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Preface

The motivation for writing this book is twofold. On the one hand, we provide a teaching tool for advanced

courses in communications systems. On the other hand, we present a collection of fundamental algo-

rithms and structures useful as an in-depth reference for researchers and engineers. The contents reflect

our experience in teaching university courses on algorithms for telecommunications, as well as our

professional experience acquired in industrial research laboratories.

The text illustrates the steps required for solving problems posed by the design of systems for reli-

able communications over wired or wireless channels. In particular, we have focused on fundamental

developments in the field in order to provide the reader with the necessary insight to design practical

systems.

The second edition of this book has been enriched by new solutions in fields of application and stan-

dards that have emerged since the first edition of 2002. To name one, the adoption of multiple antennas

in wireless communication systems has received a tremendous impulse in recent years, and an entire

chapter is now dedicated to this topic. About error correction, polar codes have been invented and are

considered for future standards. Therefore, they also have been included in this new book edition. On

the standards side, cellular networks have evolved significantly, thus we decided to dedicate a large part

of a chapter to the new fifth-generation (5G) of cellular networks, which is being finalized at the time of

writing. Moreover, a number of transmission techniques that have been designed and studied for appli-

cation to 5G systems, with special regard to multi-carrier transmission, have been treated in this book.

Lastly, many parts have been extensively integrated with new material, rewritten, and improved, with

the purpose of illustrating to the reader their connection with current research trends, such as advances

in machine learning.



�

� �

�



�

� �

�

Acknowledgements

We gratefully acknowledge all who have made the realization of this book possible. In particular, the

editing of the various chapters would never have been completed without the contributions of numerous

students in our courses on Algorithms for Telecommunications. Although space limitations preclude

mentioning them all by name, we nevertheless express our sincere gratitude. We also thank Christian

Bolis and Chiara Paci for their support in developing the software for the book, Charlotte Bolliger and

Lilli M. Pavka for their assistance in administering the project, and Urs Bitterli and Darja Kropaci for

their help with the graphics editing. For text processing, also for the Italian version, the contribution of

Barbara Sicoli and Edoardo Casarin was indispensable; our thanks also go to Jane Frankenfield Zanin

for her help in translating the text into English. We are pleased to thank the following colleagues for

their invaluable assistance throughout the revision of the book: Antonio Assalini, Leonardo Bazzaco,

Paola Bisaglia, Matthieu Bloch, Alberto Bononi, Alessandro Brighente, Giancarlo Calvagno, Giulio

Colavolpe, Roberto Corvaja, Elena Costa, Daniele Forner, Andrea Galtarossa, Antonio Mian, Carlo

Monti, Ezio Obetti, Riccardo Rahely, Roberto Rinaldo, Antonio Salloum, Fortunato Santucci, Andrea

Scaggiante, Giovanna Sostrato, and Luciano Tomba. We gratefully acknowledge our colleague and

mentor Jack Wolf for letting us include his lecture notes in the chapter on channel codes. We also

acknowledge the important contribution of Ingmar Land on writing the section on polar codes. An

acknowledgement goes also to our colleagues Werner Bux and Evangelos Eleftheriou of the IBM

Zurich Research Laboratory, and Silvano Pupolin of the University of Padova, for their continuing

support. Finally, special thanks go to Hideki Ochiai of Yokohama National University and Jinhong

Yuan of University of New South Wales for hosting Nevio Benvenuto in the Fall 2018 and Spring 2019,

respectively: both colleagues provided an ideal setting for developing the new book edition.



�

� �

�

xxviii Acknowledgements

To make the reading of the adopted symbols easier, the Greek alphabet is reported below.

The Greek alphabet

𝛼 A alpha 𝜈 N nu

𝛽 B beta 𝜉 Ξ xi

𝛾 Γ gamma o O omicron

𝛿 Δ delta 𝜋 Π pi

𝜖, 𝜀 E epsilon 𝜌, 𝜚 P rho

𝜁 Z zeta 𝜎, 𝜍
∑

sigma

𝜂 H eta 𝜏 T tau

𝜃, 𝜗 Θ theta 𝜐 Y upsilon

𝜄 I iota 𝜙, 𝜑 Φ phi

𝜅 K kappa 𝜒 X chi

𝜆 Λ lambda 𝜓 Ψ psi

𝜇 M mu 𝜔 Ω omega



�

� �

�

Chapter 1

Elements of signal theory

In this chapter, we recall some concepts on signal theory and random processes. For an in-depth study,

we recommend the companion book [1]. First, we introduce various forms of the Fourier transform.

