

SQL
A L L - I N - O N E

SQL
A L L - I N - O N E

3rd Edition

by Allen G. Taylor

SQL All-In-One For Dummies®, 3rd Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2019 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without
written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE
IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2019934589

ISBN 978-1-119-56961-9 (pbk); ISBN 978-1-119-56960-2 (ebk); ISBN 978-1-119-56959-6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction . 1

Book 1: SQL Concepts . 9
CHAPTER 1: Understanding Relational Databases . 11
CHAPTER 2: Modeling a System . 31
CHAPTER 3: Getting to Know SQL . 55
CHAPTER 4: SQL and the Relational Model . 67
CHAPTER 5: Knowing the Major Components of SQL . 77
CHAPTER 6: Drilling Down to the SQL Nitty-Gritty . 99

Book 2: Relational Database Development 131
CHAPTER 1: System Development Overview . 133
CHAPTER 2:	 Building	a	Database Model . 149
CHAPTER 3: Balancing Performance and Correctness . 167
CHAPTER 4: Creating a Database with SQL . 199

Book 3: SQL Queries . 211
CHAPTER 1: Values, Variables, Functions, and Expressions . 213
CHAPTER 2: SELECT Statements and Modifying Clauses . 239
CHAPTER 3: Querying Multiple Tables with Subqueries . 281
CHAPTER 4:	 Querying	Multiple	Tables with	Relational	Operators 309
CHAPTER 5: Cursors . 329

Book 4: Data Security . 341
CHAPTER 1: Protecting Against Hardware Failure and External Threats 343
CHAPTER 2:	 Protecting	Against	User	Errors	and	Conflicts . 373
CHAPTER 3: Assigning Access Privileges . 401
CHAPTER 4: Error Handling . 413

Book 5: SQL and Programming . 429
CHAPTER 1: Database Development Environments . 431
CHAPTER 2: Interfacing SQL to a Procedural Language . 437
CHAPTER 3: Using SQL in an Application Program . 443
CHAPTER 4: Designing a Sample Application . 457
CHAPTER 5: Building an Application . 477
CHAPTER 6: Understanding SQL’s Procedural Capabilities . 493
CHAPTER 7: Connecting SQL to a Remote Database . 509

SQL All-In-One

Book 6: SQL, XML, and JSON . 523
CHAPTER 1: Using XML with SQL . 525
CHAPTER 2: Storing XML Data in SQL Tables . 553
CHAPTER 3: Retrieving Data from XML Documents . 577
CHAPTER 4: Using JSON with SQL . 595

Book 7: Database Tuning Overview . 609
CHAPTER 1: Tuning the Database . 611
CHAPTER 2: Tuning the Environment . 623
CHAPTER 3: Finding and Eliminating Bottlenecks . 645

Book 8: Appendices . 675
APPENDIX A: SQL: 2016 Reserved Words . 677
APPENDIX B: Glossary . 683

Index . 691

Table of Contents vii

Table of Contents
INTRODUCTION . 1

About This Book .1
Foolish Assumptions .2
Conventions Used in This Book .3
What You Don’t Have to Read .3
How This Book Is Organized .3

Book 1: SQL Concepts .3
Book 2: Relational Database Development . 4
Book 3: SQL Queries .4
Book 4: Data Security .4
Book 5: SQL and Programming . 5
Book 6: SQL and XML .5
Book 7: Database Tuning Overview . 5
Book 8: Appendices .5

Icons Used in This Book .6
Where to Go from Here .6

BOOK 1: SQL CONCEPTS . 9

CHAPTER 1: Understanding Relational Databases 11
Understanding Why Today’s Databases Are Better than
Early Databases .12

Irreducible complexity .12
Managing data with complicated programs 12
Managing data with simple programs .15
Which type of organization is better? .15

Databases,	Queries,	and	Database Applications 16
Making data useful .16
Retrieving	the	data	you	want —	and	only	the	data	you	want 16

Examining Competing Database Models .18
Looking at the historical background of
the competing models .18
The hierarchical database model .19
The network database model .23
The relational database model .23
The object-oriented database model .28
The object-relational database model .29
The nonrelational NoSQL model .29

Why the Relational Model Won .29

viii SQL All-In-One For Dummies

CHAPTER 2: Modeling a System . 31
Capturing the Users’ Data Model .31

Identifying and interviewing stakeholders .32
Reconciling	conflicting	requirements .33
Obtaining stakeholder buy-in .33

Translating the Users’ Data Model to a Formal
Entity-Relationship Model .34

Entity-Relationship modeling techniques .35
Drawing Entity-Relationship diagrams .40
Understanding advanced ER model concepts 43
A simple example of an ER model .47
A slightly more complex example .48
Problems with complex relationships .52
Simplifying relationships using normalization 53
Translating an ER model into a relational model 53

CHAPTER 3: Getting to Know SQL . 55
Where SQL Came From .55
Knowing What SQL Does .56
The ISO/IEC SQL Standard .57
Knowing What SQL Does Not Do .57
Choosing and Using an Available DBMS Implementation 58

Microsoft Access .59
Microsoft SQL Server .64
IBM DB2 .64
Oracle Database .64
Sybase SQL Anywhere .65
MySQL .65
PostgreSQL .65

CHAPTER 4: SQL and the Relational Model . 67
Sets, Relations, Multisets, and Tables .68
Functional Dependencies .69
Keys .70
Views .71
Users .72
Privileges .72
Schemas .73
Catalogs .74
Connections, Sessions, and Transactions .74
Routines .75
Paths .75

Table of Contents ix

CHAPTER 5: Knowing the Major Components of SQL 77
Creating	a	Database	with	the	Data Definition	Language77

The containment hierarchy .78
Creating tables .79
Specifying columns .79
Creating other objects .80
Modifying tables .87
Removing tables and other objects .87

Operating on Data with the Data Manipulation Language (DML) 88
Retrieving data from a database .88
Adding data to a table .89
Updating data in a table .92
Deleting data from a table .95
Updating views doesn’t make sense .96

Maintaining Security in the Data Control Language (DCL) 97
Granting access privileges .97
Revoking access privileges .98
Preserving	database	integrity	with transactions98

CHAPTER 6: Drilling Down to the SQL Nitty-Gritty 99
Executing SQL Statements .99

Interactive SQL .100
Challenges to combining SQL with a host language 101
Embedded SQL .101
Module language .104

Using Reserved Words Correctly .105
SQL’s Data Types .105

Exact numerics .106
Approximate numerics .108
Character strings .110
Binary strings .112
Booleans .113
Datetimes .113
Intervals .115
XML type .115
ROW type .116
Collection types .117
REF types .118
User-defined	types .119
Data type summary .122

Handling Null Values .123
Applying Constraints .124

Column constraints .125
Table constraints .126
Foreign key constraints . .128
Assertions .129

x SQL All-In-One For Dummies

BOOK 2: RELATIONAL DATABASE DEVELOPMENT 131

CHAPTER 1: System Development Overview . 133
The Components of a Database System .133

The database .134
The database engine .134
The DBMS front end .135
The database application .135
The user .136

The System Development Life Cycle .136
Definition	phase . .137
Requirements phase .138
Evaluation phase .140
Design phase .143
Implementation phase .145
Final Documentation and Testing phase .146
Maintenance phase .148

CHAPTER 2:	 Building	a	Database Model . 149
Finding and Listening to Interested Parties .150

Your immediate supervisor .150
The users .151
The standards organization .151
Upper management .152

Building Consensus .152
Gauging what people want .153
Arriving at a consensus .154

Building a Relational Model .154
Reviewing the three database traditions .155
Knowing what a relation is .156
Functional dependencies .156
Keys .157

Being Aware of the Danger of Anomalies .157
Eliminating anomalies .159
Examining the higher normal forms .162

The	Database	Integrity	versus	Performance	Tradeoff 164

CHAPTER 3: Balancing Performance and Correctness 167
Designing a Sample Database .168

The ER model for Honest Abe’s .168
Converting	an	ER	model	into	a	relational model 170
Normalizing a relational model .170
Handling binary relationships .172
A sample conversion .177

Table of Contents xi

Maintaining Integrity .179
Entity integrity .180
Domain integrity .181
Referential integrity .182

Avoiding Data Corruption . .183
Speeding Data Retrievals .185

Hierarchical storage .185
Full table scans .186

Working with Indexes .187
Creating the right indexes .187
Indexes and the ANSI/ISO standard .188
Index costs .188
Query type dictates the best index .188
Data structures used for indexes .190
Indexes, sparse and dense .192
Index clustering .192
Composite indexes .192
Index	effect	on	join	performance .193
Table size as an indexing consideration . .193
Indexes versus full table scans .194

Reading SQL Server Execution Plans .194
Robust execution plans .194
A sample database .195

CHAPTER 4: Creating a Database with SQL . 199
First Things First: Planning Your Database .199
Building Tables .200

Locating table rows with keys .202
Using the CREATE TABLE statement .202

Setting Constraints .204
Column constraints .205
Table constraints .205

Keys and Indexes .205
Ensuring Data Validity with Domains .205
Establishing Relationships between Tables .206
Altering Table Structure .210
Deleting Tables .210

BOOK 3: SQL QUERIES . 211

CHAPTER 1: Values, Variables, Functions, and Expressions 213
Entering Data Values .213

Row values have multiple parts .214
Identifying values in a column .214
Literal values don’t change .214

xii SQL All-In-One For Dummies

Variables vary .214
Special	variables	hold	specific	values .216

Working with Functions .217
Summarizing data with set functions .217
Dissecting data with value functions .220

Using Expressions .229
Numeric value expressions .229
String value expressions .229
Datetime value expressions .230
Interval value expressions .231
Boolean value expressions .232
Array value expressions .232
Conditional value expressions .233
Converting data types with a CAST expression 236
Row value expressions .238

CHAPTER 2: SELECT Statements and Modifying Clauses 239
Finding Needles in Haystacks with the SELECT Statement 239
Modifying Clauses .240

FROM clauses .240
WHERE clauses .241
GROUP BY clauses .259
HAVING clauses .262
ORDER BY clauses .262

Tuning Queries .265
SELECT DISTINCT .265
Temporary tables .268
The ORDER BY clause .272
The HAVING clause .276
The OR logical connective . .280

CHAPTER 3: Querying Multiple Tables with Subqueries 281
What Is a Subquery? .281
What Subqueries Do .282

Subqueries that return multiple values .282
Subqueries that return a single value .284
Quantified	subqueries	return	a	single	value 287
Correlated subqueries .290

Using Subqueries in INSERT, DELETE, and UPDATE Statements 295
Tuning Considerations for Statements Containing
Nested Queries .298
Tuning Correlated Subqueries .304

Table of Contents xiii

CHAPTER 4:	 Querying	Multiple	Tables with	Relational	
Operators . 309
UNION .310

UNION ALL .312
UNION CORRESPONDING .312

INTERSECT .313
EXCEPT .315
JOINS .315

Cartesian product or cross join .316
Equi-join .318
Natural join .320
Condition join .320
Column-name join .321
Inner join .322
Outer join .323

ON versus WHERE .327
Join Conditions and Clustering Indexes .327

CHAPTER 5: Cursors . 329
Declaring a Cursor .330

The query expression .331
Ordering the query result set .331
Updating table rows .333
Sensitive versus insensitive cursors .333
Scrolling a cursor .335
Holding a cursor .335
Declaring a result set cursor .335

Opening a Cursor .336
Operating on a Single Row .337

FETCH syntax .338
Absolute versus relative fetches .338
Deleting a row .339
Updating a row .339

Closing a Cursor .340

BOOK 4: DATA SECURITY . 341

CHAPTER 1: Protecting Against Hardware Failure
and External Threats . 343
What Could Possibly Go Wrong? .344

Equipment failure .344
Platform instability .345

xiv SQL All-In-One For Dummies

Database	design	flaws .346
Data-entry errors .346
Operator error .347

Taking Advantage of RAID .347
Striping .348
RAID levels .348

Backing Up Your System .351
Preparation for the worst .352
Full or incremental backup .352
Frequency .353
Backup maintenance .353

Coping with Internet Threats .354
Viruses .354
Trojan horses .356
Worms .356
Denial-of-service attacks .357
SQL injection attacks .357
Phishing scams .370
Zombie spambots .370

Installing Layers of Protection .371
Network-layer	firewalls .371
Application-layer	firewalls .371
Antivirus software .371
Vulnerabilities, exploits, and patches .372
Education .372
Alertness .372

