and I2 = I1 = 0. On comparing these equations,
the computed parameters are A = 1 and C = 0.
For the output port is short-circuited, V2 = 0. There-

fore, equation (3.1.17) helps to get, V1 = BI2 and
I1 = DI2. Using Fig (3.6) shows, V2 = 0, V1 = ZI2 and
I1 = I2. The comparison of these equations provide
B = Z and D = 1.
Thus, the [ABCD] matrix of series impedance is writ-

ten as

A B

C D
=

1 Z

0 1
3 1 23

Example 3.6
Determine the [ABCD] parameters of a shunt admittance
shown in Fig (3.7).

Solution

The output port-2 is open-circuited, I2 = 0. Therefore,
from matrix equation (3.1.17): V1 = A V2 and
I1 = CV2.At the open-circuited output port 2: I2 = 0,
V1 = V2 and I1 = Y V2. On comparing these equations:
A = 1 and C = Y. At the short-circuited output port 2:
V2 = 0, V1 = BI2 and I1 = DI2.Using Fig (3.7), for V2 = 0,
V1 = 0 and I1 = I2. On comparing these equations:
B = 0 and D = 1. Finally, the [ABCD] matrix of shunt
admittance can be written as

A B

C D
=

1 0

Y 1
3 1 24

The [ABCD]matrix could be easily evaluated for the L,
T, and π networks, shown in Fig (3.8). The [ABCD]
matrix of each element is known and the complete cir-
cuit is a cascading of the elements.

I1 I4

V4

+

–

+

–
V1

A B

C D

I1 I2

V2

+

–

+

–
V1

A1 B1

C1 D1

I3 I4

V4

+

–

+

–
V3

A2 B2

C2 D2

Figure 3.5 Cascading of two networks to get one
equivalent network.

Port #1 Port #2

I1

V1 V2

I2 ++

– –

Z

Figure 3.6 Series impedance.

Port #1 Port #2

I1

YV1 V2

I2 ++

– –

Figure 3.7 Shunt admittance.
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Example 3.7
Determine the [ABCD] parameters of a section of transmis-
sion line shown in Fig (3.3).

Solution

Equations (2.1.79) of chapter 2 provide the voltage and
current waves on a transmission line:

V x = V + e− γx + V− eγx, I x =
V +

Z0
e− γx −

V−

Z0
eγx

The V+ and V− are the amplitudes of the forward and
reflected waves, respectively. For convenience, the dis-
tance x is measured from the port-2. The voltage and cur-
rent at the port-2 are

V x = 0 = V2 = V + + V− , I x = 0 = Z0I2 = V + −V−

The amplitudes of the forward and reflected voltages
in terms of the port voltage and port current are

V + =
V2 + Z0I2

2
, V− =

V2 −Z0I2
2

The voltage and current on a transmission line can be
written as

V x =
eγx +e−γx

2
V2 +

e−γx−eγx

2
Z0 I2

I x =
1
Z0

e−γx−eγx

2
V2 +

e−γx +eγx

2
I2

The voltage and current at the input port-1 are
obtained for x = −ℓ:

V x = − ℓ = V1 = cosh γℓ V2 + Z0 sinh γℓ I2

I x = − ℓ = I1 =
sinh γℓ

Z0
V2 + cosh γℓ I2

Above equations can be written in the matrix form:

V1

I1
=

cosh γℓ Zo sinh γℓ
Y0 sinh γℓ cosh γℓ

V2

I2

The [ABCD] parameters of the lossy and lossless trans-
mission line sections are given by equation (3.1.25a) and
equation (3.1.25b), respectively:

A B

C D
=

cosh γℓ Zo sinh γℓ

Y0 sinh γℓ cosh γℓ
a

A B

C D
=

cos βℓ j Zo sin βℓ

j Y0 sin βℓ cos βℓ
; α = 0, γ = jβ b

3 1 25

The above example can be further extended to a net-
work of several cascaded transmission line sections hav-
ing different ℓ, Z0, and γ. The overall [ABCD] parameter
of the multisection transmission line can be obtained by
a multiplication of the [ABCD] matrix of each line sec-
tion. The line sections can be attached to the series and
the shunt lumped elements. Even in such cases, one can
find the overall [ABCD] parameter of a complete net-
work. The input impedance, output impedance, Theve-
nin and Norton equivalent circuits, and power transfer
relation, etc. of a complete circuit can be written in terms
of the [ABCD] matrix. However, a detailed discussion of
these aspects is out of the scope of this book. The reader
can follow many available texts for this purpose [B.1,
B.2–B.5, B.7, B.8].

3.1.4 Scattering [S] Parameters

The [Z], [Y], and [ABCD] matrix descriptions of any
microwave network or component are based on the port
voltage and port current relations. The evaluation of
these parameters requires the short-circuiting and
open-circuiting of the ports. At the microwave fre-
quency, usually, it is difficult to measure the voltage
and current. Similarly, the short-circuiting and open-
circuiting of the ports may not be always possible at
the microwave frequency. Thus, these parameters are
normally not measurable quantities. However, these
parameters are useful for the analysis of the microwave
circuits built around the lumped and distributed circuit
elements. At this stage, another kind of measurable
parameters is needed to characterize the microwave cir-
cuits. At the microwave frequency, the power could be

ZA

ZB

(a) L-Network. (b) T-Network. (c) π-Network.

ZA ZB

ZC

ZC

ZA ZB

Figure 3.8 Basic networks.

3.1 Matrix Description of Microwave Network 51



measured, and also the forward and reflected power
waves could be obtained. The frequency and phase of
a microwave signal are also measurable quantities.
The scattering parameters, also called the S-parameters,
are defined for any two-port network, or even the multi-
port microwave network, in terms of the measurable
incident and reflected power waves [J.1].

Basic Concept

A commonly used two-port network is suitable to
develop the concept of the S-parameter. Even the S-
parameters of a multiport network are measured as
the two-port parameters, while other ports are termi-
nated in the matched loads. Figure (3.9) shows the
two-port network. It is to be characterized by the S-para-
meters. The port-1 and port-2 are terminated with the
line sections of characteristic impedance Z01 and Z02,
respectively. However, most of the two-port networks
have Z01 = Z02 = Z0, i.e. the identical transmission line
sections at both the ports. The reference impedance Z0

is normally 50Ω. The incident voltage waves at both
the ports-V +

1 and V +
2 , enter the ports and the reflected

voltage waves at both the ports-V−
1 and V−

2 , come out of
the ports.
The forward power, i.e. the incident power entering

the port-1, is

P +
1 =

V +2

1

Z0
a , P +

1 =
V +2

1max

2Z0
b 3 1 26

In equation (3.1.26b), V +
1 = V +

1max 2 is the RMS
voltage of the voltage wave. In general for the two-port
or N-port network, the forward power entering the ith

port is written as

P +
i =

V +2

i

Z0i
, i = 1, 2,…, N 3 1 27

The incident power variable ai at the i
th port is defined

in a way that the power entering the port is given by the
square of the power variable:

P +
i = a2i 3 1 28

Using equations (3.1.27) and (3.1.28), the power vari-
able ai is written in terms of the forward RMS voltage
V +
i at the ith port

ai =
V +
i

Z0i
, i = 1, 2,…, N 3 1 29

The forward voltage can also be written in term of the
power variable as

V +
i = Z0iai 3 1 30

The power variable ai is simply a normalized forward
voltage wave, incident on the ith port. The normalization
is done with respect to the square root of the character-
istic impedance at the port. The forward power variable
can also be viewed as the incident normalized current.
The power entering the ith port, in terms of the incident
RMS current I +1 , is given below:

P +
i = I +

2

i Z0i = a2i ai = I +i Z0i, i = 1, 2,…, N
3 1 31

The forward port current in terms of the forward
power variable is

I +i =
ai
Z0i

, i = 1, 2,…, N 3 1 32

The multiplication of the voltage and current of equa-
tions (3.1.30) and (3.1.32), again provides the forward
power, P +

i = V +
i I +i = a2i . Thus, the definitions of the

power variable both as the normalized voltage wave
and as the normalized current wave are consistent. How-
ever, one must be careful about the presence of the
square root of the characteristic impedance in the
numerator and denominator for two definitions.
Consider the reflected power wave at the ith port with

characteristic impedance Z0i. Figure (3.10) shows that
the ith port is connected to a source with impedance
Z0. For the sake of clarity, the port is taken out of the

V1

–

Port #1

V1

+

Z01

V2

–

Port #2

–

V2

+

Z02S

Figure 3.9 Two-port network for evaluation of S-parameter.

ai

Vi Z0i
Network

ith Port
bi

ℓ = 0

Z0

Figure 3.10 A section of the multiport network. Port is shown
extended with length ℓ = 0.
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network using an interconnect line of characteristic
impedance Z0 with zero length, ℓ = 0. The total power
available from the source does not enter the network.
A part of it gets reflected. The reflected power in terms
of the reflected power variable bi is

P−
i = b2i =

V – 2

i

Z0i
, i = 1, 2,…, N 3 1 33

The reflected power variable is related to the reflected
port voltage and the reflected port current as follows:

bi =
V−
i

Z0i
, V−

i = Z0i bi 3 1 34

bi = Zoi I
−
i , I−i =

bi
Z0i

3 1 35

The power entering the ith port is

Pi,in = P +
i −P−

i = a2i − b2i = ai 1− Γi
2 ,

3 1 36

where the reflection coefficient at the ith port is Γi = bi/ai.
The total port voltage and the total port current in term of
the power variables can be written as

Vi = V +
i + V−

i = Z0i ai + bi a

Ii = I +i − I−i =
1

Z0i
ai − bi b

3 1 37

The reflected port current I−i is negative, such that the
reflected power P−

i = V−
i I−i travels in the opposite

direction, i.e. it travels away from the port. Using equa-
tion (3.1.37), the power variables can be written in terms
of the total port voltage and the total port current:

ai =
1
2

Vi

Z0i
+ Ii Z0i a

bi =
1
2

Vi

Z0i
− Ii Z0i b

3 1 38

The definition of the powerwave variables given by the
equations (3.1.30), (3.1.32), (3.1.34), and (3.1.35) are valid
for the special cases of the forward wave and reflected
waves. The definition, given in equation (3.1.38), is valid
for the general case. It is applicable at any port for any
kind of termination. The power-variables ai and bi are
complex quantities. The incident and reflected power are

P +
i = ai

2 = ai a
∗
i , P−

i = bi
2 = bi b

∗
i

3 1 39

Scattering [S] Matrix

Figure (3.11) shows the N-port network. The power
entering the ith port is given in terms of the forward volt-
age wave V +

i or the forward power variable ai and the
power leaving the ith port is given in terms of the
reflected (backward) voltage wave V−

i or the reflected
(backward) power variable bi. A part of the microwave
power is reflected at the ith port itself and remaining
power entering the network comes out of all other ports
as ( V−

1 , V−
2 ,…, V−

N ) or as ( b−
1 , b−

2 ,…, b−
N ). The outcom-

ing power from any port is a linear combination of the
transmitted power from all other ports. Using either
the voltage variables or the power variables, the incident
power and reflected power at various ports are correlated
as follows:

V−
1

V−
2

V−
N

=

S11 S12 S1N
S21 S22 S2N

SN1 SN2 SNN

V +
1

V +
2

V +
N

a ,

b1
b2

bN

=

S11 S12 S1N
S21 S22 S2N

SN1 SN2 SNN

a1
a2

aN

b

Response Network Excitation Response Network Excitation

The incident power at the port is treated as the excita-
tion, and reflected/transmitted power at the port is con-
sidered as the response. The network is characterized by
the S-parameters.

Therefore, the matrix elements Sij relating the excita-
tion (V +

i or ai) to the response (V−
i or bi) are described

as follows:

(3.1.40)
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Row of the matrix

(Response at ith port)

Column of the matrix

(Excitation at jth port)

Si j

The Sij is defined with the help of the matched termi-
nation. The matched termination also helps to measure
the matrix elements Sij.

Reflection Coefficient Sii
Figure (3.12) shows that the ith port of a multiport net-
work is terminated in a load equal to the characteristic
impedance of the port. The power wave bi coming out of
the port is incident on the load ZL, whereas the incident
power wave ai is the reflected wave from the load. If a
port is terminated in its characteristic impedance, i.e.
ZL = Z0, then the reflection from the load at the
port is zero, i.e. ai = 0. Thus, for the excitation aj applied
at the jth port, while all other ports are terminated
in their characteristic impedances, the ports have
V +
1 a1 = V +

2 a2 = = V +
i ai = 0, i j . How-

ever, the power bj is reflected from the jth port.
The reflection coefficient at the jth port is obtained

from equation (3.1.40):

Sjj =
bj
aj ai = 0

=
V−
j

V +
j V +

i = 0

, i j 3 1 41

Therefore, Sjj is the reflection coefficient (Γj) at the jth

port, provided all other ports are terminated in their
characteristic impedances. However, if other ports are
not terminated in their characteristic impedances, then
Sjj is not ameasure of the true reflection coefficient of the
network or a device at the jth port. The true reflection
coefficient at the jth port, under the unmatched load con-
dition, is more than Sjj that is defined under the matched
load condition.

Transmission Coefficient Sij
If the excitation source is connected only to the jth port
and the response is seen at the ith port, while all other
ports are terminated in their characteristic impedances,
it leads to V +

1 = V +
2 = = V +

k = 0, i e a1 = a2 =
= ak = 0, k j . It shows that the excitation is zero at
all ports, except at the jth port. The transmitted power,
i.e. the scattered power, from the jth port is available
at all ports, i = 1, 2, …, k. However, at the jth port, a part
of the incident power appears as the reflected power.
The transmission coefficient, Sij for the power transfer
from the jth port to the ith port is defined as

Sij =
bi
aj ak = 0,k j

=
V−
i

V +
j

Z0j

Z0i
V +
k = 0,k j

=
I−i
I +j

Z0i

Z0j
V +
k = 0,k j

3 1 42

Normally, the network has identical port impedances
and equal to the system impedance, i.e. Z0i = Z0j = Z0.
Equation (3.1.40) is written in compact form as

V− = S V + , b = S a 3 1 43

The elements of the [S] matrix are determined using
equations (3.1.41) and (3.1.42).

Properties of [S] Matrix

Some important properties of the [S] matrix description
of the network are summarized below, without going for
the formal proof of these statements. Usually, elements
of the [S] matrix are complex quantities. The detailed
discussion is available in the well-known textbooks
[B.1–B.5, B.7].