Next, we provide the complex representation of passband signals and their baseband equivalent. We will

conclude with the study of random processes, with emphasis on the statistical estimation of first- and

second-order ergodic processes, i.e. periodogram, correlogram, auto-regressive (AR), moving-average

(MA), and auto-regressive moving average (ARMA) models.

1.1 Continuous-time linear systems

A time-invariant continuous-time continuous-amplitude linear system, also called analog filter, is rep-

resented in Figure 1.1, where x and y are the input and output signals, respectively, and h denotes the

filter impulse response.

x(t)
h

y(t)

Figure 1.1 Analog filter as a time-invariant linear system with continuous domain.

The output at a certain instant t ∈ ℝ, where ℝ denotes the set of real numbers, is given by the convo-

lution integral

y(t) = ∫
∞

−∞
h(t − 𝜏) x(𝜏) d𝜏 = ∫

∞

−∞
h(𝜏) x(t − 𝜏) d𝜏 (1.1)

denoted in short

y(t) = x ∗ h(t) (1.2)

We also introduce the Fourier transform of the signal x(t), t ∈ ℝ,

( f ) =  [x(t)] = ∫
+∞

−∞
x(t) e−j2𝜋 ft dt f ∈ ℝ (1.3)

where j =
√
−1. The inverse Fourier transform is given by

x(t) = ∫
∞

−∞
( f ) e j2𝜋ft df (1.4)

Algorithms for Communications Systems and their Applications, Second Edition.

Nevio Benvenuto, Giovanni Cherubini, and Stefano Tomasin.

© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
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2 Chapter 1. Elements of signal theory

In the frequency domain, (1.2) becomes

(f ) = (f ) (f ), f ∈ ℝ (1.5)

where  is the filter frequency response. The magnitude of the frequency response, |(f )|, is usually

called magnitude response or amplitude response.

General properties of the Fourier transform are given in Table 1.1,1 where we use two important

functions

step function: 1(t) =
{

1 t > 0

0 t < 0
(1.6)

sign function: sgn(t) =
{

1 t > 0

−1 t < 0
(1.7)

Moreover, we denote by 𝛿(t) the Dirac impulse or delta function,

𝛿(t) = d1(t)
dt

(1.8)

where the derivative is taken in the generalized sense.

Definition 1.1
We introduce two functions that will be extensively used:

rect(f ) =

{
1 | f | < 1

2
0 elsewhere

(1.9)

sinc(t) = sin(𝜋t)
𝜋t

(1.10)

The following relation holds

 [sinc(Ft)] = 1

F
rect

(
f
F

)

(1.11)

as illustrated in Figure 1.2. ◽

Further examples of signals and relative Fourier transforms are given in Table 1.2.

We reserve the notation H(s) to indicate the Laplace transform of h(t), t ∈ ℝ:

H(s) = ∫
+∞

−∞
h(t)e−stdt (1.12)

with s complex variable; H(s) is also called the transfer function of the filter. A class of functions H(s)
often used in practice is characterized by the ratio of two polynomials in s, each with a finite number of

coefficients.

It is easy to observe that if the curve s = j2𝜋f in the s-plane belongs to the convergence region of the

integral in (1.12), then (f ) is related to H(s) by

(f ) = H(s)|s=j2𝜋f (1.13)

1.2 Discrete-time linear systems

A discrete-time time-invariant linear system, with sampling period Tc, is shown in Figure 1.3, where x(k)
and y(k) are, respectively, the input and output signals at the time instant kTc, k ∈ ℤ, where ℤ denotes

1 x∗ denotes the complex conjugate of x, while Re(x) and Im(x) denote, respectively, the real and imaginary part of x.
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Table 1.1: Some general properties of the Fourier transform.

property signal Fourier transform
x(t) (f )

linearity a x(t) + b y(t) a (f ) + b (f )

duality (t) x(−f )

time inverse x(−t) (−f )

complex conjugate x∗(t) ∗(−f )

real part Re[x(t)] = x(t) + x∗(t)
2

1

2
[(f ) + ∗(−f )]

imaginary part Im[x(t)] = x(t) − x∗(t)
2j

1

2j
[(f ) − ∗(−f )]

time scaling x(at), a ≠ 0
1

|a|

(

f
a

)

time shift x(t − t0) e−j2𝜋f t0 (f )

frequency shift x(t) ej2𝜋f0 t (f − f0)

modulation x(t) cos(2𝜋f0t + 𝜑) 1

2
[ej𝜑(f − f0) + e−j𝜑(f + f0)]

x(t) sin(2𝜋f0t + 𝜑) 1

2j
[ej𝜑(f − f0) − e−j𝜑(f + f0)]