CHAPTER 2:	 Protecting	Against	User	Errors	and	Conflicts 373
Reducing Data-Entry Errors .374

Data	types:	The	first	line	of	defense .374
Constraints: The second line of defense .374
Sharp-eyed humans: The third line of defense 375

Coping with Errors in Database Design .375
Handling Programming Errors .376
Solving	Concurrent-Operation	Conflicts .376
Passing the ACID Test: Atomicity, Consistency, Isolation,
and Durability . .378
Operating with Transactions .379

Using the SET TRANSACTION statement .379
Starting a transaction .380
Committing a transaction .383
Rolling back a transaction .383
Implementing deferrable constraints .386

Table of Contents xv

Getting Familiar with Locking .391
Two-phase locking .391
Granularity .392
Deadlock .392

Tuning Locks .393
Measuring performance with throughput .394
Eliminating unneeded locks .394
Shortening transactions .394
Weakening isolation levels (ver-r-ry carefully) 395
Controlling lock granularity .396
Scheduling DDL statements correctly .396
Partitioning insertions .396
Cooling hot spots .397
Tuning the deadlock interval .397

Enforcing Serializability with Timestamps .397
Tuning the Recovery System .400

CHAPTER 3: Assigning Access Privileges . 401
Working	with	the	SQL	Data	Control Language 401
Identifying Authorized Users .402

Understanding	user	identifiers .402
Getting familiar with roles .402

Classifying Users .404
Granting Privileges .404

Looking at data .405
Deleting data .406
Adding data .406
Changing data .406
Referencing data in another table .406
Using certain database facilities .408
Responding to an event .408
Defining	new	data	types .409
Executing an SQL statement .409
Doing it all .409
Passing on the power .409

Revoking Privileges .410
Granting Roles .411
Revoking Roles .412

CHAPTER 4: Error Handling . 413
Identifying Error Conditions .414
Getting to Know SQLSTATE .414
Handling Conditions .416

Handler declarations .417
Handler	actions	and	handler	effects .417
Conditions that aren’t handled .419

xvi SQL All-In-One For Dummies

Dealing	with	Execution	Exceptions:	The WHENEVER	Clause 419
Getting	More	Information:	The Diagnostics	Area 420

The diagnostics header area .421
The diagnostics detail area .422

Examining an Example Constraint Violation .424
Adding Constraints to an Existing Table .426
Interpreting SQLSTATE Information .426
Handling Exceptions .427

BOOK 5: SQL AND PROGRAMMING . 429

CHAPTER 1: Database Development Environments 431
Microsoft Access .431

The Jet engine .432
DAO .432
ADO .432
ODBC .433
OLE DB .433
Files with the .mdb extension .433
The Access Database Engine .433

Microsoft SQL Server .433
IBM Db2 .434
Oracle 18c .434
SQL Anywhere .435
PostgreSQL .435
MySQL .435

CHAPTER 2: Interfacing SQL to a Procedural Language 437
Building an Application with SQL and a Procedural Language 437

Access and VBA .438
SQL Server and the .NET languages .439
MySQL and C++ .NET or C# .440
MySQL and C .440
MySQL and Perl .441
MySQL and PHP .441
MySQL and Java .441
Oracle SQL and Java .441
Db2 and Java .442

CHAPTER 3: Using SQL in an Application Program 443
Comparing SQL with Procedural Languages .444

Classic procedural languages .444
Object-oriented procedural languages .445
Nonprocedural languages .445

Table of Contents xvii

Difficulties	in	Combining	SQL	with	a	Procedural	Language 446
Challenges of using SQL with a classical
procedural language .446
Challenges of using SQL with an object-oriented
procedural language .447

Embedding SQL in an Application .448
Embedding SQL in an Oracle Pro*C application 449
Embedding SQL in a Java application .451
Using SQL in a Perl application .452
Embedding SQL in a PHP application .452
Using SQL with a Visual Basic .NET application 452
Using SQL with other .NET languages .453

Using SQL Modules with an Application .453
Module declarations .454
Module procedures .455
Modules in Oracle .456

CHAPTER 4: Designing a Sample Application . 457
Understanding the Client’s Problem .458
Approaching the Problem .458

Interviewing the stakeholders .458
Drafting	a	detailed	statement	of requirements 459
Following up with a proposal .459

Determining the Deliverables .460
Finding out what’s needed now and later .460
Planning for organization growth .461
Nailing down project scope .462

Building an Entity-Relationship Model .463
Determining what the entities are .464
Relating the entities to one another .464

Transforming the Model .467
Eliminating any many-to-many relationships 467
Normalizing the ER model .470

Creating Tables .471
Changing Table Structure .475
Removing Tables .475
Designing the User Interface .475

CHAPTER 5: Building an Application . 477
Designing from the Top Down . .477

Determining	what	the	application	should include 478
Designing the user interface .478
Connecting the user interface to the database 479

xviii SQL All-In-One For Dummies

Coding from the Bottom Up .481
Preparing to build the application .481
Creating the application’s building blocks .489
Gluing everything together .490

Testing, Testing, Testing .490
Fixing the bugs .491
Turning naive users loose .491
Bringing on the hackers .491
Fixing the newly found bugs .491
Retesting everything one last time .492

CHAPTER 6: Understanding SQL’s Procedural Capabilities 493
Embedding SQL Statements in Your Code .494
Introducing Compound Statements .494

Atomicity .495
Variables .496
Cursors .496
Assignment .497

Following the Flow of Control Statements .497
IF . . . THEN . . . ELSE . . . END	IF .497
CASE . . . END	CASE .498
LOOP . . . END	LOOP .499
LEAVE .500
WHILE . . . DO . . . END	WHILE .500
REPEAT . . . UNTIL . . . END	REPEAT .501
FOR . . . DO . . . END	FOR .501
ITERATE .502

Using Stored Procedures .502
Working with Triggers .503

Trigger events .505
Trigger action time .505
Triggered actions .505
Triggered SQL statement .506

Using Stored Functions .506
Passing Out Privileges .507
Using Stored Modules . .508

CHAPTER 7: Connecting SQL to a Remote Database 509
Native Drivers . .510
ODBC and Its Major Components .511

Application .512
Driver manager .513
Drivers .514
Data sources . .515

Table of Contents xix

What Happens When the Application Makes a Request 515
Using handles to identify objects .516
Following	the	six	stages	of	an	ODBC operation 517

BOOK 6: SQL, XML, AND JSON . 523

CHAPTER 1: Using XML with SQL . 525
Introducing XML .526
Knowing the Parts of an XML Document .527

XML declaration .527
Elements .528
Attributes .529
Entity references .530
Numeric character references .531

Using XML Schema .531
Relating SQL to XML .532
Using the XML Data Type .533

When to use the XML type .533
When not to use the XML type .534

Mapping SQL to XML .535
Mapping character sets to XML .535
Mapping	identifiers	to	XML .535
Mapping data types to XML .536
Mapping	nonpredefined	data	types	to	XML 537
Mapping tables to XML .542
Handling null values .542
Creating an XML schema for an SQL table 543

Operating on XML Data with SQL Functions .544
XMLELEMENT .545
XMLFOREST .545
XMLCONCAT .546
XMLAGG .546
XMLCOMMENT .547
XMLPARSE .547
XMLPI .548
XMLQUERY .548
XMLCAST .549

Working with XML Predicates .549
DOCUMENT .549
CONTENT .550
XMLEXISTS .550
VALID .550

xx SQL All-In-One For Dummies

CHAPTER 2: Storing XML Data in SQL Tables . 553
Inserting XML Data into an SQL Pseudotable .553
Creating a Table to Hold XML Data .555
Updating XML Documents .556
Discovering Oracle’s Tools for Updating XML Data in a Table 557

APPENDCHILDXML .557
INSERTCHILDXML .558
INSERTXMLBEFORE .559
DELETEXML .560
UPDATEXML .561

Introducing Microsoft’s Tools for Updating XML Data in a Table 562
Inserting data into a table using OPENXML 562
Using updategrams to map data into database tables 563
Using an updategram namespace and keywords 563
Specifying a mapping schema .565

CHAPTER 3: Retrieving Data from XML Documents 577
XQuery .578

Where XQuery came from .578
What XQuery requires .579
XQuery functionality .579
Usage scenarios .580

FLWOR Expressions .584
The for clause .586
The let clause .587
The where clause .588
The order by clause .589
The return clause .589

XQuery versus SQL .590
Comparing XQuery’s FLWOR expression
with SQL’s SELECT expression .591
Relating XQuery data types to SQL data types 591

CHAPTER 4: Using JSON with SQL . 595
Using JSON with SQL .595
The SQL/JSON Data Model .596

SQL/JSON items .596
SQL/JSON sequences .597
Parsing JSON . .598
Serializing JSON .598

SQL/JSON Functions .598
Query functions .598
Constructor functions .604
IS JSON predicate .606
JSON nulls and SQL nulls .607

SQL/JSON Path Language .607

Table of Contents xxi

BOOK 7: DATABASE TUNING OVERVIEW 609

CHAPTER 1: Tuning the Database . 611
Analyzing the Workload .612
Considering the Physical Design .613
Choosing the Right Indexes .614

Avoiding unnecessary indexes .614
Choosing a column to index .615
Using multicolumn indexes .616
Clustering indexes .616
Choosing an index type .618
Weighing the cost of index maintenance .618
Using composite indexes .619

Tuning Indexes .619
Tuning Queries .620
Tuning Transactions .621
Separating User Interactions from Transactions 622
Minimizing	Traffic	between	Application	and	Server 622
Precompiling Frequently Used Queries .622

CHAPTER 2: Tuning the Environment . 623
Surviving Failures with Minimum Data Loss .624

What happens to transactions when no failure occurs? 624
What happens when a failure occurs and
a transaction is still active? .625

Tuning the Recovery System .625
Volatile and nonvolatile memory .625
Memory system hierarchy .627
Putting	logs	and	transactions	on	different	disks 628
Tuning write operations .630
Performing database dumps .631
Setting checkpoints .632
Optimizing batch transactions .634

Tuning the Operating System .634
Scheduling threads .634
Determining	database	buffer	size .638
Tuning the page usage factor .639

Maximizing the Hardware You Have .639
Optimizing the placement of code and data on hard disks 639
Tuning the page replacement algorithm .640
Tuning the disk controller cache .640

Adding Hardware . .641
Faster processor .642
More RAM .642
Faster hard disks .642

xxii SQL All-In-One For Dummies

More hard disks .642
Solid State Disk (SSD) .643
RAID arrays .643

Working in Multiprocessor Environments .643

CHAPTER 3: Finding and Eliminating Bottlenecks 645
Pinpointing the Problem .645

Slow query .646
Slow update .646

Determining the Possible Causes of Trouble .647
Problems with indexes .647
Pitfalls in communication .649
Determining whether hardware is robust enough
and	configured	properly .650

Implementing General Principles: A First Step
Toward Improving Performance .651

Avoid direct user interaction .651
Examine the application/database interaction 651
Don’t ask for columns that you don’t need 652
Don’t use cursors unless you absolutely have to 652
Precompiled queries .653

Tracking Down Bottlenecks .653
Isolating performance problems .653
Performing a top-down analysis .653
Partitioning .656
Locating hotspots .656

Analyzing	Query	Efficiency .657
Using query analyzers .657
Finding problem queries .667

Managing Resources Wisely . .671
The disk subsystem .671
The	database	buffer	manager .672
The logging subsystem .673
The locking subsystem .673

BOOK 8: APPENDICES . 675

APPENDIX A: SQL: 2016 Reserved Words . 677

APPENDIX B: Glossary . 683

INDEX . 691

Introduction 1

Introduction

SQL is the internationally recognized standard language for dealing with data
in relational databases. Developed by IBM, SQL became an international
standard in 1986. The standard was updated in 1989, 1992, 1999, 2003,

2008, 2011, and 2016. It continues to evolve and gain capability. Database vendors
continually update their products to incorporate the new features of the ISO/IEC
standard. (For the curious out there, ISO is the International Organization for
Standardization, and IEC is the International Electrotechnical Commission.)

SQL isn’t a general-purpose language, such as C++ or Java. Instead, it’s strictly
designed to deal with data in relational databases. With SQL, you can carry out all
the following tasks:

 » Create a database, including all tables and relationships.

 » Fill database tables with data.

 » Change the data in database tables.

 » Delete data from database tables.

 » Retrieve specific information from database tables.

 » Grant and revoke access to database tables.

 » Protect database tables from corruption due to access conflicts or user
mistakes.