Reciprocity Property

The [S] matrix of a reciprocal network is a symmetric
matrix, i.e. the transpose [S]T of the [S] matrix is equal
to the [S] matrix itself:

S = S T 3 1 44

Network ZL = Z0

Terminated

load

ai = 0
ith Port

Z0

bi

Figure 3.12 At the ith port, the load is terminated in port
characteristic impedance.

V1

+ (a1)

V1

– (b1)

VN

–  (bN) VN

+ (aN)

N port

network
Port1 Port ith

Port Nth

Figure 3.11 N-port network showing power variables (ai, bi) in
terms of voltage variables V +

i , V −
i .
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Unitary Property

The [S] matrix of a lossless network is a unitary one.
However, if the network is not lossless, then it is not uni-
tary. The definition of the unitary matrix provides the
following relation for the given [S] matrix:

S T S ∗ = I , 3 1 45

where [S]T is the transpose of the [S] matrix, [S]∗ is a
complex conjugate of the complex [S] matrix and [I] is
the identity matrix. Thus, for a given 2-port [S] matrix,
we have

S =
S11 S12
S21 S22

, S ∗ =
S∗11 S∗12
S∗21 S∗22

, S T =
S11 S21
S12 S22

On substituting these expressions in the unitary rela-
tion (3.1.45), the following result is obtained:

S11 S21

S12 S22

S∗11 S∗12

S∗21 S∗22
=

1 0

0 1

S11S∗11 + S21S∗21 S11S∗12 + S21S∗22

S12S∗11 + S22S∗21 S12S∗12 + S22S∗22
=

1 0

0 1

3 1 46

On equating each element of matrix equation (3.1.46),
the following relations are obtained:

S11S∗11 + S21 S∗21 = 1

S12S
∗
12 + S22 S

∗
22 = 1

a ,
S11S

∗
12 + S21 S

∗
22 = 0

S12S∗11 + S22 S∗21 = 0
b

3 1 47

Equations (3.1.47) are generalized for the N-port
network:

N

i = 1

SikS
∗
ik = 1, k = 1, 2,…, N 3 1 48

N

i = 1

SikS∗ij = 0, j k j, k = 1, 2,…, N 3 1 49

Equation (3.1.48) shows that both elements have iden-
tical columns, whereas in equation (3.1.49) column are
not identical. The [S] matrix is formed by the column
vector as follows:

S = p , q ,where p =
S11
S21

and q =
S12
S22

3 1 50

Therefore, in the usual vector notation we have

p = i S11 + j S21

q = i S12 + j S22
3 1 51

Hence, for a lossless network the following statements,
based on equations (3.1.48) and (3.1.49) are made:

• The dot product of any column vector with its complex

conjugate is unity, p p
∗
= 1

• The dot product of any column vector with the com-
plex conjugate of any other column vector is zero,

p q
∗
= 0

• The [S] matrix forms an orthogonal set of the vectors.

The following expressions are written from
equation (3.1.47):

S11
2 + S21

2 = 1 a , S12
2 + S22

2 = 1 b

3 1 52

Equation (3.1.52) is the power balance equations for
the lossless two-port networks. The unit input power
fed to the port-1 is a sum of the reflected power
( |S11|

2 ) at the port-1 and the transmitted power |S21|
2

to the port-2. In the case |S11|
2 + |S21|

2 is less than unity,
some power is lost in the network through the mechan-
ism of conductor, dielectric, and radiation losses. The
lost power, i.e. the power dissipation in the network, is

Pd = 1− S11
2 + S21

2 3 1 53

Phase Shift Property

The [S] parameter is a complex quantity. It has both
magnitude and phase. Thus, the [S]-parameter is always
defined with respect to a reference plane. In Fig (3.13)
[S]-parameter of the N-port network is known at the
location x = 0. It is determined at the new location,
x = −ℓn. Alternatively, once the [S] parameters are
known at x = −ℓn, these are determined at x = 0, i.e.
at the port of the network. The location ℓn shows the
length of the line connected to each port of an N-port
network. Normally, it is the point of measurement of
the [S] parameters of the network or device. The inter-
connecting transmission line is lossless and has propaga-
tion constant βn. Thus, the electrical length of the
connecting line is θn = βn ℓn.

V′1+

V′1– :

V′n+

V′n–

Vn
+ 

V1

+

V1

–

:

:

:

:
:

V
–

n

x = –ℓn x=0

N-port

netwotk

[S]

Port1

Port N

Figure 3.13 N-port network showing phase-shifting property.
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For an N-port network, the incident wave at the nth

port, x = − ℓn, after reflection from the port at x = 0,
returns to x = − ℓn. In the process, it travels the electri-
cal length 2θn. Similarly, if the wave is incident at port
#1, located at x = − ℓ1 and arrives at the port-2, located
at x = − ℓ2; the electrical length traveled by the wave is
θ1 + θ2 = β1 ℓ1 + β2 ℓ2, or 2θ1, on the assumption that
β1 = β2, and ℓ1 = ℓ2, i.e. the transmission lines connected
at both the ports are identical. The measured or simu-
lated scattering matrix [S ] at the location x = − ℓn is
related to the [S] parameters of the network by the
following expression

S = S e− j 2θn 3 1 54

The [S]-parameter of the network is extracted from
equation (3.1.54), as

S = S' e + j 2θn 3 1 55

For reducing the cascaded network to a single equiv-
alent network, the [S] parameters cannot be cascaded
like the [ABCD] parameters. The [ABCD] matrix is suit-
able for this purpose. However, it is not defined in terms
of the power variables. Therefore, another suitable trans-
mission matrix, called [T] matrix has been defined in
terms of the power variables to cascade the microwave
networks. The [S] matrix is easily converted to the [T]
parameters [B.1, B.2–B.5, B.7, B.9].
The concept of the [S] matrix is used below to some

simple, but useful circuits. These examples would help
to appreciate the applications of the [S] parameters.

Example 3.8
Determine the S-parameters and return loss of a 2-port net-
work with arbitrary termination shown in Fig (3.14).

Solution

The 2-port network (device) is connected to a source at
the port-1 and a load ZL at the port-2. The source has
voltage Vg with internal impedance Zg. The network
scattering parameters-[S] are computed under the
matched condition. The characteristic impedance of
the connecting line between the port-1 and the source
is Z01, whereas the characteristic impedance of the con-
necting line between the port-2 and the load is Z02. The
lengths of the connecting lines are zero. The reflection
and transmission coefficients are to be determined at
the input and output terminals. This is a practical prob-
lem for the measurement and simulation of the 2-port
network:

b1 = S11a1 + S12 a2 a

b2 = S21a1 + S22 a2 b
i

Figure (3.14) shows that the power variable b2 is the
incident wave at the load ZL and the power variable a2
is the reflected wave from the load. Thus, the reflection
coefficient at the load is