Re[x(t) ej(2𝜋f0 t+𝜑)] 1

2
[ej𝜑(f − f0) + e−j𝜑∗(−f − f0)]

differentiation
d
dt

x(t) j2𝜋f (f )

integration ∫
t

−∞
x(𝜏) d𝜏 = 1 ∗ x(t) 1

j2𝜋f
(f ) + (0)

2
𝛿(f )

convolution x ∗ y(t) (f ) (f )

correlation [x(𝜏) ∗ y∗(−𝜏)](t) (f ) ∗(f )

product x(t) y(t)  ∗ (f )

real signal x(t) = x∗(t) (f ) = ∗(−f ),  Hermitian,

Re[(f )] even, Im[(f )] odd,

|(f )|2 even

imaginary signal x(t) = −x∗(t) (f ) = −∗(−f )

real and even signal x(t) = x∗(t) = x(−t) (f ) = ∗(f ) = (−f ),

 real and even

real and odd signal x(t) = x∗(t) = −x(−t) (f ) = −∗(f ) = −(−f ),

 imaginary and odd

Parseval theorem Ex = ∫
+∞

−∞
|x(t)|2 dt = ∫

+∞

−∞
|(f )|2 df = E

Poisson sum formula

+∞∑

k=−∞
x(kTc) =

1

Tc

+∞∑

𝓁=−∞

(

𝓁
Tc

)
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1/F·rect(f/F)

F/2−F/2

1/F

f0

−1/F

sinc(tF)

t1/F

1

2/F−2/F 3/F−3/F 4/F−4/F 0

Figure 1.2 Example of signal and Fourier transform pair.

Tc Tc

y(k)
h

x(k)

Figure 1.3 Discrete-time linear system (filter).

the set of integers. We denote by {x(k)} or {xk} the entire discrete-time signal, also called sequence. The

impulse response of the system is denoted by {h(k)}, k ∈ ℤ, or more simply by h.

The relation between the input sequence {x(k)} and the output sequence {y(k)} is given by the con-

volution operation:

y(k) =
+∞∑

n=−∞
h(k − n)x(n) (1.14)

denoted as y(k) = x ∗ h(k). In the discrete time, the delta function is simply the Kronecker impulse

𝛿n = 𝛿(n) =
{

1 n = 0

0 n ≠ 0
(1.15)

Here are some definitions holding for time-invariant linear systems.

The system is causal (anticausal) if h(k) = 0, k < 0 (if h(k) = 0, k > 0).
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Table 1.2: Examples of Fourier transform signal pairs.

signal Fourier transform
x(t) ( f )
𝛿(t) 1

1 (constant) 𝛿(f )
ej2𝜋f0 t 𝛿(f − f0)

cos(2𝜋f0t) 1

2
[𝛿(f − f0) + 𝛿(f + f0)]

sin(2𝜋f0t) 1

2j
[𝛿(f − f0) − 𝛿(f + f0)]

1(t) 1

2
𝛿(f ) + 1

j2𝜋f
sgn(t) 1

j𝜋f
rect

( t
T

)
T sinc(f T)

sinc
( t

T

)
T rect(fT)

(

1 − |t|
T

)

rect
( t

2T

)
Tsinc2(fT)

e−at 1(t), a > 0
1

a + j2𝜋f

t e−at 1(t), a > 0
1

(a + j2𝜋f )2

e−a|t|, a > 0
2a

a2 + (2𝜋f )2

e−at2

, a > 0

√
𝜋

a
e−𝜋

𝜋

a
f 2

The transfer function of the filter is defined as the z-transform2 of the impulse response h, given by

H(z) =
+∞∑

k=−∞
h(k)z−k (1.16)

Let the frequency response of the filter be defined as

(f ) =  [h(k)] =
+∞∑

k=−∞
h(k)e−j2𝜋fkTc = H(z)z=ej2𝜋f Tc (1.17)

The inverse Fourier transform of the frequency response yields

h(k) = Tc ∫
+ 1

2Tc

− 1

2Tc

(f )ej2𝜋fkTc df (1.18)

We note the property that, for x(k) = bk, where b is a complex constant, the output is given by

y(k) = H(b) bk. In Table 1.3, some further properties of the z-transform are summarized.