About This Book
This book isn’t just about SQL; it’s also about how SQL fits into the process of cre-
ating and maintaining databases and database applications. In this book, I cover
how SQL fits into the larger world of application development and how it handles
data coming in from other computers, which may be on the other side of the world
or even in interplanetary space.

2 SQL All-In-One For Dummies

Here are some of the things you can do with this book:

 » Create a model of a proposed system and then translate that model into
a database.

 » Find out about the capabilities and limitations of SQL.

 » Discover how to develop reliable and maintainable database systems.

 » Create databases.

 » Speed database queries.

 » Protect databases from hardware failures, software bugs, and Internet
attacks.

 » Control access to sensitive information.

 » Write effective database applications.

 » Deal with data from a variety of nontraditional data sources by using XML.

Foolish Assumptions
I know that this is a For Dummies book, but I don’t really expect that you’re a
dummy. In fact, I assume that you’re a very smart person. After all, you decided to
read this book, which is a sign of high intelligence indeed. Therefore, I assume that
you may want to do a few things, such as re-create some of the examples in the
book. You may even want to enter some SQL code and execute it. To do that, you
need at the very least an SQL editor and more likely also a database management
system (DBMS) of some sort. Many choices are available, both proprietary and open
source. I mention several of these products at various places throughout the book
but don’t recommend any one in particular. Any product that complies with the
ISO/IEC international SQL standard should be fine.

Take claims of ISO/IEC compliance with a grain of salt, however. No DBMS availa-
ble today is 100 percent compliant with the ISO/IEC SQL standard. For that reason,
some of the code examples I give in this book may not work in the particular SQL
implementation that you’re using. The code samples I use in this book are con-
sistent with the international standard rather than with the syntax of any par-
ticular implementation unless I specifically state that the code is for a particular
implementation.

Introduction 3

Conventions Used in This Book
By conventions, I simply mean a set of rules I’ve employed in this book to present
information to you consistently. When you see a term italicized, look for its defi-
nition, which I’ve included so that you know what things mean in the context of
SQL. Website addresses and email addresses appear in monofont so that they stand
out from regular text. Many aspects of the SQL language — such as statements,
data types, constraints, and keywords — also appear in monofont. Code appears
in its own font, set off from the rest of the text, like this:

CREATE SCHEMA RETAIL1 ;

What You Don’t Have to Read
I’ve structured this book modularly — that is, it’s designed so that you can
 easily find just the information you need — so you don’t have to read whatever
doesn’t pertain to your task at hand. Here and there throughout the book, I include
 sidebars containing interesting information that isn’t necessarily integral to the
discussion at hand; feel free to skip them. You also don’t have to read text marked
with the Technical Stuff icons, which parses out über-techy tidbits (which may or
may not be your cup of tea).

How This Book Is Organized
SQL All-in-One Desk Reference For Dummies, 3rd Edition is split into eight mini-
books. You don’t have to read the book sequentially; you don’t have to look at
every minibook; you don’t have to review each chapter; and you don’t even have
to read all the sections of any particular chapter. (You can if you want to, however;
it’s a good read.) The table of contents and index can help you quickly find what-
ever information you need. In this section, I briefly describe what each minibook
contains.

Book 1: SQL Concepts
SQL is a language specifically and solely designed to create, operate on, and man-
age relational databases. I start with a description of databases and how rela-
tional databases differ from other kinds. Then I move on to modeling business and
other kinds of tasks in relational terms. Next, I cover how SQL relates to relational

4 SQL All-In-One For Dummies

databases, provide a detailed description of the components of SQL, and explain
how to use those components. I also describe the types of data that SQL deals with,
as well as constraints that restrict the data that can be entered into a database.

Book 2: Relational Database Development
Many database development projects, like other software development proj-
ects, start in the middle rather than at the beginning, as they should. This fact is
responsible for the notorious tendency of software development projects to run
behind schedule and over budget. Many self-taught database developers don’t
even realize that they’re starting in the middle; they think they’re doing every-
thing right. This minibook introduces the System Development Life Cycle (SDLC),
which shows what the true beginning of a software development project is, as well
as the middle and the end.

The key to developing an effective database that does what you want is creating an
accurate model of the system you’re abstracting in your database. I describe mod-
eling in this minibook, as well as the delicate trade-off between performance and
reliability. The actual SQL code used to create a database rounds out the discussion.

Book 3: SQL Queries
Queries sit at the core of any database system. The whole reason for storing data
in databases is to retrieve the information you want from those databases later.
SQL is, above all, a query language. Its specialty is enabling you to extract from a
database exactly the information you want without cluttering what you retrieve
with a lot of stuff you don’t want.

This minibook starts with a description of values, variables, expressions, and
functions. Then I provide detailed coverage of the powerful tools SQL gives you to
zero in on the information you want, even if that information is scattered across
multiple tables.

Book 4: Data Security
Your data is one of your most valuable assets. Acknowledging that fact, I discuss
ways to protect it from a diverse array of threats. One threat is outright loss due to
hardware failures. Another threat is attack by hackers wielding malicious viruses
and worms. In this minibook, I discuss how you can protect yourself from such
threats, whether they’re random or purposeful.

Introduction 5

I also deal extensively with other sources of error, such as the entry of bad data
or the harmful interactions of simultaneous users. Finally, I cover how to control
access to sensitive data and how to handle errors gracefully when they occur — as
they inevitably will.

Book 5: SQL and Programming
SQL’s primary use is as a component of an application program that operates on
a database. Because SQL is a data language, not a general-purpose programming
language, SQL statements must be integrated somehow with the commands of
a language such as Visual Basic, Java, C++, or C#. This book outlines the process
with the help of a fictitious sample application, taking it from the beginning —
when the need for a new application is perceived — to the release of the finished
application. Throughout the example, I emphasize best practices.

Book 6: SQL and XML
XML is the language used to transport data between dissimilar data stores. The
2005 extensions to the SQL:2003 standard greatly expanded SQL’s capacity to
handle XML data. This minibook covers the basics of XML and how it relates to
SQL. I describe SQL functions that are specifically designed to operate on data
in XML format, as well as the operations of storing and retrieving data in XML
format.

Book 7: Database Tuning Overview
Depending on how they’re structured, databases can respond efficiently to
requests for information or perform very poorly. Often, the performance of a
database degrades over time as its structure and the data in it change or as typical
types of retrievals change. This minibook describes the parts of a database that are
amenable to tuning and optimization. It also gives a procedure for tracking down
bottlenecks that are choking the performance of the entire system.

Book 8: Appendices
Appendix A lists words that have a special meaning in SQL:2016. You can’t use
these words as the names of tables, columns, views, or anything other than what
they were meant to be used for. If you receive a strange error message for an
SQL statement that you entered, check whether you inadvertently used a reserved
word inappropriately.

6 SQL All-In-One For Dummies

Appendix B is a glossary that provides brief definitions of many of the terms used
in this book, as well as many others that relate to SQL and databases, whether
they’re used in this book or not.

Icons Used in This Book
For Dummies books are known for those helpful icons that point you in the direc-
tion of really great information. This section briefly describes the icons used in
this book.

The Tip icon points out helpful information that’s likely to make your job easier.

This icon marks a generally interesting and useful fact — something that you may
want to remember for later use.

The Warning icon highlights lurking danger. When you see this icon, pay atten-
tion, and proceed with caution.

This icon denotes techie stuff nearby. If you’re not feeling very techie, you can
skip this info.

Where to Go from Here
Book 1 is the place to go if you’re just getting started with databases. It explains
why databases are useful and describes the different types. It focuses on the rela-
tional model and describes SQL’s structure and features.

Book 2 goes into detail on how to build a database that’s reliable as well as respon-
sive. Unreliable databases are much too easy to create, and this minibook tells you
how to avoid the pitfalls that lie in wait for the unwary.

Go directly to Book 3 if your database already exists and you just want to know
how to use SQL to pull from it the information you want.

Introduction 7

Book 4 is primarily aimed at the database administrator (DBA) rather than the
database application developer or user. It discusses how to build a robust database
system that resists data corruption and data loss.

Book 5 is for the application developer. In addition to discussing how to write a
database application, it gives an example that describes in a step-by-step manner
how to build a reliable application.

If you’re already an old hand at SQL and just want to know how to handle data in
XML format in your SQL database, Book 6 is for you.

Book 7 gives you a wide variety of techniques for improving the performance of
your database. This minibook is the place to go if your database is operating —
but not as well as you think it should. Most of these techniques are things that
the DBA can do, rather than the application developer or the database user. If
your database isn’t performing the way you think it should, take it up with your
DBA. She can do a few things that could help immensely.

Book 8 is a handy reference that helps you quickly find the meaning of a word
you’ve encountered or see why an SQL statement that you entered didn’t work as
expected. (Maybe you used a reserved word without realizing it.)

1SQL Concepts

Contents at a Glance
CHAPTER 1: Understanding Relational Databases 11

CHAPTER 2: Modeling a System . 31

CHAPTER 3: Getting to Know SQL . 55

CHAPTER 4: SQL and the Relational Model . 67

CHAPTER 5: Knowing the Major Components of SQL 77

CHAPTER 6: Drilling Down to the SQL Nitty-Gritty 99

CHAPTER 1 Understanding Relational Databases 11

Understanding
Relational Databases

SQL (pronounced ess cue el, but you’ll hear some people say see quel) is
the international standard language used in conjunction with relational
databases — and it just so happens that relational databases are the dom-

inant form of data storage throughout the world. In order to understand why
 relational databases are the primary repositories for the data of both small and
large organizations, you must first understand the various ways in which com-
puter data can be stored and how those storage methods relate to the relational
database model. To help you gain that understanding, I spend a good portion of
this chapter going back to the earliest days of electronic computers and recapping
the history of data storage.

I realize that grand historical overviews aren’t everybody’s cup of tea, but I’d
argue that it’s important to see that the different data storage strategies that
have been used over the years each have their own strengths and weaknesses.
 Ultimately, the strengths of the relational model overshadowed its weaknesses
and it became the most frequently used method of data storage. Shortly after that,
SQL became the most frequently used method of dealing with data stored in a
relational database.

Chapter 1

IN THIS CHAPTER

 » Working with data files and
databases

 » Seeing how databases, queries, and
database applications fit together

 » Looking at different database models

 » Charting the rise of relational
databases

12 BOOK 1 SQL Concepts

Understanding Why Today’s Databases
Are Better than Early Databases

In the early days of computers, the concept of a database was more theoretical
than practical. Vannevar Bush, the twentieth-century visionary, conceived of the
idea of a database in 1945, even before the first electronic computer was built.
However, practical implementations of databases — such as IBM’s IMS (Informa-
tion Management System), which kept track of all the parts on the Apollo moon
mission and its commercial followers — did not appear for a number of years
after that. For far too long, computer data was still being kept in files rather than
migrated to databases.

Irreducible complexity
Any software system that performs a useful function is complex. The more val-
uable the function, the more complex its implementation. Regardless of how the
data is stored, the complexity remains. The only question is where that complex-
ity resides.

Any nontrivial computer application has two major components: the program and
the data. Although an application’s level of complexity depends on the task to be
performed, developers have some control over the location of that complexity. The
complexity may reside primarily in the program part of the overall system, or it
may reside in the data part. In the sections that follow, I tell you how the location
of complexity in databases shifted over the years as technological improvements
made that possible.

Managing data with complicated programs
In the earliest applications of computers to solve problems, all of the complex-
ity resided in the program. The data consisted of one data record of fixed length
after another, stored sequentially in a file. This is called a flat file data structure.
The data file contains nothing but data. The program file must include informa-
tion about where particular records are within the data file (one form of metadata,
whose sole purpose is to organize the primary data you really care about). Thus,
for this type of organization, the complexity of managing the data is entirely in
the program.

Here’s an example of data organized in a flat file structure:

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

CHAPTER 1 Understanding Relational Databases 13

Harold Percival26262 S. Howards Mill Rd.Westminster CA92683
Jerry Appel 32323 S. River Lane Road Santa Ana CA92705
Adrian Hansen 232 Glenwood Court Anaheim CA92640
John Baker 2222 Lafayette Street Garden GroveCA92643
Michael Pens 77730 S. New Era Road Irvine CA92715
Bob Michimoto 25252 S. Kelmsley Drive Stanton CA92610
Linda Smith 444 S.E. Seventh StreetCosta Mesa CA92635
Robert Funnell 2424 Sheri Court Anaheim CA92640
Bill Checkal 9595 Curry Drive Stanton CA92610
Jed Style 3535 Randall Street Santa Ana CA92705

This example includes fields for name, address, city, state, and zip code. Each field
has a specific length, and data entries must be truncated to fit into that length. If
entries don’t use all the space allotted to them, storage space is wasted.