ΓL =
ZL −Z02

ZL + Z02
=

a2
b2

ii

From above equations (i) and (ii):

b1 = S11a1 + S12 ΓLb2 a

b2 = S21a1 + S22 ΓLb2

b2 =
S21

1− S22ΓL
a1 b

iii

On substituting b2 from equation (b) in equation (a):

b1 = S11 +
S12S21ΓL

1− S22ΓL
a1 iv

The input reflection coefficient at the port-1 is

Γin = Γ1 =
Reflected wave fromport− 1
Incidentwave at port− 1

=
b1
a1

Γ1 = S11 +
S12S21ΓL

1− S22ΓL
3 1 56

The reflection coefficient Γ1 is more than S11 of the
network. The mismatch at the load degrades the return
loss (RL) of the network. It is given by

RL = − 20log 10 Γ1 3 1 57

For the port 2 open-circuited (ZL ∞), the waves get
reflected in-phase, i.e. ΓL = 1, and for a short-circuited
load (ZL = 0) the total reflection is out of phase, i.e.
ΓL =−1. If the network is terminated in a matched load
(ZL = Z02), the incident waves are absorbed with ΓL = 0
and Γ1 = S11. Likewise, the source reflection coefficient
Γg could be defined at the input port-1. Figure (3.14)
again shows that b1 is the incident wave on the internal
impedance of the source Zg and a1 is the reflected wave
from Zg. Thus,

Γg =
Zg −Z01

Zg + Z01
=

a1
b1

v

Port1

Ch. impedance Z01

Port2

Ch. impedance Z02

I2

S11 S12

S21 S22

a2

b2

V2
ZL

+

–

Zg

+

–

I1

Vg

a1

b1

V1

Figure 3.14 A two-port network with arbitrary termination.
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The output reflection coefficient Γ2 at the port-2 is
obtained from equations (i) and (v):

Γ2 =
b2
a2

= S22 +
S21S12Γg

1− S11Γg
3 1 58

Again under the matched condition (Zg = Z01) at the
input port, Γg = 0. For most of the applications, 50Ω sys-
tem impedance is used, i.e. Z01 = Z02 = Z0 = 50Ω. For a
2-port lossless network, we have the following
expressions:

S11S∗11 + S21 S∗21 = 1 a , S12S∗12 + S22 S∗22 = 1 b

However, for a reciprocal network S12 = S21. Thus, the
above equations provide

S11 = S22 a , S12 = 1− S11
2 b

3 1 59

The network also follows S11S∗12 + S21 S∗22 = 0 . The
S-parameters are complex quantities. The S-parameters
are written in the phasor form: S11 = S11 ej θ1 ,
S22 = S22 ej θ2 and S12 = |S12| e

j ϕ. From the above equa-
tion, the phase relation is obtained:

S11 1− S11
2 ej θ1 −ϕ + ej ϕ− θ2 = 0 a

ϕ =
θ1 + θ2

2
+

π
2

nπ b

3 1 60

Therefore, once the complex S11 and S22 are measured,
both the magnitude and phase of the S21 are determined.
However, usually, both S11 and S21 are obtained from a
VNA and also from the circuit simulator or EM-simula-
tor. The magnitude of S21 provides the insertion-loss of
the network and ϕ is the phase shift at the output of
the network.

Example 3.9
Determine the S-parameters of the series impedance shown
in Fig (3.15). Also, compute the attenuation and the phase
shift offered by the series impedance.

Solution

To compute S11 that is the reflection coefficient of a net-
work under the matched condition, the port-2 is termi-
nated in Z0. Thus, Zin = Z + Z0 and the reflection
coefficient at port-1 is

S11 =
Zin −Z0

Zin + Z0
=

Z
Z + 2 Z0

3 1 61

Likewise, to compute S22, the port-1 is terminated in
Z0. It gives Zout = Z + Z0 at the port-2. The S22 is

S22 =
Zout −Z0

Zout + Z0
=

Z
Z + 2 Z0

3 1 62

The total port voltage at the port-1 is a sum of the for-
ward and reflected voltages:

V1 = V +
1 + V−

1 = S11 + 1 V +
1 i Note S11 =

V−
1

V +
1

To compute S21, i.e. the transmission coefficient from
the port-1 to the port-2 under the matched termination,
at first, the total port voltage at the port-2 is obtained:

V2 = V +
2 + V−

2 = V−
2 ii

Note V +
2 = 0 due to the matched termination

Therefore, from equations (i) and (ii):

S21 =
V−
2

V +
1 V +

2 = 0

=
V2

V1
S11 + 1 iii

However, the port voltage V2 computed from the port
current is

I1 =
V1

Z + Z0
and V2 = Z0I1 =

Z0V1

Z + Z0
iv

Finally, S21 is obtained from equations (iii), (iv)
and (3.1.61):

S21 =
V2

V1
S11 + 1 =

Z0

Z + Z0
1 +

Z
Z + 2Z0

=
2 Z0

Z + 2 Z0

3 1 63

Equations (3.1.61) and (3.1.63) provide the following
relation:

S11 + S21 = 1 3 1 64

The [S] matrix of the series impedance is

S =
S11 1− S11

1− S11 S11
3 1 65

The attenuation and phase shift of a signal, applied at
the input port-1 of series impedance Z=R+ jX, are com-
puted below.

ZI1

V1 V2
Z0

Zin Port1 Port2

I2

Figure 3.15 Network of series impedance.
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Using S21 from equation (3.1.63), the attenuation
offered by the series impedance is

α dB = 20 log 10
1
S21

= 20 log 10 1 +
R + j X
2Z0

α dB = 10 log 1 +
R
2Z0

2

+
X
2Z0

2

3 1 66

The lagging phase shift of the signal at the output port-
2, due to the series element, is

ϕ = − tan − 1 X
R + 2Z0

3 1 67

Example 3.10
Determine the S-parameter of a shunt admittance shown in
Fig (3.16). Also, compute the attenuation and the phase
shift offered by the shunt admittance.

Solution

The shunt admittance is Y = G+ jB. To compute S11, the
port-2 is terminated in Z0 (=1/Y0) giving Yin = Y + Y0.
The reflection coefficient of the shunt admittance under
matched termination is

S11 =
Y0 −Yin

Yo + Yin
=

−Y
2Y0 + Y

3 1 68

Likewise, to compute S22 of the shunt admittance, the
port-1 is terminated in Z0:

S22 =
−Y

2Y0 + Y
3 1 69

Following the previous case of the series impedance,
the S21 is computed:

S21 =
V2

V1
S11 + 1 Fig (3.16) shows V1 = V2;

therefore,

S21 = 1 + S11 =
2

2 + YZ0
3 1 70

The [S] matrix of the shunt admittance is

S =

−YZ0

2 + YZ0

2
2 + YZ0

2
2 + YZ0

−YZ0

2 + YZ0

3 1 71

The attenuation of the input signal due to the shunt
admittance is

α dB = 20 log 10
1
S21

= 20 log 10 1 +
Y
2Y0

α dB = 10 log 1 +
G
2Y0

2

+
B
2Y0

2

3 1 72

The lagging phase shift of the signal at the output
port-2, due to the shunt admittance, is

ϕ = − tan− 1 B
G + 2Y0

3 1 73

Example 3.11
Determine the S-parameters of a transmission line section,
shown in Fig (3.17), with an arbitrary characteristic
impedance.

Solution

The line has an arbitrary characteristic impedance nZ0

and propagation constant β. The Z0 is taken as the refer-
ence impedance to define the S-parameter. The reflec-
tion coefficient at the load end is

ΓL x = 0 =
Z0 −nZ0

Z0 + nZ0
=

1−n
1 + n

3 1 74

Using equation (2.1.88) of chapter 2, the input imped-
ance at the port-1 of the transmission line having char-
acteristic impedance nZ0 is

V1 V2Y Z0

Zin

Port 1 Port 2

Figure 3.16 Network of shunt admittance.