For discrete-time linear systems, in the frequency domain (1.14) becomes

(f ) = (f )(f ) (1.19)

where all functions are periodic of period 1∕Tc.

2 Sometimes the D transform is used instead of the z-transform, where D = z−1, and H(z) is replaced by

h(D) =
∑+∞

k=−∞ h(k)Dk .
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Table 1.3: Properties of the z-transform.

property sequence z transform
x(k) X(z)

linearity ax(k) + by(k) aX(z) + bY(z)
time shift x(k − m) z−mX(z)
complex conjugate x∗(k) X∗(z∗)

time inverse x(−k) X
(

1

z

)

x∗(−k) X∗
(

1

z∗

)

z-domain scaling a−kx(k) X(az)
convolution x ∗ y(k) X(z)Y(z)

correlation x ∗ (y∗(−m))(k) X(z)Y∗
(

1

z∗

)

real sequence x(k) = x∗(k) X(z) = X∗(z∗)

Example 1.2.1
A fundamental example of z-transform is that of the sequence:

h(k) =
{

ak k ≥ 0

0 k < 0
, |a| < 1 (1.20)

Applying the transform (1.16), we find

H(z) = 1

1 − az−1
(1.21)

defined for |az−1| < 1 or |z| > |a|.

Example 1.2.2
Let q(t), t ∈ ℝ, be a continuous-time signal with Fourier transform (f ), f ∈ ℝ. We now consider the

sequence obtained by sampling q, that is

hk = q(kTc), k ∈ ℤ (1.22)

Using the Poisson formula of Table 1.1, we have that the Fourier transform of the sequence {hk} is

related to (f ) by

(f ) =  [hk] = H (ej2𝜋f Tc ) = 1

Tc

∞∑

𝓁=−∞

(

f − 𝓁
1

Tc

)

(1.23)

Definition 1.2
Let us introduce the useful pulse with parameter N, a positive integer number,

sincN(a) =
1

N
sin(𝜋a)

sin
(
𝜋

a
N

) (1.24)

and sincN(0) = 1. The pulse is periodic with period N (2N) if N is odd (even). For N, very large sincN(a)
approximates sinc(a) in the range |a|≪ N∕2. ◽



�

� �

�

1.2. Discrete-time linear systems 7

Example 1.2.3
For the signal

hk =
{

1 k = 0, 1,… ,N − 1

0 otherwise
(1.25)

with sampling period Tc, it is

(f ) = e−j2𝜋f N−1

2
Tc N sincN(f NTc) (1.26)

Discrete Fourier transform

For a sequence with a finite number of samples, {gk}, k = 0, 1,… ,N − 1, the Fourier transform becomes

(f ) =
N−1∑

k=0

gke−j2𝜋fkTc (1.27)

Evaluating (f ) at the points f = m∕(NTc), m = 0, 1,… ,N − 1, and setting m = (m∕(NTc)), we

obtain:

m =
N−1∑

k=0

gkWkm
N , WN = e−j 2𝜋

N (1.28)

The sequence {m}, m = 0, 1,… ,N − 1, is called the discrete Fourier transform (DFT) of {gk}, k =
0, 1,… ,N − 1. The inverse of (1.28) is given by

gk =
1

N

N−1∑

m=0

mW−km
N , k = 0, 1,… ,N − 1 (1.29)

We note that, besides the factor 1∕N, the expression of the inverse DFT (IDFT) coincides with that of

the DFT, provided W−1
N is substituted with WN .

We also observe that the direct computation of (1.28) requires N(N − 1) complex additions and N2

complex multiplications; however, the algorithm known as fast Fourier transform (FFT) computes the

DFT by N log2 N complex additions and
(

N
2

log2 N − N
)

complex multiplications.3

A simple implementation is also available when the DFT size is an integer power of some numbers

(e.g. 2, 3, and 5). The efficient implementation of a DFT with length power of n (2, 3, and 5) is denoted as

radix-n FFT. Moreover, if the DFT size is the product of integer powers of these numbers, the DFT can

be implemented as a cascade of FFTs. In particular, by letting M = 2𝛼2 , L = 3𝛼3 ⋅ 5𝛼5 , the DFT of size

N = LM can be implemented as the cascade of L M-size DFTs, the multiplication by twiddle factors

(operating only on the phase of the signal) and an L-size DFT. Applying again the same approach to

the inner M-size DFT, we obtain that the N-size DFT is the cascade of 2𝛼2 FFTs of size 3𝛼3 5𝛼5 , each

implemented by 3𝛼3 FFTs of size 5𝛼5 .