The flat file method of storing data has several consequences, some beneficial and
some not. First, the beneficial consequences:

 » Storage requirements are minimized. Because the data files contain
nothing but data, they take up a minimum amount of space on hard disks or
other storage media. The code that must be added to any one program that
contains the metadata is small compared to the overhead involved with
adding a database management system (DBMS) to the data side of the
system. (A database management system is the program that controls access
to — and operations on — a database.)

 » Operations on the data can be fast. Because the program interacts directly
with the data, with no DBMS in the middle, well-designed applications can run
as fast as the hardware permits.

Wow! What could be better? A data organization that minimizes storage require-
ments and at the same time maximizes speed of operation seems like the best of
all possible worlds. But wait a minute . . .

Flat file systems came into use in the 1940s. We have known about them for a long
time, and yet today they are almost entirely replaced by database systems. What’s
up with that? Perhaps it is the not-so-beneficial consequences:

 » Updating the data’s structure can be a huge task. It is common for an
organization’s data to be operated on by multiple application programs,
with multiple purposes. If the metadata about the structure of data is in the
program rather than attached to the data itself, all the programs that access
that data must be modified whenever the data structure is changed. Not only
does this cause a lot of redundant work (because the same changes must be

14 BOOK 1 SQL Concepts

made in all the programs), but it is an invitation to problems. All the programs
must be modified in exactly the same way. If one program is inadvertently
forgotten, the program will fail the next time you run it. Even if all the pro-
grams are modified, any that aren’t modified exactly as they should be will fail,
or even worse, corrupt the data without giving any indication that some-
thing is wrong.

 » Flat file systems provide no protection of the data. Anyone who can
access a data file can read it, change it, or delete it. A flat file system doesn’t
have a database management system, which restricts access to authorized
users.

 » Speed can be compromised. Accessing records in a large flat file can actually
be slower than a similar access in a database because flat file systems do not
support indexing. Indexing is a major topic that I discuss in Book 2, Chapter 3.

 » Portability becomes an issue. If the specifics that handle how you retrieve
a particular piece of data from a particular disk drive is coded into each
program, what happens when your hardware becomes obsolete and you
must migrate to a new system? All your applications will have to be changed
to reflect the new way of accessing the data. This task is so onerous that many
organizations have chosen to limp by on old, poorly performing systems
instead of enduring the pain of transitioning to a system that would meet
their needs much more effectively. Organizations with legacy systems
consisting of millions of lines of code are pretty much trapped.

In the early days of electronic computers, storage was relatively expensive, so
system designers were highly motivated to accomplish their tasks using as little
storage space as possible. Also, in those early days, computers were much slower
than they are today, so doing things the fastest possible way also had a high prior-
ity. Both of these considerations made flat file systems the architecture of choice,
despite the problems inherent in updating the structure of a system’s data.

The situation today is radically different. The cost of storage has plummeted and
continues to drop on an exponential curve. The speed at which computations
are performed has increased exponentially also. As a result, minimizing storage
requirements and maximizing the speed with which an operation can be performed
are no longer the primary driving forces that they once were. Because systems have
continually become bigger and more complex, the problem of maintaining them
has likewise grown. For all these reasons, flat file systems have lost their attrac-
tiveness, and databases have replaced them in practically all application areas.

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

CHAPTER 1 Understanding Relational Databases 15

Managing data with simple programs
The major selling point of database systems is that the metadata resides on the
data end of the system rather than in the program. The program doesn’t have to
know anything about the details of how the data is stored. The program makes
logical requests for data, and the DBMS translates those logical requests into com-
mands that go out to the physical storage hardware to perform whatever opera-
tion has been requested. (In this context, a logical request asks for a specific piece
of information, but does not specify its location on hard disk in terms of platter,
track, sector, and byte.) Here are the advantages of this organization:

 » Because application programs need to know only what data they want to
operate on, and not where that data is located, they are unaffected when the
physical details of where data is stored changes.

 » Portability across platforms, even when they are highly dissimilar, is easy as
long as the DBMS used by the first platform is also available on the second.
Generally, you don’t need to change the programs at all to accommodate
various platforms.

What about the disadvantages? They include the following:

 » Placing a database management system in between the application program
and the data slows down operations on that data. This is not nearly the
problem that it used to be. Modern advances, such as the use of high speed
cache memories have eased this problem considerably.

 » Databases take up more space on disk storage than the same amount of data
would take up in a flat file system. This is due to the fact that metadata is
stored along with the data. The metadata contains information about how the
data is stored so that the application programs don’t have to include it.

Which type of organization is better?
I bet you think you already know how I’m going to answer this question. You’re
probably right, but the answer is not quite so simple. There is no one correct
answer that applies to all situations. In the early days of electronic computing, flat
file systems were the only viable option. To perform any reasonable computation
in a timely and economical manner, you had to use whatever approach was the
fastest and required the least amount of storage space. As more and more appli-
cation software was developed for these systems, the organizations that owned
them became locked in tighter and tighter to what they had. To change to a more
modern database system requires rewriting all their applications from scratch and

16 BOOK 1 SQL Concepts

reorganizing all their data, a monumental task. As a result, we still have legacy
flat file systems that continue to exist because switching to more modern tech-
nology isn’t feasible, both economically and in terms of the time it would take to
make the transition.

Databases, Queries, and
Database Applications

What are the chances that a person could actually find a needle in a haystack?
Not very good. Finding the proverbial needle is so hard because the haystack is a
random pile of hay with individual pieces of hay going in every direction, and the
needle is located at some random place among all that hay.

A flat file system is not really very much like a haystack, but it does lack
structure — and in order to find a particular record in such a file, you must use
tools that lie outside of the file itself. This is like applying a powerful magnet to
the haystack to find the needle.

Making data useful
For a collection of data to be useful, you must be able to easily and quickly retrieve
the particular data you want, without having to wade through all the rest of the
data. One way to make this happen is to store the data in a logical structure.
Flat files don’t have much structure, but databases do. Historically, the hierar-
chical database model and the network database model were developed before the
 relational model. Each one organizes data in a different way, but all three produce
a highly structured result. Because of that, starting in the 1970s, any new devel-
opment projects were most likely done using one of the aforementioned three
 database models: hierarchical, network, or relational. (I explore each of these
database models further in the “Examining Competing Database Models” section,
later in this chapter.)

Retrieving the data you want —
and only the data you want
Of all the operations that people perform on a collection of data, the retrieval
of specific elements out of the collection is the most important. This is because
retrievals are performed more often than any other operation. Data entry is done

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

CHAPTER 1 Understanding Relational Databases 17

only once. Changes to existing data are made relatively infrequently, and data is
deleted only once. Retrievals, on the other hand, are performed frequently, and
the same data elements may be retrieved many times. Thus, if you could optimize
only one operation performed on a collection of data, that one operation should be
data retrieval. As a result, modern database management systems put a great deal
of effort into making retrievals fast.

Retrievals are performed by queries. A modern database management system
analyzes a query that is presented to it and decides how best to perform it. Gener-
ally, there are multiple ways of performing a query, some much faster than oth-
ers. A good DBMS consistently chooses a near-optimal execution plan. Of course,
it helps if the query is formulated in an optimal manner to begin with. (I discuss
optimization strategies in depth in Book 7, which covers database tuning.)

THE FIRST DATABASE SYSTEM
The first true database system was developed by IBM in the 1960s in support of NASA’s
Apollo moon landing program. The number of components in the Saturn V launch
vehicle, the Apollo Command and Service Module, and the lunar lander far exceeded
anything that had been built up to that time. Every component had to be tested more
exhaustively than anything had ever been tested before because each component
would have to withstand the rigors of an environment that was more hostile and
more unforgiving than any environment that humans had ever attempted to work in.
Flat file systems were out of the question. IBM’s solution, which IBM later transformed
into a commercial database product named IMS (Information Management System),
kept track of each individual component, as well as its complete history.

When the ill-fated Apollo 13’s main oxygen tank ruptured on the way to the Moon,
 engineers worked frantically to come up with a plan to save the lives of the three
 astronauts headed for the Moon. The engineers succeeded and transmitted a plan
to the astronauts that worked.

After the crew had returned safely to Earth, querying IMS records about the oxygen
tank that failed showed that somewhere between the oxygen tank’s manufacture and
its installation in Apollo 13, it had been dropped on the floor. Engineers retested it for its
ability to withstand the pressure it would have to contain during the mission, and then
put it back in stock after it passed the test. But it turns out that in this case, the test did
not detect the hidden damage to the tank, and NASA should not have used the oxygen
tank on the Apollo 13 mission. The history stored in IMS showed that passing a pressure
test is not enough to assure that a dropped tank is undamaged. No dropped tanks were
ever used on subsequent Apollo missions.

18 BOOK 1 SQL Concepts

Examining Competing Database Models
A database model is simply a way of organizing data elements within a database.
In this section, I give you the details on the three database models that appeared
first on the scene:

 » Hierarchical: Organizes data into levels, where each level contains a
 single category of data, and parent/child relationships are established
between levels

 » Network: Organizes data in a way that avoids much of the redundancy
inherent in the hierarchical model

 » Relational: Organizes data into a structured collection of two-dimensional
tables

After the introductions of the hierarchical, network, and relational models, com-
puter scientists have continued to develop databases models that have been found
useful in some categories of applications. I briefly mention some of these later
in this chapter, along with their areas of applicability. However, the hierarchical,
network, and relational models are the ones that have been primarily used for
general business applications.

Looking at the historical background
of the competing models
The first functioning database system was developed by IBM and went live at
an Apollo contractor’s site on August 14, 1968. (Read the whole story in “The
first database system” sidebar, here in this chapter.) Known as IMS (Information
Management System), it is still (amazingly enough) in use today, over 50 years
later, because IBM has continually upgraded it in support of its customers.

If you are in the market for a database management system, you may want to
consider buying it from a vendor that will be around, and that is committed to
supporting it for as long as you will want to use it. IBM has shown itself to be such
a vendor, and of course, there are others as well.

IMS is an example of a hierarchical database product. About a year after IMS was
first run, the network database model was described by an industry committee.
About a year after that, Dr. Edgar F. “Ted” Codd, also of IBM, proposed the rela-
tional model. Within a short span of years, the three models that were to dominate
the database market for decades were spawned.

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

CHAPTER 1 Understanding Relational Databases 19

Quite a few years went by before the object-oriented database model made its
appearance, presenting itself as an alternative meant to address some of the
 deficiencies of the relational model. The object-oriented database model accommo-
dates the storage of types of data that don’t easily fit into the categories handled
by relational databases. Although they have advantages in some applications,
object-oriented databases have not captured significant market share. The object-
relational model is a merger of the relational and object models, and it is designed
to capture the strengths of both, while leaving behind their major weaknesses.
Now, there is something called the NoSQL model. It is designed to work with data
that is not rigidly structured. Because it does not use SQL, I will not discuss it in
this book.

The hierarchical database model
The hierarchical database model organizes data into levels, where each level con-
tains a single category of data, and parent/child relationships are established
between levels. Each parent item can have multiple children, but each child item
can have one and only one parent. Mathematicians call this a tree-structured orga-
nization, because the relationships are organized like a tree with a trunk that
branches out into limbs that branch out into smaller limbs. Thus all relationships
in a hierarchical database are either one-to-one or one-to-many. Many-to-many
relationships are not used. (More on these kinds of relationships in a bit.)

A list of all the stuff that goes into building a finished product— a listing known
as a bill of materials, or BOM — is well suited for a hierarchical database. For exam-
ple, an entire machine is composed of assemblies, which are each composed of
subassemblies, and so on, down to individual components. As an example of such
an application, consider the mighty Saturn V Moon rocket that sent American
astronauts to the Moon in the late 1960s and early 1970s. Figure 1-1 shows a
 hierarchical diagram of major components of the Saturn V.

Three relationships can occur between objects in a database:

 » One-to-one relationship: One object of the first type is related to one
and only one object of the second type. In Figure 1-1, there are several exam-
ples of one-to-one relationships. One is the relationship between the S-2 stage
LOX tank and the aft LOX bulkhead. Each LOX tank has one and only one
aft LOX bulkhead, and each aft LOX bulkhead belongs to one and only
one LOX tank.

 » One-to-many relationship: One object of the first type is related to multiple
objects of the second type. In the Saturn V’s S-1C stage, the thrust structure
contains five F-1 engines, but each engine belongs to one and only one thrust
structure.