+

–

V
+

1 V
+

2

V1 V2
nZ0

Port1 Port2
X = –ℓ

V
–

1
V

–

2

x = 0

Z0

Figure 3.17 A transmission line circuit with an arbitrary
characteristic impedance.
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Zin = nZ0
1 + ΓL x = 0 e− j 2βℓ

1−ΓL x = 0 e− j 2βℓ On substituting ΓL,

Zin = nZ0
1 + n + 1−n e− j 2βℓ

1 + n − 1−n e− j 2βℓ 3 1 75

Thus, the reflection coefficient at the port-1 is

S11 =
Zin −Z0

Zin + Z0
=

n2 − 1 1− e− j 2βℓ

n + 1 2 + n− 1 2 e− j 2βℓ

3 1 76

The transmission parameter S21 is computed in terms
of S11. If the amplitude of the forward traveling voltage
wave on the transmission line is V +

1 , the total voltage on
the transmission line is given by

V x = V +
1 e− j βx + ΓL x = 0 ej βx , 3 1 77

where x is measured from the load end, as shown in
Fig (3.17). The input port-1 is located at x = − ℓ. The
voltage at the port-1 is

V1 = V +
1 ej βℓ + ΓL x = 0 e− j βℓ 3 1 78

The port voltage V1 is obtained as a sum of the incident
and reflected voltages at the port-1:

V1 = V +
1 + V−

1 = V +
1 1 + S11 , S11 = V−

1 V +
1

3 1 79

At the port-2, under the matched termination, ZL =
nZ0 giving V +

2 = 0 and V2 = V−
2 . Equation (3.1.77)

shows that the voltage at the port-2, i.e. at x = 0 is

V2 = V +
1 1 + ΓL x = 0 3 1 80

Using equation (3.1.79), the transmission coefficient,
S21 of the circuit shown in Fig (3.17) is obtained as

S21 =
V−
2

V +
1

=
V2

V1
S11 + 1 3 1 81

On substituting V1 from equation (3.1.78) and V2 from
equation (3.1.80) in the above equation S21 is obtained:

S21 =
1 + ΓL x = 0 1 + S11
ej βℓ + ΓL x = 0 e− j βℓ

=
2 1 + S11

1 + n ej βℓ + 1−n e− j βℓ

3 1 82

The present line network is symmetrical and recipro-
cal. It has S11 = S22 and S21 = S12. The above expressions
are checked for n = 1, i.e. for a transmission line of char-
acteristic impedance Z0. For this case, S11 = S22 = 0 and
S21 = S12 = e−j βℓ. These are expressions of the S-
parameters for a line having characteristic imped-
ance Z0.

3.2 Conversion and Extraction of
Parameters

Sometimes, the conversion of one kind of network
parameter to another kind is needed for the analysis
of a circuit. For instance, if several circuit blocks com-
prising of the lumped elements and the transmission
line sections are cascaded, each circuit block could be
expressed by its [ABCD] matrix. It helps to get an overall
[ABCD] matrix of the cascaded network. However, the
final [ABCD] matrix, describing the cascaded network
is further converted to the [S] matrix. Similarly, the
[S] matrix of each building block of the cascaded net-
work has to be converted to the [ABCD] matrix to get
the overall [ABCD] matrix of the cascaded network.
Finally, the overall [ABCD] matrix is converted to the
[S] matrix of the cascaded network. The S-parameters
are measurable quantities. The performance of a net-
work is measured in the [S] matrix using a VNA.
On several occasions, the S-parameters of a line

section or a network are known either from the simula-
tions or from the measurements. The S-parameters are
used to get the characteristic impedance and the propa-
gation constant of a line, or a network. However, the true
S-parameters of a network are needed for this purpose.
The true S-parameters are normally embedded in the
measured or the simulated S-parameters at the ports
of measurement, or the ports of simulation. The true
S-parameters of a line or a network are extracted, i.e.
de-embedded, from the measured, or simulated, S-
parameters at the ports. This is known as the de-embed-
ding process [B.10]. The EM-Simulators have provision
to de-embed the true S-parameters from the S-
parameters obtained at the measurement or simulation
ports.
This section presents the conversion of matrix para-

meters, de-embedding of the S-parameters, and extrac-
tion of the propagation characteristics.

3.2.1 Relation Between Matrix Parameters

[Z] and [ABCD] Parameters

Figure (3.18) shows a network with its known [Z] para-
meters. It requires conversion to the [ABCD] para-
meters. The [ABCD] and [Z] parameters of the
network are summarized below:

V1 = A V2 + B I2 a

I1 = C V2 + D I2 b
3 2 1

V1 = Z11I1 −Z12 I2 a

V2 = Z21I1 −Z22 I2 b
3 2 2
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The current (I2) entering the port-2 is taken positively.
However, the Z-parameter is defined in Fig (3.18) for the
output current leaving the port. In this case, I2 is nega-
tive. Equation (3.2.2) is rearranged to get the port voltage
and current V1 and I1 at the port-1 in terms of the V2 and
I2 at the port-2:

V1 =
Z11

Z21
V2 +

Z11 Z22

Z21
−Z12 I2 a

I1 =
1
Z21

V2 +
Z22

Z21
I2 b

3 2 3

On comparing equations (3.2.1) and (3.2.3), the
following conversion expressions are obtained:

A =
Z11

Z21
, B =

Z11 Z22

Z21
−Z12 , C =

1
Z21

, D =
Z22

Z21

3 2 4

Likewise, the relations between [Y] and [ABCD]
parameters are obtained:

A =
−Y22

Y21
, B =

− 1
Y21

C = −
Y11 Y22

Y21
−Y12 , D =

−Y11

Y21

3 2 5

A complete set of the conversion table of parameters is
available in textbooks [B.1, B.5, B.7].

[S] and [Z] Parameters

The N-port network, having normalized reference port
impedance, Z0n = 1, is considered. The port voltage
and port current in terms of the incident and reflected
voltage can be written as

Vn = V +
n + V−

n a , In = I +n − I−n = V +
n −V−

n b

3 2 6

The above equations are written in the column
matrix form:

V = V + + V− a , I = V + − V− b

3 2 7

The port voltage is related to the port current through
the [Z]-matrix:

V = Z I V + + V− = Z V + − V –

V – =
Z − I
Z + I

V + ,

3 2 8

where [I] is a unit or identity matrix. Keeping in view the
definition of the [S] matrix, the following relations,
between the [S] matrix and [Z] matrix, are obtained:

S =
Z − I
Z + I

a , Z =
I + S
I − S

b

3 2 9

Similarly, the following expressions, relating [S] and
[Y]-parameters are obtained:

S =
I − Y
I + Y

a , Y =
I − S
I + S

b

3 2 10

[ABCD] and [S] Parameters

Figure (3.19) shows a 2-port network. The known
[ABCD] parameters of the network are to be converted
to the [S] parameters. The voltage pair V +