The DFT operator

The DFT operator can be expressed in matrix form as

F =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 … 1

1 WN W2
N … W (N−1)

N

1 W2
N W4

N … W2(N−1)
N

⋮ ⋮ ⋮ ⋱ ⋮

1 W (N−1)
N W (N−1)2

N … W (N−1)(N−1)
N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.30)

3 The computational complexity of the FFT is often expressed as N log
2

N.
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with elements [F]i,n = Win
N , i, n = 0, 1,… ,N − 1. The inverse operator (IDFT) is given by4

F−1 = 1

N
F∗ (1.31)

We note that F = FT and (1∕
√

N)F is a unitary matrix.5

The following property holds: if C is a right circulant square matrix, i.e. its rows are obtained by

successive shifts to the right of the first row, then FCF−1 is a diagonal matrix whose elements are given

by the DFT of the first row of C. This property is exploited in the most common modulation scheme

(see Chapter 8).

Introducing the vector formed by the samples of the sequence {gk}, k = 0, 1,… ,N − 1,

gT = [g0, g1,… , gN−1] (1.32)

and the vector of its transform coefficients

T = [0,1,… ,N−1] = DFT[g] (1.33)

from (1.28) we have

 = Fg (1.34)

Moreover, based on (1.31), we obtain

g = 1

N
F∗ (1.35)

Circular and linear convolution via DFT

Let the two sequences x and h have a finite support of Lx and N samples, respectively, (see Figure 1.4)

with Lx > N:

x(k) = 0 k < 0 k > Lx − 1 (1.36)

and

h(k) = 0 k < 0 k > N − 1 (1.37)

We define the periodic signals of period L,

xrepL
(k) =

+∞∑

𝓁=−∞
x(k − 𝓁L), hrepL

(k) =
+∞∑

𝓁=−∞
h(k − 𝓁L) (1.38)

Lx – 1 k0 k

h(k)x(k)

0 1 N – 1

Figure 1.4 Time-limited signals: {x(k)}, k = 0, 1,… ,Lx − 1, and {h(k)}, k = 0, 1,… ,N − 1.

4 T stands for transpose and H for transpose complex conjugate or Hermitian.
5 A square matrix A is unitary if AHA = I, where I is the identity matrix, i.e. a matrix for which all elements are zero

except the elements on the main diagonal that are all equal to one.
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where in order to avoid time aliasing, it must be

L ≥ max{Lx,N} (1.39)

Definition 1.3
The circular convolution between x and h is a periodic sequence of period L defined as

y(circ)(k) = h
L
⊗ x(k) =

L−1∑

i=0

hrepL
(i) xrepL

(k − i) (1.40)

with main period corresponding to k = 0, 1,… ,L − 1. ◽

Then, if we indicate with {m}, {m}, and { (circ)
m }, m = 0, 1,… ,L − 1, the L-point DFT of sequences

x, h, and y(circ), respectively, we obtain

 (circ)
m = mm, m = 0, 1,… ,L − 1 (1.41)

In vector notation (1.33), (1.41) becomes6


(circ) =

[ (circ)
0

, (circ)
1

,… , (circ)
L−1

]T
= diag {DFT[x]} (1.42)

where  is the column vector given by the L-point DFT of the sequence h, completed with L − N zeros.

We are often interested in the linear convolution between x and h given by (1.14):

y(k) = x ∗ h(k) =
N−1∑

i=0

h(i)x(k − i) (1.43)

whose support is k = 0, 1,… ,Lx + N − 2.

We give below two relations between the circular convolution y(circ) and the linear convolution y.

Relation 1. For

L ≥ Lx + N − 1 (1.44)

by comparing (1.43) with (1.40), the two convolutions y(circ) and y coincide only for the instants

k = 0, 1,… ,L − 1, i.e.

y(k) = y(circ)(k), k = 0, 1,… ,L − 1 (1.45)

To compute the convolution between the two finite-length sequences x and h, (1.44) and (1.45) require

that both sequences be completed with zeros (zero padding) to get a length of L = Lx + N − 1 samples.