20 BOOK 1 SQL Concepts

FIGURE 1-1:
A hierarchical model of the Saturn V moon rocket.

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

CHAPTER 1 Understanding Relational Databases 21

 » Many-to-many relationship: Multiple objects of the first type are related to
multiple objects of the second type. This kind of relationship is not handled cleanly
by a hierarchical database. Attempts to do so tend to be kludgy. One example might
be two-inch hex-head bolts. These bolts are not considered to be uniquely identifi-
able, and any one such bolt is interchangeable with any other. An assembly might
use multiple bolts, and a bolt could be used in any of several different assemblies.

A great strength of the hierarchical model is its high performance. Because rela-
tionships between entities are simple and direct, retrievals from a hierarchical
database that are set up to take advantage of the way the data is structured can
be very fast. However, retrievals that don’t take advantage of the way the data is
structured are slow and sometimes can’t be made at all. It’s difficult to change the
structure of a hierarchical database to address new requirements. This structural
rigidity is the greatest weakness of the hierarchical model. Another problem with
the hierarchical model is the fact that, structurally, it requires a lot of redundancy,
as my next example makes clear.

First off, time to state the obvious: Not many organizations today are designing
rockets capable of launching payloads to the moon. The hierarchical model can
also be applied to more common tasks, however, such as tracking sales transac-
tions for a retail business. As an example, I use some sales transaction data from
Gentoo Joyce’s fictitious online store of penguin collectibles. She accepts PayPal,
MasterCard, Visa, and money orders and sells various items featuring depictions
of penguins of specific types — gentoo, chinstrap, and adelie.

As shown in Figure 1-2, customers who have made multiple purchases show up in
the database multiple times. For example, you can see that Lynne has purchased
with PayPal, MasterCard, and Visa. Because this is hierarchical, Lynne’s informa-
tion shows up multiple times, and so does the information for every customer who
has bought more than once. Product information shows up multiple times too.

This organization is actually more complex than what is shown in Figure 1-2.
Additional “trees” would hold the details about each customer and each product.
This duplicate data is a waste of storage space because one copy of a customer’s
data is sufficient, and so is one copy of product information.

Perhaps even more damaging than the wasted space that results from redun-
dant data is the possibility of data corruption. Whenever multiple copies of the
same data exist in a database, there is the potential for modification anomalies.
A modification anomaly is an inconsistency in the data after a modification is made.
Suppose you want to delete a customer who is no longer buying from you. If mul-
tiple copies of that customer’s data exist, you must find and delete all of them to
maintain data integrity. On a slightly more positive note, suppose you just want
to update a customer’s address information. If multiple copies of the customer’s
data exist, you must find and modify all of them in exactly the same way to main-
tain data integrity. This can be a time-consuming and error-prone operation.

22 BOOK 1 SQL Concepts

FIGURE 1-2:
A hierarchical model of a sales database for a retail business.

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

CHAPTER 1 Understanding Relational Databases 23

The network database model
The network model — the one that followed close upon the heels of the hierarchi-
cal, appearing as it did in 1969 — is almost the exact opposite of the hierarchical
model. Wanting to avoid the redundancy of the hierarchical model without sac-
rificing too much in the way of performance, the designers of the network model
opted for an architecture that does not duplicate items, but instead increases the
number of relationships associated with some items. Figure 1-3 shows this archi-
tecture for the same data that was shown in Figure 1-2.

As you can see in Figure 1-3, the network model does not have the tree structure
with one-directional flow characteristic of the hierarchical model. Looked at this
way, it shows very clearly that, for example, Lynne had bought multiple products,
but also that she has paid in multiple ways. There is only one instance of Lynne in
this model, compared to multiple instances in the hierarchical model. However,
to balance out that advantage, there are seven relationships connected to that one
instance of Lynne, whereas in the hierarchical model there are no more than three
relationships connected to any one instance of Lynne.

The network model eliminates redundancy, but at the expense of more compli-
cated relationships. This model can be better than the hierarchical model for some
kinds of data storage tasks, but worse for others. Neither one is consistently supe-
rior to the other.

The relational database model
In 1970, Edgar Codd of IBM published a paper introducing the relational database
model. Initially, database experts gave it little consideration. It clearly had an
advantage over the hierarchical model in that data redundancy was minimal; it
had an advantage over the network model with its relatively simple relationships.
However, it had what was perceived to be a fatal flaw. Due to the complexity of the
relational database engine that it required, any implementation would be much
slower than a comparable implementation of either the hierarchical or the net-
work model. As a result, it was almost ten years before the first implementation
of the relational database idea hit the market.

Moore’s Law had finally made relational database technology feasible. (In 1965,
Gordon Moore, one of the founders of Intel, noticed that the cost of computer
memory chips was dropping by half about every two years. He predicted that this
trend would continue. After over 50 years, the trend is still going strong, and
Moore’s prediction has been enshrined as an empirical law.)

24 BOOK 1 SQL Concepts

FIGURE 1-3:
A network model of transactions at an online store.

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

CHAPTER 1 Understanding Relational Databases 25

IBM delivered a relational DBMS (RDBMS) integrated into the operating system
of the System 38 computer server platform in 1978, and Relational Software, Inc.,
delivered the first version of Oracle — the granddaddy of all standalone relational
database management systems — in 1979.

Defining what makes a database relational
The original definition of a relational database specified that it must consist of
two-dimensional tables of rows and columns, where the cell at the intersection
of a row and column contains an atomic value (where atomic means not divisible
into subvalues). This definition is commonly stated by saying that a relational
database table may not contain any repeating groups. The definition also specified
that each row in a table be uniquely identifiable. Another way of saying this is that
every table in a relational database must have a primary key, which uniquely iden-
tifies a row in a database table. Figure 1-4 shows the structure of an online store
database, built according to the relational model.

The relational model introduced the idea of storing database elements in two-
dimensional tables. In the example shown in Figure 1-4, the Customer table con-
tains all the information about each customer; the Product table contains all the
information about each product, and the Transaction table contains all the infor-
mation about the purchase of a product by a customer. The idea of separating
closely related things from more distantly related things by dividing things up
into tables was one of the main factors distinguishing the relational model from
the hierarchical and network models.

Protecting the definition of relational
databases with Codd’s rules
As the relational model gained in popularity, vendors of database products that
were not really relational started to advertise their products as relational data-
base management systems. To fight the dilution of his model, Codd formulated
12 rules that served as criteria for determining whether a database product was in
fact relational. Codd’s idea was that a database must satisfy all 12 criteria in order
to be considered relational.

Codd’s rules are so stringent, that even today, there is not a DBMS on the market
that completely complies with all of them. However, they have provided a good
goal toward which database vendors strive.

26 BOOK 1 SQL Concepts

FIGURE 1-4:
A relational model of transactions at an online store.

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

CHAPTER 1 Understanding Relational Databases 27

Here are Codd’s 12 rules:

1. The information rule: Data can be represented only one way, as values in
column positions within rows of a table.

2. The guaranteed access rule: Every value in a database must be accessible by
specifying a table name, a column name, and a row. The row is specified by the
value of the primary key.

3. Systematic treatment of null values: Missing data is distinct from specific
values, such as zero or an empty string.

4. Relational online catalog: Authorized users must be able to access the
database’s structure (its catalog) using the same query language they use to
access the database’s data.

5. The comprehensive data sublanguage rule: The system must support at
least one relational language that can be used both interactively and within
application programs, that supports data definition, data manipulation, and
data control functions. Today, that one language is SQL.

6. The view updating rule: All views that are theoretically updatable must be
updatable by the system.

7. The system must support set-at-a-time insert, update, and delete
operations: This means that the system must be able to perform insertions,
updates, and deletions of multiple rows in a single operation.

8. Physical data independence: Changes to the way data is stored must not
affect the application.

9. Logical data independence: Changes to the tables must not affect the
application. For example, adding new columns to a table should not “break” an
application that accesses the original rows.

10. Integrity independence: Integrity constraints must be specified indepen-
dently from the application programs and stored in the catalog. (I say a lot
about integrity in Book 2, Chapter 3.)

11. Distribution independence: Distribution of portions of the database to
various locations should not change the way applications function.

12. The nonsubversion rule: If the system provides a record-at-a-time interface, it
should not be possible to use it to subvert the relational security or integrity
constraints.

28 BOOK 1 SQL Concepts

Over and above the original 12 rules, in 1990, Codd added one more rule:

Rule Zero: For any system that is advertised as, or is claimed to be, a relational
database management system, that system must be able to manage databases
entirely through its relational capabilities, no matter what additional capabilities
the system may support.

Rule Zero was in response to vendors of various database products who claimed
their product was a relational DBMS, when in fact it did not have full relational
capability.

Highlighting the relational database
model’s inherent flexibility
You might wonder why it is that relational databases have conquered the planet
and relegated hierarchical and network databases to niches consisting mainly of
legacy customers who have been using them for more than 40 years. It’s even
more surprising in light of the fact that when the relational model was first
 introduced, most of the experts in the field considered it to be utterly uncompeti-
tive with either the hierarchical or the network model.

One advantage of the relational model is its flexibility. The architecture of a
 relational database is such that it is much easier to restructure a relational data-
base than it is to restructure either a hierarchical or network database. This is a
tremendous advantage in dynamic business environments where requirements
are constantly changing.

The reason database practitioners originally dissed the relational model is because
the extra overhead of the relational database engine was sure to make any product
based on that model so much slower than either hierarchical or network data-
bases, as to be noncompetitive. As time has passed, Moore’s Law has nullified
that objection.

The object-oriented database model
Object-oriented database management systems (OODBMS) first appeared in
1980. They were developed primarily to handle nontext, nonnumeric data such
as graphical objects. A relational DBMS typically doesn’t do a good job with such
so-called complex data types. An OODBMS uses the same data model as object-
oriented programming languages such as Java, C++, and C#, and it works well with
such languages.

Although object-oriented databases outperform relational databases for selected
applications, they do not do as well in most mainstream applications, and have

U
nd

er
st

an
di

ng

Re
la

ti
on

al
 D

at
ab

as
es

CHAPTER 1 Understanding Relational Databases 29

not made much of a dent in the hegemony of the relational products. As a result,
I will not be saying anything more about OODBMS products.

The object-relational database model
An object-relational database is a relational database that allows users to create and
use new data types that are not part of the standard set of data types provided by
SQL. The ability of the user to add new types, called user-defined types, was added
to the SQL:1999 specification and is available in current implementations of IBM’s
DB2, Oracle, and Microsoft SQL Server.

Current relational database management systems are actually object-relational
database management systems rather than pure relational database management
systems.

The nonrelational NoSQL model
In contrast to the relational model, a nonrelational model has been gaining adher-
ents, particularly in the area of cloud computing, where databases are maintained
not on the local computer or local area network, but reside somewhere on the
Internet. This model, called the NoSQL model, is particularly appropriate for large
systems consisting of clusters of servers, accessed over the World Wide Web.
CouchDB and MongoDB are examples of DBMS products that follow this model.
The NoSQL model is not competitive with the SQL-based relational model for tra-
ditional reporting applications.

Why the Relational Model Won
Throughout the 1970s and into the 1980s, hierarchical- and network-based tech-
nologies were the database technologies of choice for large organizations. Oracle,
the first standalone relational database system to reach the market, did not appear
until 1979, and initially met with limited success.

For the following reasons, as well as just plain old inertia, relational databases
caught on slowly at first:

 » The earliest implementations of relational database management
systems were slow performers. This was due to the fact that they were
required to perform more computations than other database systems to
perform the same operation.

30 BOOK 1 SQL Concepts

 » Most business managers were reluctant to try something new when
they were already familiar with one or the other of the older
technologies.

 » Data and applications that already existed for an existing database
system would be very difficult to convert to work with a relational
DBMS. For most organizations with an existing hierarchical or network
database system, it would be too costly to make a conversion.

 » Employees would have to learn an entirely new way of dealing with
data. This would be very costly, too.

However, things gradually started to change.

Although databases structured according to the hierarchical and network models
had excellent performance, they were difficult to maintain. Structural changes to
a database took a high level of expertise and a lot of time. In many organizations,
backlogs of change requests grew from months to years. Department managers
started putting their work on personal computers rather than going to the cor-
porate IT department to ask for a change to a database. IT managers, fearing that
their power in the organization was eroding, took the drastic step of considering
relational technology.