1 , V +
2 , and

V−
1 , V−

2 are the incident voltage and reflected voltage
at both port-1 and port-2. Figure (3.19) also shows the
total port voltage (V1, V2) and total port current (I1,
I2). The port currents, at both the ports, enter into the
network. Therefore, the current I2 is negative. The input
port voltage and port current are related to the output
port voltage and port current through the [ABCD] para-
meters as follows:

V1 = A V2 + B − I2 a

I1 = C V2 + D − I2 b
3 2 11

The port voltage and current are a linear combination
of the incident and reflected voltages and currents:

Vn = V +
n + V−

n ; n = 1, 2 a

In =
1
Z0

V +
n −V−

n b 3 2 12

Port 1 Port 2

I1
+

–

+

–

V1 V2Z

I2

Figure 3.18 Network for Z-parameter.
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Figure 3.19 Network for [ABCD] parameter.
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On substituting equation (3.2.11) in equation (3.2.12):

V1 = V +
1 + V−

1 = A V +
2 + V−

2 −B
V +
2 −V−

2

Z0
a

I1 =
1
Z0

V +
1 −V−

1 = C V +
2 + V−

2 −D
V +
2 −V−

2

Z0
b

3 2 13

To define the [S] parameters, port-2 is terminated in
the reference impedance Z0 giving V +

2 = 0 , i.e. the
reflection from the matched terminated load is zero.
The voltage V−

2 is the incident wave on the load
(ZL = Z0), whereas the voltage V +

2 is the reflected wave
from the load. The above equations are reduced to the
following expressions:

V +
1 + V−

1 = A +
B
Z0

V−
2 a

V +
1 −V−

1 = C Z0 + D V−
2 b

3 2 14

On adding the above equations, the following expres-
sion is obtained:

2 V +
1 = A + B Z0 + CZ0 + D V−

2 3 2 15

Equation (3.2.15) provides the transmission coefficient
S21, defined as follows:

S21 =
Response at port-2
Excitation at port-1 V +

2 = 0
=

V−
2

V +
1 V +

2 = 0

S21 =
2

A + B Z0 + CZ0 + D

3 2 16

The following expression is obtained from
equation (3.2.14):

V +
1 + V−

1

V +
1 −V−

1
=

A + B Z0

CZ0 + D
3 2 17

Equation (3.2.17) gives the following reflection coeffi-
cient S11 at the port-1, while port-2 is terminated in the
matched load Z0:

S11 =
Response at port-1
Excitation at port-1 V +

2 = 0
=

V−
1

V +
1 V +

2 = 0

S11 =
A + B Z0 −CZ0 −D
A + B Z0 + CZ0 + D

3 2 18

Similarly, the following expressions are obtained from
equation (3.2.13), where the port-1 is terminated in the
matched load Z0, i.e. V +

1 = 0:

V−
1 = A−B Z0 V +

2 + A + B Z0 V−
2 a

−V−
1 = CZo −D V +

2 + CZ0 + D V−
2 b

3 2 19

On eliminating V−
1 the S22 is obtained, whereas S12 is

obtained eliminating V−
2 :

S22 =
V−
2

V +
2 V +

1 = 0

=
−A + B Z0 −CZ0 + D
A + B Z0 + CZ0 + D

a

S12 =
V−
1

V +
2 V +

1 = 0

=
2 AD−BC

A + B Z0 + CZ0 + D
b

3 2 20

If the network is reciprocal, AD− BC= 1, i.e. S12 = S21.
For the symmetrical network, S11 = S22 leading to A=D.
The known [S] parameters can also be converted to the
[A, B, C, D] parameters. Similarly, the [Z], [Y], [ABCD]
and [S] parameters are also converted among themselves
[B.1, B.3, B.5].

3.2.2 De-Embedding of True S-Parameters

A transmission line section could be treated as a device
and its performance can be evaluated by using a VNA.
The device is connected to the VNA through connecting
cables and connectors. The S-parameters of a device is
measured at the external circuit ports that include the
effect of the cables and connectors on the S-parameters
of the device. Thus, the true S-parameter of a device is
embedded in the measured S-parameters of the device.
However, it is desired to obtain the true S-parameters
of the device under test (DUT). The line section could
be the DUT. The process of extracting the S-parameters
of the device at the internal device ports (1in, 2in), from
the measured S-parameters, at the external circuit ports
(1ex, 2ex) is known as the de-embedding process. It is
achieved through a calibration process in which the S-
parameters of two error boxes are quantified. The error
box represents errors in the S-parameters due to cables
and connectors connecting the device to the external cir-
cuit ports [B.1]. The S or [ABCD] parameter representa-
tion of the device at internal ports (1in, 2in) along with
the error boxes is shown in Fig (3.20a). The location of
the measurement ports, i.e. the external ports (1ex, 2ex)
and the device internal ports (1in, 2in), are further shown
in Fig (3.20b).
Once the error boxes are characterized through their

S-parameters, it can be converted to the [Ae Be Ce De]
parameters. Similarly, the measured S-parameters of
the device and the error box combined are available at
the external ports. These can be converted to the meas-
ured [Am Bm Cm Dm] parameters. The device [Ad Bd Cd

Dd] parameters are related to the other two parameters
by the following equation:

3.2 Conversion and Extraction of Parameters 61



Am Bm

Cm Dm =
Ae Be

Ce De

Ad Bd

Cd Dd

Ae Be

Ce De

− 1

3 2 21

The error box 2 is the mirror image of the error box 1
with respect to the DUT. So in the above-given matrix
sequence, the third matrix is inverse of the first matrix
[B.11]. At the internal device ports, the device [Ad Bd

Cd Dd] parameters are de-embedding as follows:

Ad Bd

Cd Dd
=

Ae Be

Ce De

− 1 Am Bm

Cm Dm

Ae Be

Ce De

3 2 22

The de-embedded device [Ad Bd Cd Dd] parameters are
converted to the de-embedded S-parameters of the
device. The de-embedded S-parameters could be further
converted to the Z and Y-parameters. Thus, any two-port
device can be characterized through measurements
using suitable parameters- S, Z, or Y. In the case of a
transmission line section, the de-embedded S-
parameters can be converted to the propagation para-
meters and the characteristic impedance of the line.

The above-mentioned concept of de-embedding of the
device S-parameters at the internal port of a device is
equally applicable to the EM-Simulators – both 2.5D
and 3D simulators [B.10]. In EM-simulators, the delta-
gap voltage source could be used to launch the wave
on a line section or a device. It also generates the non-
propagating evanescent modes at the ports. They cause
a discontinuity at the external circuit ports, i.e. at the
ports of simulation. The port discontinuity affects the
S-parameters of the device that is removed by the process
of de-embedding [J.2]. The EM-simulators could be used
to extract the propagation parameters and the character-
istic impedance of a line.

3.2.3 Extraction of Propagation Characteristics

The true S-parameters of the line section, i.e. its de-
embedded S-parameters over a range of frequencies
are known either through the measurement or through
the EM-simulation. This information can be converted
to the [ABCD] parameters of a line section as fol-
lows [B.1]:

A B

C D
=

1 + S11 1− S22 + S12S21
2S21

Zo
1 + S11 1 + S22 − S12S21

2S21
1
Zo

1− S11 1− S22 − S12S21
2S21

1− S11 1 + S22 + S12S21
2S21

3 2 23

Usually, S11 = S22 and S12 = S21 because a section of the
transmission line is treated as the symmetrical and recip-
rocal network. The frequency-dependent [ABCD]

parameters of a lossy line of length ℓ are used to compute
the characteristic impedance Z0 and propagation con-
stant γ = α+ j β over a range of frequencies [B.1]:

Z0l =
B
C

a , γ = α + j β =
1
ℓ
cosh − 1 A =

1
ℓ
ln A ± A2 − 1 b

3 2 24

lex

(a) Representation of measurement process with external

     measurement ports and internal device ports.