Then, taking the L-point DFT of the two sequences, performing the product (1.41), and taking the inverse

transform of the result, one obtains the desired linear convolution.

Relation 2. For L = Lx > N, the two convolutions y(circ) and y coincide only for the instants k = N − 1,

N,… ,L − 1, i.e.

y(circ)(k) = y(k) only for k = N − 1,N,… ,L − 1 (1.46)

An example of circular convolution is provided in Figure 1.5. Indeed, the result of circular convolution

coincides with {y(k)}, output of the linear convolution, only for a delay k such that it is avoided the

product between non-zero samples of the two periodic sequences hrepL
and xrepL

, indicated by • and ⚬,

respectively. This is achieved only for k ≥ N − 1 and k ≤ L − 1.

6 The notation diag{𝒗} denotes a diagonal matrix whose elements on the diagonal are equal to the elements of the vector

𝒗.
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hrep L(i) xrep L(k–i)

ii0 N – 1 L – 1 k– (L–1) k

Figure 1.5 Illustration of the circular convolution operation between {x(k)}, k = 0, 1,… ,L − 1, and
{h(k)}, k = 0, 1,… ,N − 1.

Relation 3. A relevant case wherein the cyclic convolution is equivalent to the linear convolution

requires a special structure of the sequence x. Consider x(cp), the extended sequence of x, obtained by

partially repeating x with a cyclic prefix of Ncp samples:

x(cp)(k) =
{

x(k) k = 0, 1,… ,Lx − 1

x(Lx + k) k = −Ncp,… ,−2,−1
(1.47)

Let y(cp) be the linear convolution between x(cp) and h, with support {−Ncp,… ,Lx + N − 2}. If

Ncp ≥ N − 1, we have

y(cp)(k) = y(circ)(k), k = 0, 1,… ,Lx − 1 (1.48)

Let us define

z(k) =
{

y(cp)(k) k = 0, 1,… ,Lx − 1

0 elsewhere
(1.49)

then from (1.48) and (1.41) the following relation between the corresponding Lx–point DFTs is obtained:

m = mm, m = 0, 1,… ,Lx − 1 (1.50)

Convolution by the overlap-save method

For a very long sequence x, the application of (1.46) leads to the overlap-save method to determine

the linear convolution between x and h (with L = Lx > N). It is not restrictive to assume that the first

(N − 1) samples of the sequence {x(k)} are zero. If this were not True, it would be sufficient to shift

the input by (N − 1) samples. A fast procedure to compute the linear convolution {y(k)} for instants

k = N − 1,N,… ,L − 1, operates iteratively and processes blocks of L samples, where adjacent blocks

are overlapping by (N − 1) samples. The procedure operates the following first iteration:7

1. Loading

h′T = [h(0), h(1),… , h(N − 1),

L−N zeros

⏞⏞⏞

0,… , 0] (1.51)

x′T = [x(0), x(1),… , x(N − 1), x(N),… , x(L − 1)] (1.52)

in which we have assumed x(k) = 0, k = 0, 1,… ,N − 2.

7 In this section, the superscript ′ indicates a vector of L elements.
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2. Transform

′ = DFT[h′] vector (1.53)


′ = diag{DFT[x′]} matrix (1.54)

3. Matrix product


′ = 
′
′ vector (1.55)

4. Inverse transform

y′T = DFT−1[ ′T ] = [

N−1 terms

⏞⏞⏞

♯,… , ♯ , y(N − 1), y(N),… , y(L − 1)] (1.56)

where the symbol ♯ denotes a component that is neglected.

The second iteration operates on load

x′T = [x((L − 1) − (N − 2)),… , x(2(L − 1) − (N − 2))] (1.57)

and the desired output samples will be

y(k) k = L,… , 2(L − 1) − (N − 2) (1.58)

The third iteration operates on load

x′T = [x(2(L − 1) − 2(N − 2)),… , x(3(L − 1) − 2(N − 2))] (1.59)

and will yield the desired output samples

y(k) k = 2(L − 1) − (N − 2) + 1,… , 3(L − 1) − 2(N − 2) (1.60)

The algorithm proceeds iteratively until the entire input sequence is processed.

IIR and FIR filters

An important class of linear systems is identified by the input–output relation

p∑

n=0

𝚊ny(k − n) =
q∑

n=0

𝚋nx(k − n) (1.61)

where we will set 𝚊0 = 1 without loss of generality.