Meanwhile, Moore’s Law was inexorably changing the performance situation. In
1965, Gordon Moore of Intel noted that about every 18 months to 2 years the price
of a bit in a semiconductor memory would be cut in half, and he predicted that
this exponential trend would continue. A corollary of the law is that for a given
cost, the performance of integrated circuit processors would double every 18 to
24 months. Both of these laws have held true for more than 50 years, although the
end of the trend is in sight. In addition, the capacities and performance of hard
disk storage devices have also improved at an exponential rate, paralleling the
improvement in semiconductor chips.

The performance improvements in processors, memories, and hard disks com-
bined to dramatically improve the performance of relational database systems,
making them more competitive with hierarchical and network systems. When this
improved performance was added to the relational architecture’s inherent advan-
tage in structural flexibility, relational database systems started to become much
more attractive, even to large organizations with major investments in legacy
systems. In many of these companies, although existing applications remained on
their current platforms, new applications and the databases that held their data
were developed using the new relational technology.

CHAPTER 2 Modeling a System 31

Modeling a System

SQL is the language that you use to create and operate on relational databases.
Before you can do that database creation, however, you must first create a
conceptual model of the system to be built. In order to have any hope of

developing a database system that delivers the results, performance, and reliabil-
ity that the users need, you must understand, in a highly detailed way, what those
needs are. Your understanding of the users’ needs enables you to create a model
of what they have in mind.

After perfecting the model through much dialog with the user, you need to trans-
late the model into something that can be implemented with a relational database.
This chapter takes you through the steps of taking what might be a vague and
fuzzy idea in the minds of the users and transforming it into something that can
be converted directly into a robust and high-performance database.

Capturing the Users’ Data Model
The whole purpose of a database is to hold useful data and enable one or more
people to selectively retrieve and use the data they want. Generally, before a data-
base project is begun, interested parties have some idea of what data they want to
store, and what subsets of the data they are likely to want to retrieve. More often

Chapter 2

IN THIS CHAPTER

 » Picturing how to grab the data you
want to grab

 » Mapping your data retrieval strategy
onto a relational model

 » Using Entity-Relationship diagrams to
visualize what you want

 » Understanding the relational
database hierarchy

32 BOOK 1 SQL Concepts

than not, people’s ideas of what should be included in the database and what they
want to get out of it are not terribly precise. Nebulous as they may be, the concepts
each interested party may have in mind comes from her own data models. When
all those data models from various users are combined, they become one (huge)
data model.

To have any hope of building a database system that meets the needs of the users,
you must understand this collective data model. In the text that follows, I give you
some tips for finding and querying the people who will use the database, prioritiz-
ing requested features, and getting support from stakeholders.

Beyond understanding the data model, you must help to clarify it so that it can
become the basis for a useful database system. In the “Translating the Users’ Data
Model to a Formal Entity-Relationship Model” section that follows this one, I tell
you how to do that.

Identifying and interviewing stakeholders
The first step in discovering the users’ data model is to find out who the users are.
Perhaps several people will interact directly with the system. They, of course, are
very interested parties. So are their supervisors, and even higher management.

But identifying the database users goes beyond the people who actually sit in
front of a PC and run your database application. A number of other people usually
have a stake in the development effort. If the database is going to deal with cus-
tomer or vendor information, the customers and vendors are probably stakehold-
ers, too. The IT department — the folks responsible for keeping systems up and
running — is also a major stakeholder. There may be others, such as owners or
major stockholders in the company. All of these people are sure to have an image
in their mind of what the system ought to be. You need to find these people, inter-
view them, and find out how they envision the system, how they expect it to be
maintained, and what they want it to produce.

If the functions to be performed by the new system are already being performed,
by either a manual system or an obsolete computerized system, you can ask the
users to explain how their current system works. You can then ask them what they
like about the current system and what they don’t like. What is the motivation
for moving to a new system? What desirable features are missing from what they
have now? What annoying aspects of the current system are frustrating them? Try
to gain as complete an understanding of the current situation as possible.

M
od

el
in

g
a

Sy
st

em

CHAPTER 2 Modeling a System 33

Reconciling conflicting requirements
Just as the set of stakeholders will be diverse, so will their ideas of what the sys-
tem should be and do. If such ideas are not reconciled, you are sure to have a
disaster on your hands. You run the risk of developing a system that is not satis-
factory to anybody.

It is your responsibility as the database developer to develop a consensus. You are
the only independent, outside party who does not have a personal stake in what
the system is and does. As part of your responsibility, you’ll need to separate the
stated requirements of the stakeholders into three categories, as follows:

 » Mandatory: A feature that is absolutely essential falls into this category. The
system would be of limited value without it.

 » Significant: A feature that is important and that adds greatly to the value of
the system belongs in this category.

 » Optional: A feature that would be nice to have, but is not actually needed,
falls into this category.

Once you have appropriately categorized the want lists of the stakeholders, you
are in a position to determine what is really required, and what is possible within
the allotted budget and development time. Now comes the fun part. You must
convince all the stakeholders that their cherished features that fall into the third
category (optional), must be deleted or changed if they conflict with someone
else’s first-category or second-category feature. Of course, politics also intrudes
here. Some stakeholders have more clout than others. You must be sensitive to
this. Sometimes the politically acceptable solution is not exactly the same as the
technically optimal solution.

Obtaining stakeholder buy-in
One way or another, you will have to convince all the stakeholders to agree on one
set of features that will be included in the system you are planning to build. This
is critical. If the system does not adequately meet the needs of all those for whom
it is being built, it is not a success. You must get the agreement of everyone that
the system you propose meets their needs. Get it in writing. Enumerate everything
that will be provided in a formal Statement of Requirements, and then have every
stakeholder sign off on it. This will potentially save you from much grief later on.

34 BOOK 1 SQL Concepts

Translating the Users’ Data Model to a
Formal Entity-Relationship Model

After you outline a coherent users’ data model in a clear, concise, concrete form,
the real work begins. Somehow, you must transform that model into a relational
model that serves as the basis for a database. In most cases, a users’ data model
is not in a form that can be directly translated into a relational model. A help-
ful technique is to first translate it into one of several formal modeling systems
that clarify the various entities in the users’ model and the relationships between
them. Probably the most popular of those formal modeling techniques is the
Entity-Relationship (ER) model. Although there are other formal modeling sys-
tems, I focus on the ER model because it is the most widespread and thus easily
understood by most database professionals.

Graphing tools — Microsoft Visio, for example — make provision for drawing
representations of an ER model. I guess I am old fashioned in that I prefer to draw
them by hand on paper with a pencil. This gives me a little more flexibility in how
I arrange the elements and how I represent them.

DATABASE DEVELOPERS ARE LIKE
ARMY DOCTORS
Battleground field hospitals make use of a technique called triage to allocate their lim-
ited resources in the most beneficial way. When people are brought in for treatment,
they are examined to determine the extent of their injuries. After the examination, each
is placed into one of three categories:

• The person has critical wounds and must receive treatment immediately or he
will die.

• The person has serious wounds, but they are not immediately life-threatening. The
doctors can afford to let this person wait while patients with more serious injuries
are treated.

• The person is so badly wounded that no treatment available will save her.

Patients in the first category are treated immediately. Patients in the second category
are treated as soon as circumstances permit. Patients in the third category are made as
comfortable as possible, but treated only for pain.

M
od

el
in

g
a

Sy
st

em

CHAPTER 2 Modeling a System 35

SQL is the international standard language for communicating with relational
databases. Before you can fully appreciate SQL, you must understand the structure
of well-designed relational databases. In order to design a relational database
properly — in hopes that it will be reliable as well as giving the level of perfor-
mance you need — you must have a good understanding of database structure.
This is best achieved through database modeling, and the most widely used model
is the Entity-Relationship model.

Entity-Relationship modeling techniques
In 1976, six years after Dr. Codd published the relational model, Dr. Peter Chen
published a paper in the reputable journal ACM Transactions on Database Systems,
introducing the Entity-Relationship (ER) model, which represented a conceptual
breakthrough because it provided a means to translate a users’ data model into a
relational model.

Back in 1976, the relational model was still nothing more than a theoretical con-
struct. It would be three more years before the first standalone relational database
product (Oracle) appeared on the market.

The ER model was an important factor in turning theory into practice because one
of the strengths of the ER model is its generality. ER models can represent a wide
variety of different systems. For example, an ER model can represent a physical
system as big and complex as a fleet of cruise ships, or as small as the collection
of livestock maintained by a gentleman farmer on his two acres of land.

Any Entity-Relationship model, big or small, consists of four major components:
entities, attributes, identifiers, and relationships. I examine each one of these
concepts in turn.

Entities
Dictionaries tell you that an entity is something that has a distinct, separate
existence. It could be a material entity, such as the Great Pyramid of Giza, or an
abstract entity, such as a tetrahedron. Just about any distinct, separate thing that
you can think of qualifies as being an entity. When used in a database context, an
entity is something that the user can identify and that she wants to keep track of.

A group of entities with common characteristics is called an entity class. Any one
example of an entity class is an entity instance. A common example of an entity
class for most organizations is the EMPLOYEE entity class. An example of an
instance of that entity class is a particular employee, such as Duke Kahanamoku.

36 BOOK 1 SQL Concepts

In the previous paragraph, I spell out EMPLOYEE with all caps. This is a conven-
tion that I will follow throughout this book so that you can readily identify entities
in the ER model. I follow the same convention when I refer to the tables in the
relational model that correspond to the entities in the ER model. Other sources of
information on relational databases that you read may use all lowercase for enti-
ties, or an initial capital letter followed by lowercase letters. There is no standard.
The database management systems that will be processing the SQL that is based
on your models do not care about capitalization. Agreeing to a standard is meant
to reduce confusion among the people dealing with the models and with the code
generated based on those models — the models themselves don’t care.

Attributes
Entities are things that users can identify and want to keep track of. However, the
users probably don’t want to use up valuable storage space keeping track of every
conceivable aspect of an entity. Some aspects are of more interest than others. For
example, in the EMPLOYEE model, you probably want to keep track of such things
as first name, last name, and job title. You probably do not want to keep track of
the employee’s favorite surfboard manufacturer or favorite musical group.

In database-speak, aspects of an entity are referred to as attributes. Figure 2-1
shows an example of an entity class — including the kinds of attributes you’d
expect someone to highlight for this particular (EMPLOYEE) entity class.
Figure 2-2 shows an example of an instance of the EMPLOYEE entity class. EmpID,
FirstName, LastName, and so on are attributes.

Identifiers
In order to do anything meaningful with data, you must be able to distinguish one
piece of data from another. That means each piece of data must have an identify-
ing characteristic that is unique. In the context of a relational database, a “piece
of data” is a row in a two-dimensional table. For example, if you were to construct

FIGURE 2-1:
EMPLOYEE,

an example of
an entity class.

M
od

el
in

g
a

Sy
st

em

CHAPTER 2 Modeling a System 37

an EMPLOYEE table using the handy EMPLOYEE entity class and attributes spelled
out back in Figure 2-1, the row in the table describing Duke Kahanamoku would be
the piece of data, and the EmpID attribute would be the identifier for that row. No
other employee will have the same EmpID as the one that Duke has.

In this example, EmpID is not just an identifier — it is a unique identifier. There is
one and only one EmpID that corresponds to Duke Kahanamoku. Nonunique iden-
tifiers are also possible. For example, a FirstName of Duke does not uniquely iden-
tify Duke Kahanamoku. There might be another employee named Duke — Duke
Snyder, let’s say. Having an attribute such as EmpID is a good way to guarantee
that you are getting the specific employee you want when you search the database.

Another way, however, is to use a composite identifier, which is a combination of
several attributes that together are sufficient to uniquely identify a record. For
example, the combination of FirstName and LastName would be sufficient to dis-
tinguish Duke Kahanamoku from Duke Snyder, but would not be enough to dis-
tinguish him from his father, who, let’s say, has the same name and is employed
at the same company. In such a case, a composite identifier consisting of First-
Name, LastName, and BirthDate would probably suffice.

Relationships
Any nontrivial relational database contains more than one table. When you have
more than one table, the question arises as to how the tables relate to each other.
A company might have an EMPLOYEE table, a CUSTOMER table, and a PRODUCT
table. These become related when an employee sells a product to a customer. Such
a sales transaction can be recorded in a TRANSACTION table. Thus the EMPLOYEE,
CUSTOMER, and PRODUCT tables are related to each other via the TRANSACTION
table. Relationships such as these are key to the way relational databases operate.
Relationships can differ in the number of entities that they relate.

FIGURE 2-2:
Duke

 Kahanamoku,
an example of
an instance of

the EMPLOYEE
entity class.