(b) Location of ports.

lex 1in 2in

1in 2in 2ex

2ex

Error box

1

Error box

2

DUT

(line section)
1ex

1in 2in
2ex

Connecting lines to external and internal ports

DUT

(line section)

Figure 3.20 Calibration process in the measurement of S-parameters of a device.

(3.2.24)

(3.2.23)
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The frequency-dependent secondary line parameters
are extracted to get the dispersion characteristics of a
line. Once the secondary line parameters of a line
section are known, their frequency-dependent primary
constants are computed as follows:

R = Re γ Z0 a , L =
Im γ Z0

ω
b

G = Re
γ
Z0

c , C =
Im γ Z0

ω
d

3 2 25

3.3 Wave Velocity on
Transmission Line

In a communication network, several kinds of electrical
signals propagate on a transmission line. The signal
could be a modulated or unmodulated carrier wave,
the baseband analog signal, or the digital pulses. The
TEM mode transmission lines, and also various kinds
of non-TEM waveguide structures support wave propa-
gation. The parameters defining these transmitting
media could be either frequency-independent or fre-
quency-dependent. The property of the medium has a
significant impact on the nature of wave propagation
through a medium. The wave velocity has no simple
or unique meaning, like the meaning of the velocity of
a particle. There are several kinds of wave velocities –
phase velocity, group velocity, energy velocity, signal
velocity, etc., applied to wave propagation. The signifi-
cance of several types of wave velocities is inherent both
in the complexity of a signal and also in the complexity
of the wave supporting medium. This section focuses
attention on the meaning of the phase and group veloci-
ties only. Section (3.4) demonstrates these two wave
velocities as applied to several kinds of the artificial lin-
ear dispersive transmission lines.

3.3.1 Phase Velocity

The concept of phase velocity is applicable to a single fre-
quency wave, i.e. to a monochromatic wave discussed in
Section (2.1) of chapter 2. The phase velocity is just the
movement of thewavefront. The wavefront is a surface of
constant phase, like maximum, minimum, or zero-level
points shown in Fig (2.3). It is given by equation (2.1.8)
of chapter 2 and reproduced below:

vp =
ω
β

3 3 1

The propagation constant β is influenced by the wave-
supporting medium. For a lossless TEM transmission
line and lossless unbounded space, β is given by

β = ω LC a , β = ω με b , 3 3 2

where ε and μ are permittivity and permeability of a
medium. Thus, pairs (L, C) and (ε, μ) are the parameters
that characterize the electrical property of the wave sup-
porting-media. The unbounded medium supports the
plane wave propagation. If these parameters are not
frequency-dependent, the medium is known as nondis-
persive. In such a medium, the phase velocity remains
constant at every frequency. However, if any of these
parameters are frequency-dependent, the propagation
constant β is frequency-dependent and consequently,
the phase velocity is frequency-dependent. The medium
that supports the frequency-dependent phase velocity is
known as the dispersive medium. Normally, the charac-
teristic impedance or intrinsic impedance of a dispersive
medium is also frequency-dependent. The parameters
(L, C) and (ε, μ) are usually independent of signal
strength. Such a medium is called a linear medium,
whereas the signal strength dependent medium is a non-
linear medium. The characteristics of the medium are
discussed in Section (4.2) of chapter 4. The present dis-
cussion is only about the linear and dispersive transmis-
sion lines.
Why a medium becomes dispersive? One reason for

dispersion is the loss associated with a medium. The
geometry of a wave supporting inhomogeneous struc-
tures, commonly encountered in the planar technology,
is another source of the dispersion. In the case of a trans-
mission line, the parameters R and G are associated with
losses and they make propagation constant β frequency-
dependent. Likewise, losses make permittivity ε and per-
meability μ of material medium frequency-dependent
complex quantities. However, a low-loss dielectric
medium can be nondispersive in the useful frequency
band. For such cases, the attenuation and propagation
constants are given by

α =
ωε''r μr ε'r

2c
a , β =

ω
c

μrε'r 1 +
1
8

ε''r
ε'r

2

b

3 3 3

In equation (3.3.3), c is the velocity of EM-wave in free
space. The above expressions are obtained from equa-
tions (4.5.16) and (4.5.19) of chapter 4. The complex per-
mittivity is given by ε = ε − jε . The imaginary part,
showing a loss in a medium, is related to the conductivity
of a medium through relation σ = ωε . If ε and ε are not
frequency-dependent, the propagation constant β is not
frequency-dependent and the phase velocity is alsonot fre-
quency-dependent. However, if they are frequency
dependent, thephasevelocity isalso frequency-dependent.
The phase velocity in the low-loss dielectric medium is
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vp =
ω
β
=

1
με

1−
1
8

ε
ε

2

3 3 4

Therefore, the presence of loss decreases the phase
velocity of EM-wave. This kind of wave is known as
the slow-wave. The slow-wave can be dispersive or non-
dispersive. However, it is associated with a loss. This
aspect is further illustrated through the EM-wave prop-
agation in a high conductivity medium. The conducting
medium is discussed in subsection (4.5.5) of chapter 4.
The attenuation (α), phase constant (β), and phase veloc-
ity (vp,con) of a highly conducting medium are given by
equation (4.5.35b) of chapter 4 [B.3]:

α = β = πfμσ 3 3 5

vp,con =
ω
β

= vp
2ωε
σ

3 3 6

The above expressions are obtained for a highly con-
ductingmedium, σ/ωε>> 1. It does not apply to the loss-
less medium with σ = 0. The wave propagation is
associated with significant loss (α) given by equa-
tion (3.3.5). Moreover, both the attenuation constant
and phase velocity are frequency dependent, so a con-
ducting medium is highly dispersive. However, the peri-
odic structures and other mechanisms give slow-wave
structures with a small loss. Such structures are useful
for the development of compact microwave components
and devices [B.1, B.3–B.5, B7, B.12, B.13]. The slow-wave
periodic transmission line structures are discussed in
chapter 19.
Some EM-wave supporting media have cut-off prop-

erty. They support the wave propagation only above
the certain characteristic frequency of a medium or a
structure. These media and structures are also disper-
sive. For instance, the nonmagnetic plasma medium
has such cut-off property [B.4, B.14]. The plasma
medium is discussed in the subsection (6.5.2) of chapter
6. The permittivity of a plasma medium is given by
equation (6.5.16):

εp = ε0 1−
fp
f

2

a , fp =
1
2π

Ne2

meε0
b

3 3 7

In the above expression, fp is the plasma frequency
that is a characteristic cut-off frequency of the plasma
medium [B.4, B.14]. The permeability of nonmagnetized
plasma is μ = μ0. Other parameters are as follows-ε0:
permittivity of free space, N: electron density, e: electron
charge, and me: electron mass. The propagation

constant, phase velocity, and plasma wavelength λplasma

of the EM-wave wave in a plasma medium are
given below:

β = ω με0 1−
fp
f

2
1
2

a

vp =
1
με0

1−
fp
f

2 − 1
2

= v 1−
fp
f

2 − 1
2

b

λplasma =
2π
β

=
v
f

1−
fp
f

2 − 1
2

c

vp =
λplasma

λ
v d

3 3 8

In equation (3.3.8), v = 1 με0 is the velocity of EM-
wave in the homogeneous medium with parameters ε0
and μ. The wavelength in the homogeneous medium
is λ= v/f. However, the nonmagnetized plasma medium
has the parameters ε0, μo supporting the wavelength
λ0 = c/f. The nonmagnetized plasma medium behaves
as free space.
The phase velocity of the EM-waves in a plasma

medium is frequency-dependent. Therefore, it is a dis-
persive medium that supports a fast-wave. It is fast in
the sense that the phase velocity is higher than the phase
velocity of the EM-wave in free space given by
c = 1 μ0ε0 . The plasma medium exhibits the cut-off
phenomenon, similar to the cut-off behavior of the wave-
guide medium. The waveguide medium is discussed in
the section (7.4) of chapter 7. There is no wave propaga-
tion at the plasma frequency f = fp. The plasma fre-
quency fp behaves like the cut-off frequency fc of a
waveguide. Thus, the waveguide can be used to simulate
the electrical behavior of plasma. For f < fp, nowave prop-
agation takes place, as the propagation constant β
becomes an imaginary quantity. Such a wave is known
as an evanescent wave. It is an exponentially decaying
nonpropagating wave (E = E0 e

−αz). The standard metal-
lic waveguide also supports the cut-off phenomenon and
has a frequency-dependent phase velocity [B.1, B.5, B.7,
B.8, B.15–B.17].
The dispersion is a property of the wave-supporting

medium. The phase velocity of a wave in a dispersive
medium can either decrease or increase with the
increase in frequency. Thus, all dispersive media could
be put into two groups – (i) normal dispersive medium
and (ii) abnormal or anomalous dispersive medium.
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Figure (3.21a and b) show the general behavior of a
medium having normal dispersion. The relative permit-
tivity of such a medium increases with frequency, i.e.
dεr/df is positive, and the phase velocity decreases with
frequency, i.e. dvp/df is negative. A microstrip line pro-
vides such a medium for the normal dispersion. The
effective relative permittivity of a microstrip line
increases with frequency leading to a decrease in the
phase velocity with an increase in frequency. The micro-
strip is discussed in chapter 8.
Figure (3.22a and b) show the general behavior of an

anomalous dispersive medium. The relative permittivity
of such a medium decreases with an increase in fre-
quency, i.e. dεr/df < 0 (negative). It leads to an increase
in the phase velocity with an increase in frequency, i.e.
dvp/df > 0 (positive). A microstrip line on a semiconduc-
tor substrate having theMetal, Insulator, Semiconductor
(MIS) or the Schottky structure, in the transition region,
is an anomalous dispersive medium [J.3, J.4].
It is emphasized that there is nothing abnormal with

the anomalous dispersion. Both kinds of dispersions
exist in reality. The normal dispersion is also called
the positive dispersion as the gradient of εr with

frequency is positive, i.e. dεr/df > 0. Similarly, the anom-
alous dispersion is called the negative dispersion with
dεr/df < 0. The relative permittivity of material under-
goes both kinds of dispersion depending upon the phys-
ical cause of dispersion. The dispersion is caused by
several kinds of material polarizations – dipolar, ionic,
electronic, and interfacial polarization. Once the fre-
quency is varied from low-frequency to the optical fre-
quency, the material medium undergoes these
polarization changes, and the propagating wave experi-
ences both the normal and anomalous dispersion at dif-
ferent frequencies [B.17, B.18]. It is discussed in
chapter 6.
The concept of phase velocity applies to a single fre-

quency signal. Now the question is to apply it to a com-
plex baseband signal and a modulated signal. It is
possible to use the phase velocity concept to such wave-
forms through the Fourier series of a periodic signal and
using the Fourier integral for a nonperiodic signal.
Any signal, periodic or nonperiodic, is composed of a
large number of sinusoidal signals. They have a
definite amplitude and phase relationship with the fun-
damental frequency of the signal. A combination of all

(a) Frequency-dependent relative permittivity

     dεr / df >0.

(b) Frequency-dependent phase velocity

      dvp / df <0.
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Figure 3.21 Nature of normal (positive)
dispersion.
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Figure 3.22 Nature of anomalous
(negative) dispersion.
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sinusoidal components gives a complex signal of definite
wave-shape. If the complex waveshape travels through
a dispersive medium having frequency-dependent atten-
uation constant α(f ), the amplitude of each signal com-
ponent changes differently. Similarly, in a dispersive
medium having a frequency-dependent propagation
constant β(f ), each signal component travels with a dif-
ferent velocity. It results in different phase-change for
each frequency component of the complex wave; so
the shape of the wave changes while traveling on a line
or through the medium. The numerical inverse Fourier
transform provides the wave-shape of a signal in the
time-domain at any location in the medium. Thus, the
Fourier method helps to apply the concept of phase
velocity to complex waveform propagation [J.5, J.6].
Such investigations are important to maintain the signal
integrity on the IC and MMIC chips.

3.3.2 Group Velocity

A complex signal composed of two or more frequency
components forms a wave-packet. However, the fre-
quency components should not be much different from
each other like an amplitude modulated signal.
Figure (3.23) shows the wave-packet formed by a group
of a narrowband complex signal. The wave-packet has a
central or a carrier frequency of higher value, superim-
posed with a low-frequency envelope. The carrier wave
travels with the phase velocity vp, whereas the envelope,
i.e. the wave shape travels with the group velocity vg. In a
nondispersive medium, the carrier wave and envelope

both travel with the same velocity without a change in
the waveshape. However, in the case of a dispersive
medium, velocities of the carrier and envelope are differ-
ent. Depending on the nature of dispersion, the wave
could be the forward wave or the backward wave. If
the medium has normal (positive) dispersion, the phase
velocity, i.e. the velocity of the carrier wave, and the
velocity of the envelope, i.e. the group velocity, are in
the same direction, as shown in Fig (3.23). The wave
is known as the forward wave. However, in the case of
a highly anomalous (negative) dispersivemedium, under
a certain condition, the phase and group velocities are in
the opposite directions, forming the backward wave.
The carrier and envelope are combined to form a uni-

fied wave structure called the wave-packet. In the case of
normal dispersion, the group velocity is the energy veloc-
ity of a signal and the information travels with the group
velocity [B.1, B.4, B.5, B.7, B.14, B.16]. However, in the
case of anomalous dispersion, the energy velocity and
group velocity are different. In this case, group velocity
is not velocity of information. Moreover, the concept of
group velocity applies only to a narrow-band wave-
packet, not to the wideband signal. The controversy
exists at present on the travel of information with a
velocity more than the velocity of light [J.7].

Formation of Two-Frequency Wave-Packet

A wave-packet is formed by a linear combination of two
signals of equal magnitude with a small difference in
angular frequency and phase constant. It is shown in
Fig (3.24). The composite voltage wave is given by
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Figure 3.23 Description of phase and group velocities of a forward-moving modulated wave.

66 3 Waves on Transmission Lines – II