38 BOOK 1 SQL Concepts

DEGREE-TWO RELATIONSHIPS

Degree-two relationships are ones that relate one entity directly to one other entity.
EMPLOYEE is related to TRANSACTION by a degree-two relationship, also called a
binary relationship. CUSTOMER is also related to TRANSACTION by a binary rela-
tionship, as is PRODUCT. Figure 2-3 shows a diagram of a degree-two relationship.

Degree-two relationships are the simplest possible relationships, and happily,
just about any system that you are likely to want to model consists of entities
connected by degree-two relationships, although more complex relationships are
possible.

There are three kinds of binary (degree-two) relationships:

 » One-to-one (1:1) relationship: Relates one instance of one entity class (a
group of entities with common characteristics) to one instance of a second
entity class.

 » One-to-many (1:N) relationship: Relates one instance of one entity class to
multiple instances of a second entity class.

 » Many-to-many (N:M) relationship: Relates multiple instances of one entity
class to multiple instances of a second entity class.

Figure 2-4 is a diagram of a one-to-one relationship between a person and that
person’s driver’s license. A person can have one and only one driver’s license,
and a driver’s license can apply to one and only one person. This database would
contain a PERSON table and a LICENSE table (both are entity classes), and the
Duke Snyder instance of the PERSON table has a one-to-one relationship with the
OR31415927 instance of the LICENSE table.

Figure 2-5 is a diagram of a one-to-many relationship between the PERSON
entity class and the traffic violation TICKET entity class. A person can be served
with multiple tickets, but a ticket can apply to one and only one person.

FIGURE 2-3:
An EMPLOYEE:
TRANSACTION

relationship.

M
od

el
in

g
a

Sy
st

em

CHAPTER 2 Modeling a System 39

When this part of the ER model is translated into database tables, there will be
a row in the PERSON table for each person in the database. There could be zero,
one, or multiple rows in the TICKET table corresponding to each person in the
PERSON table.

Figure 2-6 is a diagram of a many-to-many relationship between the STUDENT
entity class and the COURSE entity class, which holds the route a person takes on
her drive to work. A person can take one of several routes from home to work, and
each one of those routes can be taken by multiple people.

Many-to-many relationships can be very confusing and are not well represented
by the two-dimensional table architecture of a relational database. Consequently,
such relationships are almost always converted to simpler one-to-many relation-
ships before they are used to build a database.

COMPLEX RELATIONSHIPS

Degree-three relationships are possible, but rarely occur in practice. Relationships
of degree higher than three probably mean that you need to redesign your system

FIGURE 2-4:
A one-to-one
relationship

between PERSON
and LICENSE.

FIGURE 2-5:
A one-to-many

relationship
between PERSON

and TICKET.

FIGURE 2-6:
A many-
to-many

 relationship
between

STUDENT and
COURSE.

40 BOOK 1 SQL Concepts

to use simpler relationships. An example of a degree-three relationship is the
relationship between a musical composer, a lyricist, and a song. Figure 2-7 shows
a diagram of this relationship.

Although it is possible to build a system with such relationships, it is probably
better in most cases to restructure the system in terms of binary relationships.

Drawing Entity-Relationship diagrams
I’ve always found it easier to understand relationships between things if I see
a diagram instead of merely looking at sentences describing the relationships.
Apparently a lot of other people feel the same way; systems represented by the
Entity-Relationship model are universally depicted in the form of diagrams. A few
simple examples of such ER diagrams, as I refer to them, appear in the previous
section. In this section, I introduce some concepts that add detail to the diagrams.

One of those concepts is cardinality. In mathematics, cardinality is the num-
ber of elements in a set. In the context of relational databases, a relationship
between two tables has two cardinalities of interest: the cardinality — number
of elements — associated with the first table and the cardinality — you guessed
it, the number of elements — associated with the second table. We look at these
cardinalities two primary ways: maximum cardinality and minimum cardinality,
which I tell you about in the following sections. (Cardinality only becomes truly
important when you are dealing with queries that pull data from multiple tables.
I discuss such queries in Book 3, Chapters 3 and 4.)

FIGURE 2-7:
The COMPOSER:
SONG: LYRICIST

relationship.

M
od

el
in

g
a

Sy
st

em

CHAPTER 2 Modeling a System 41

Maximum cardinality
The maximum cardinality of one side of a relationship shows the largest number of
entity instances that can be on that side of the relationship.

For example, the ER diagram’s representation of maximum cardinality is shown
back in Figures 2-4, 2-5, and 2-6. The diamond between the two entities in the
relationship holds the two maximum cardinality values. Figure 2-4 shows a one-
to-one relationship. In the example, a person is related to that person’s driver’s
license. One driver can have at most one license, and one license can belong at
most to one driver. The maximum cardinality on both sides of the relationship
is one.

Figure 2-5 illustrates a one-to-many relationship. When relating a person to the
tickets he has accumulated, each ticket belongs to one and only one driver, but a
driver may have more than one ticket. The number of tickets above one is inde-
terminate, so it is represented by the variable N.

Figure 2-6 shows a many-to-many relationship. The maximum cardinality on
the STUDENT side is represented by the variable N, and the maximum cardinal-
ity on the COURSE side is represented by the variable M because although both
the number of students and the number of courses are more than one, they are
not necessarily the same. You might have 350 different students that take any of
45 courses, for example.

Minimum cardinality
Whereas the maximum cardinality of one side of a relationship shows the largest
number of entity instances that can be on that side of the relationship, the mini-
mum cardinality shows the least number of entity instances that can be on that side
of the relationship. In some cases, the least number of entity instances that can be
on one side of a relationship can be zero. In other cases, the minimum cardinality
could be one or more.

Refer to the relationship in Figure 2-4 between a person and that person’s driver’s
license. The minimum cardinalities in the relationship depend heavily on subtle
details of the users’ data model. Take the case where a person has been a licensed
driver, but due to excessive citations, his driver’s license has been revoked. The
person still exists, but the license does not. If the users’ data model stipulates that
the person is retained in the PERSON table, but the corresponding row is removed
from the LICENSE table, the minimum cardinality on the PERSON side is one,
and the minimum cardinality on the LICENSE side is zero. Figure 2-8 shows how
minimum cardinality is represented in this example.

42 BOOK 1 SQL Concepts

The slash mark on the PERSON side of the diagram denotes a minimum cardi-
nality of mandatory, meaning at least one instance must exist. The oval on the
LICENSE side denotes a minimum cardinality of optional, meaning at least one
instance need not exist.

For this one-to-one relationship, a given person can correspond to at most one
license, but may correspond to none. A given license must correspond to one
person.

If only life were that simple . . . Remember that I said that minimum cardinal-
ity depends subtly on the users’ data model? What if the users’ data model were
slightly different, based on another possible case? Suppose a person has a very
good driving record and a valid driver’s license in her home state of Washington.
Next, suppose that she accepts a position as a wildlife researcher on a small island
that has no roads and no cars. She is no longer a driver, but her license will remain
valid until it expires in a few years. This is the reverse case of what is shown in
Figure 2-8; a license exists, but the corresponding driver does not (at least as far
as the state of Washington is concerned). Figure 2-9 shows this situation.

The lesson to take home from this example is that minimum cardinality is often
difficult to determine. You’ll need to question the users very carefully and explore
unusual cases such as those cited previously before deciding how to model mini-
mum cardinality.

FIGURE 2-8:
ER diagram

 showing
 minimum

 cardinality, where
a person must

exist, but his
corresponding

license need
not exist.

FIGURE 2-9:
ER diagram

 showing
 minimum

 cardinality, where
a license must

exist, but its
corresponding

person need
not exist.

M
od

el
in

g
a

Sy
st

em

CHAPTER 2 Modeling a System 43

If the minimum cardinality of one side of a relationship is mandatory, that means
the cardinality of that side is at least one, but might be more. Suppose, for exam-
ple, you were modeling the relationship between a basketball team in a city league
and its players. A person cannot be a basketball player in the league and thus in
the database unless she is a member of a basketball team in the league, so the
minimum cardinality on the TEAM side is mandatory, and in fact is one. This
assumes that the users’ data model states that a player cannot be a member of
more than one team. Similarly, it is not possible for a basketball team to exist in
the database unless it has at least five players. This means that the minimum car-
dinality on the PLAYER side is also mandatory, but in this case is five. Once again,
depending on the users’ data model, the rule might be that a team cannot exist
in the database unless it has at least five players. The minimum cardinality of the
PLAYER side of the relationship is five.

Primarily, you are interested in whether the minimum cardinality on a side of
a relationship is either mandatory or optional and less interested in whether a
mandatory minimum cardinality has a value of one or more than one. The differ-
ence between mandatory and optional is the difference between whether an entity
exists or not. The difference between existence and nonexistence is substantial. In
contrast, the difference between one and five is just a matter of degree. Both cases
refer to a mandatory minimum cardinality. For most applications, the difference
between one mandatory value and another does not matter.

Understanding advanced
ER model concepts
In the previous sections of this chapter, I talk about entities, relationships, and
cardinality. I point out that subtle differences in the way users model their system
can modify the way minimum cardinality is modeled. These concepts are a good
start, and are sufficient for many simple systems. However, more complex situa-
tions are bound to arise. These call for extensions of various sorts to the ER model.
To limber up your brain cells so you can tackle such complexities, take a look at a
few of these situations and the extensions to the ER model that have been created
to deal with them.

Strong entities and weak entities
All entities are not created equal. Some are stronger than others. An entity that
does not depend on any other entity for its existence is considered a strong entity.
Consider the sample ER model in Figure 2-10. All the entities in this model are
strong, and I tell you why in the paragraphs that follow.

44 BOOK 1 SQL Concepts

To get this “depends on” business straight, do a bit of a thought experiment. First,
consider maximum cardinality. A customer (whose data lies in the CUSTOMER
table) can make multiple purchases, each one recorded on a sales order (the details
of which show up in the SALES_ORDER table). A SALESPERSON can make mul-
tiple sales, each one recorded on a SALES_ORDER. A SALES_ORDER can include
multiple PRODUCTs, and a PRODUCT can appear on multiple SALES_ORDERs.

Minimum cardinality may be modeled a variety of ways, depending on how the
users’ data model views things. For example, a person might be considered a cus-
tomer (someone whose data appears in the CUSTOMER table) even before she
buys anything because the store received her information in a promotional cam-
paign. An employee might be considered a salesperson as soon as he is hired,
even though he hasn’t sold anything yet. A sales order might exist before it lists
any products, and a product might exist on the shelves before any of them have
been sold. According to this model, all the minimum cardinalities are optional.
A different users’ data model could mandate that some of these relationships be
mandatory.

In a model such as the one described, where all the minimum cardinalities are
optional, none of the entities depends on any of the other entities for its existence.
A customer can exist without any associated sales orders. An employee can exist
without any associated sales orders. A product can exist without any associated
sales orders. A sales order can exist in the order pad without any associated cus-
tomer, salesperson, or product. In this arrangement, all these entities are classi-
fied as strong entities. They all have an independent existence. Strong entities are
represented in ER diagrams as rectangles with sharp corners.

Not all entities are strong, however. Consider the case shown in Figure 2-11. In
this model, a driver’s license cannot exist unless the corresponding driver exists.

FIGURE 2-10:
The ER model

for a retail
 transaction

database.

M
od

el
in

g
a

Sy
st

em

CHAPTER 2 Modeling a System 45

The license is existence-dependent upon the driver. Any entity that is existence-
dependent on another entity is a weak entity. In an ER diagram, a weak entity
is represented with a box that has rounded corners. The diamond that shows
the relationship between a weak entity and its corresponding strong entity also
has rounded corners. Figure 2-11 shows this representation.

ID-dependent entities
A weak entity cannot exist without a relationship to a strong entity. A special case
of a weak entity is one that depends on a strong entity not only for its existence,
but also for its identity — this is called an ID-dependent entity. One example of
an ID-dependent entity is a seat on an airliner flight. Figure 2-12 illustrates the
relationship.

A seat number, for example 23-A, does not completely identify an airline seat.
However, seat 23-A on Hawaiian Airlines flight 25 from PDX to HNL, on May 2,
2019, does completely identify a particular seat that a person can reserve. Those
additional pieces of information are all attributes of the FLIGHT entity — the
strong entity without whose existence the weak SEAT entity would basically be
just a gleam in someone’s eye.

Supertype and subtype entities
In some databases, you may find some entity classes that might actually share
attributes with other entity classes, instead of being as dissimilar as customers
and products. One example might be an academic community. There are a num-
ber of people in such a community: students, faculty members, and nonacademic
staff. All those people share some attributes, such as name, home address, home

FIGURE 2-11:
A PERSON:

LICENSE
 relationship,

showing
LICENSE as a
weak entity.

FIGURE 2-12:
The SEAT is

ID-dependent
on FLIGHT via

the FLIGHT: SEAT
relationship.

46 BOOK 1 SQL Concepts

telephone number, and email address. However, there are also attributes that are
not shared. A student would also have attributes of grade point average, class
standing, and advisor. A faculty member would have attributes of department,
academic rank, and phone extension. A staff person would have attributes of job
category, job title, and phone extension.

You can create an ER model of this academic community by making STUDENT,
FACULTY, and STAFF all subtypes of the supertype COMMUNITY. Figure 2-13 shows
the relationships.

Supertype/subtype relationships borrow the concept of inheritance from object-
oriented programming. The attributes of the supertype entity are inherited by
the subtype entities. Each subtype entity has additional attributes that it does not
necessarily share with the other subtype entities. In the example, everyone in
the community has a name, a home address, a telephone number, and an email
address. However, only students have a grade point average, an advisor, and a
class standing. Similarly, only a faculty member can have an academic rank, and
only a staff member can have a job title.

Some aspects of Figure 2-13 require a little additional explanation. The ε next to
each relationship line signifies that the lower entity is a subtype of the higher
entity, so STUDENT, FACULTY, and STAFF are subtypes of COMMUNITY. The
curved arc with a number 1 at the right end represents the fact that every member
of the COMMUNITY must be a member of one of the subtype entities. In other
words, you cannot be a member of the community unless you are either a student,

FIGURE 2-13:
The COMMUNITY
supertype entity

with STUDENT,
FACULTY, and

STAFF subtype
entities.

M
od

el
in

g
a

Sy
st

em

CHAPTER 2 Modeling a System 47

or a faculty member, or a staff member. It is possible in some models that an
element could be a member of a supertype without being a member of any of the
subtypes. However, that is not the case for this example.

The supertype and subtype entities in the ER model correspond to supertables
and subtables in a relational database. A supertable can have multiple subtables
and a subtable can also have multiple supertables. The relationship between a
supertable and a subtable is always one-to-one. The supertable/subtable rela-
tionship is created with an SQL CREATE command. I give an example of an ER
model that incorporates a supertype/subtype structure later in this chapter.

Incorporating business rules
Business rules are formal statements about how an organization does business.
They typically differ from one organization to another. For example, one uni-
versity may have a rule that a faculty member must hold a PhD degree. Another
university could well have no such rule.

Sometimes you may not find important business rules written down anywhere.
They may just be things that everyone in the organization understands. It is
important to conduct an in-depth interview of everyone involved to fish out any
business rules that people failed to mention when the job of creating the database
was first described to you.

A simple example of an ER model
In this section, as an example, I apply the principles of ER models to a hypotheti-
cal web-based business named Gentoo Joyce that sells apparel items with penguin
motifs, such as T-shirts, scarves, and dresses. The business displays its products
and takes credit card orders on its website. There is no brick and mortar store.
Fulfillment is outsourced to a fulfillment house, which receives and warehouses
products from vendors, and then, upon receiving orders from Gentoo Joyce, ships
the orders to customers.

The website front end consists of pages that include descriptions and pictures of
the products, a shopping cart, and a form for capturing customer and payment
information. The website back end holds a database that stores customer, trans-
action, inventory, and order shipment status information. Figure 2-14 shows an
ER diagram of the Gentoo Joyce system. It is an example typical of a boutique
business.

Gentoo Joyce buys goods and services from three kinds of vendors: product sup-
pliers, web hosting services, and fulfillment houses. In the model, VENDOR is a
supertype of SUPPLIER, HOST, and FULFILLMENT_HOUSE. Some attributes are

48 BOOK 1 SQL Concepts

shared among all the vendors; these are assigned to the VENDOR entity. Other
attributes are not shared and are instead attributes of the subtype entities.

This is only one of several possible models for the Gentoo Joyce business. Another
possibility would be to include all providers in a VENDOR entity with more
attributes. A third possibility would be to have no VENDOR entity, but separate
SUPPLIER and FULFILLMENT_HOUSE entities, and to just consider a host as a
supplier.

A many-to-many relationship exists between SUPPLIER and PRODUCT because a
supplier may provide more than one product, and a given product may be supplied
by more than one supplier. Similarly, any given product will (hopefully) appear
on multiple orders, and an order may include multiple products. Such many-to-
many relationships can be problematic. I discuss how to handle such problems in
Book 2.

The other relationships in the model are one-to-many. A customer can place
many orders, but each order comes from one and only one customer. A fulfillment
house can stock multiple products, but each product is stocked by one and only
one fulfillment house.

A slightly more complex example
The Gentoo Joyce system that I describe in the preceding section is an easy-to-
understand example, similar to what you often find in database textbooks. Most
real-world systems are much more complex. I don’t try to show a genuine,
real-world system here, but to move at least one step in that direction, I model
the fictitious Clear Creek Medical Clinic (CCMC). As I discuss in Book 2 as well as
earlier in this chapter, one of the first things to do when assigned the project of
creating a database for a client is to interview everyone who has a stake in the
system, including management, users, and anyone else who has a say in how
things are run. Listen carefully to these people and discern how they model in
their minds the system they envision. Find out what information they need to
capture and what they intend to do with it.

CCMC employs doctors, nurses, medical technologists, medical assistants, and
office workers. The company provides medical, dental, and vision benefits to
employees and their dependents. The doctors, nurses, and medical technologists
must all be licensed by a recognized licensing authority. Medical assistants may be
certified, but need not be. Neither licensure nor certification is required of office
workers.

M
od

el
in

g
a

Sy
st

em

CHAPTER 2 Modeling a System 49

Typically, a patient will see a doctor, who will examine the patient, and then order
one or more tests. A medical assistant or nurse may take samples of the patient’s
blood, urine, or both, and take the samples to the laboratory. In the lab, a medi-
cal technologist performs the tests that the doctor has ordered. The results of the
tests are sent to the doctor who ordered them, as well as to perhaps one or more
consulting physicians. Based on the test results, the primary doctor, with input
from the consulting physicians, makes a diagnosis of the patient’s condition and
prescribes a treatment. A nurse then administers the prescribed treatment.

FIGURE 2-14:
An ER diagram of a small, web-based retail business.

50 BOOK 1 SQL Concepts

Based on the descriptions of the envisioned system, as described by the interested
parties (called stakeholders), you can come up with a proposed list of entities.
A good first shot at this is to list all the nouns that were used by the people you
interviewed. Many of these will turn out to be entities in your model, although
you may end up classifying some of those nouns as attributes of entities. For this
example, say you generated the following list:

Employee

Office worker

Doctor (physician)

Nurse

Medical technologist

Medical assistant

Benefits

Dependents

Patients

Doctor’s license

Nurse’s license

Medical technologist’s
license

Medical assistant’s
certificate

Examination

Test order

Test

Test result

Consultation

Diagnosis

Prescription

Treatment

In the course of your interviews of the stakeholders, you found that one of the
categories of things to track is employees, but there are several different employee
classifications. You also found that there are benefits, and those benefits apply to
dependents as well as to employees. From this, you conclude that EMPLOYEE is an
entity and it is a supertype of the OFFICE_WORKER, DOCTOR, NURSE, MEDTECH,
and MEDASSIST entities. A DEPENDENT entity also should fit into the picture
somewhere.

Although doctors, nurses, and medical technologists all must have current valid
licenses, because a license applies to one and only one professional and each pro-
fessional has one and only one license, it makes sense for those licenses to be
attributes of their respective DOCTOR, NURSE, and MEDTECH entities rather than
to be entities in their own right. Consequently, there is no LICENSE entity in the
CCMC ER model.

PATIENT clearly should be an entity, as should EXAMINATION, TEST, TESTORDER,
and RESULT. CONSULTATION, DIAGNOSIS, PRESCRIPTION, and TREATMENT also
deserve to stand on their own as entities.

M
od

el
in

g
a

Sy
st

em

CHAPTER 2 Modeling a System 51

After you have decided what the entities are, you can start thinking about how they
relate to each other. You may be able to model each relationship in one of several
ways. This is where the interviews with the stakeholders are critical. The model
you arrive at must be consistent with the organization’s business rules, both those
written down somewhere and those that are understood by everyone, but not usu-
ally talked about. Figure 2-15 shows one possible way to model this system.

From this diagram, you can extract certain facts:

 » An employee can have zero, one, or multiple dependents, but each depen-
dent is associated with one and only one employee. (Business rule: If both
members of a married couple work for the clinic, for insurance purposes, the
dependents are associated with only one of them.)

 » An employee must be either an office worker, a doctor, a nurse, a medical
technologist, or a medical assistant. (Business rule: An office worker cannot,
for example, also be classified as a medical assistant. Only one job classifica-
tion is permitted.)

FIGURE 2-15:
The ER diagram
for Clear Creek
Medical Clinic.

52 BOOK 1 SQL Concepts

 » A doctor can perform many examinations, but each examination is performed
by one and only one doctor. (Business rule: If more than one doctor is present
at a patient examination, only one of them takes responsibility for the
examination.)

 » A doctor can issue many test orders, but each test order can specify one and
only one test.

 » A medical assistant or a nurse can collect multiple specimens from a patient,
but each specimen is from one and only one patient.

 » A medical technologist can perform multiple tests on a specimen, and each
test can be applied to multiple specimens.

 » A test may have one of several results; for example, positive, negative, below
normal, normal, above normal, as well as specific numeric values. However,
each such result applies to one and only one test.

 » A test result can be sent to one or more doctors. A doctor can receive many
test results.

 » A doctor may request a consultation with one or more other doctors.

 » A doctor may make a diagnosis of a patient’s condition, based on test results
and possibly on one or more consultations.

 » A diagnosis could suggest one or more prescriptions.

 » A doctor can write many prescriptions, but each prescription is written by one
and only one doctor for one and only one patient.

 » A doctor may order a treatment, to be administered to a patient by a nurse.

Often after drawing an ER diagram, and then determining all the things that the
diagram implies by compiling a list such as that given here, the designer finds
missing entities or relationships, or realizes that the model does not accurately
represent the way things are actually done in the organization. Creating the model
is an iterative process of progressively modifying the diagram until it reflects the
desired system as closely as possible. (Iterative here meaning doing it over and
over again until you get it right — or as right as it will ever be.)

Problems with complex relationships
The Clear Creek Medical Clinic example in the preceding section contains
some many-to-many relationships, such as the relationship between TEST and
 SPECIMEN. Multiple tests can be run on a single specimen, and multiple speci-
mens, taken from multiple patients, can all be run through the same test.

M
od

el
in

g
a

Sy
st

em

CHAPTER 2 Modeling a System 53

That all sounds quite reasonable, but in point of fact there’s a bit of a problem
when it comes to storing the relevant information. If the TEST entity is translated
into a table in a relational database, how many columns should be set aside for
specimens? Because you don’t know how many specimens a test will include, and
because the number of specimens could be quite large, it doesn’t make sense to
allocate space in the TEST table to show that the test was performed on a partic
ular specimen.

Similarly, if the SPECIMEN entity is translated into a table in a relational data
base, how many columns should you set aside to record the tests that might be
performed on it? It doesn’t make sense to allocate space in the SPECIMEN table
to hold all the tests that might be run on it if no one even knows beforehand how
many tests you may end up running. For these reasons, it is common practice
to convert a manytomany relationship into two onetomany relationships,
both connected to a new entity that lies between the original two. You can make
that conversion with no loss of accuracy, and the problem of how to store things
disappears. In Book 2, I go into detail on how to make this conversion.

Simplifying relationships using
normalization
Even after you have eliminated all the manytomany relationships in an ER
model, there can still be problems if you have not conceptualized your entities in
the simplest way. The next step in the design process is to examine your model
and see if adding, changing, or deleting data can cause inconsistencies or even
outright wrong information to be retained in your database. Such problems are
called anomalies, and if there’s even a slight chance that they’ll crop up, you’ll
need to adjust your model to eliminate them. This process of model adjustment is
called normalization, and I cover it in Book 2.

Translating an ER model into
a relational model
After you’re satisfied that your ER model is not only correct, but economical and
robust, the next step is to translate it into a relational model. The relational model
is the basis for all relational database management systems. I go through that
translation process in Book 2.