If the system is causal, (1.61) becomes

y(k) = −
p∑

n=1

𝚊ny(k − n) +
q∑

n=0

𝚋nx(k − n) k ≥ 0 (1.62)

and the transfer function for such system is

H(z) = Y(z)
X(z)

=
∑q

n=0
𝚋nz−n

1 +
∑p

n=1
𝚊nz−n

=
𝚋0

∏q
n=1

(1 − znz−1)
∏p

n=1
(1 − pnz−1)

(1.63)

where {zn} and {pn} are, respectively, the zeros and poles of H(z). Equation (1.63) generally defines an

infinite impulse response (IIR) filter. In the case in which 𝚊n = 0, n = 1, 2,… , p, (1.63) reduces to

H(z) =
q∑

n=0

𝚋nz−n (1.64)
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Table 1.4: Impulse responses of systems having the same magnitude of
the frequency response.

h(0) h(1) h(2) h(3) h(4)
h1 (minimum phase) 0.9e−j1.57 0 0 0.4e−j0.31 0.3e−j0.63

h2 (maximum phase) 0.3ej0.63 0.4ej0.31 0 0 0.9ej1.57

h3 (general case) 0.7e−j1.57 0.24ej2.34 0.15e−j1.66 0.58e−j0.51 0.4e−j0.63

and we obtain a finite impulse response (FIR) filter, with h(n) = 𝚋n, n = 0, 1,… , q. To get the impulse

response coefficients, assuming that the z-transform H(z) is known, we can expand H(z) in partial frac-

tions and apply the linear property of the z-transform (see Table 1.3, page 6). If q < p, and assuming

that all poles are distinct, we obtain

H(z) =
p∑

n=1

rn

1 − pnz−1
=⇒ h(k) =

⎧
⎪
⎨
⎪
⎩

p∑

n=1

rnpk
n k ≥ 0

0 k < 0

(1.65)

where

rn = H(z)
[
1 − pnz−1

]|
|
|z=pn

(1.66)

We give now two definitions.

Definition 1.4
A causal system is stable (bounded input-bounded output stability) if |pn| < 1, ∀n. ◽

Definition 1.5
The system is minimum phase (maximum phase) if |pn| < 1 and |zn| ≤ 1 (|pn| > 1 and |zn| > 1),

∀n. ◽

Among all systems having the same magnitude response |(ej2𝜋f Tc )|, the minimum (maximum) phase

system presents a phase8 response, arg (ej2𝜋f Tc ), which is below (above) the phase response of all other

systems.

Example 1.2.4
It is interesting to determine the phase of a system for a given impulse response. Let us consider the

system with transfer function H1(z) and impulse response h1(k) shown in Figure 1.6a. After determining

the zeros of the transfer function, we factorize H1(z) as follows:

H1(z) = 𝚋0

4∏

n=1

(1 − znz−1) (1.67)

As shown in Figure 1.6a, H1(z) is minimum phase. We now observe that the magnitude of the

frequency response does not change if 1∕z∗n is replaced with zn in (1.67). If we move all the zeros

outside the unit circle, we get a maximum-phase system H2(z) whose impulse response is shown

in Figure 1.6b. A general case, that is a transfer function with some zeros inside and others outside

the unit circle, is given in Figure 1.6c. The coefficients of the impulse responses h1, h2, and h3 are

given in Table 1.4. The coefficients are normalized so that the three impulse responses have equal

energy.

8 For a complex number c, arg c denotes the phase of c.
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Figure 1.6 Impulse response magnitudes and zero locations for three systems having the same
frequency response magnitude. (a) Minimum-phase system, (b) maximum-phase system, and (c)
general system.

We define the partial energy of a causal impulse response as

E(k) =
k∑

i=0

|h(i)|2 (1.68)

Comparing the partial-energy sequences for the three impulse responses of Figure 1.6, one finds that the

minimum (maximum) phase system yields the largest (smallest) {E(k)}. In other words, the magnitude
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(a)

(c) (d)

(e)

0 f

ff

f f

│ ( f )│

│ (f)││ ( f )│

│ ( f )│ │ ( f )│

(b)

f10

0 0

0f2

f2 f1

f1 f2

Figure 1.7 Classification of real valued analog filters on the basis of the support of |(f )|. (a)
f1 = 0, f2 <∞: lowpass filter (LPF). (b) f1 > 0, f2 = ∞: highpass filter (HPF). (c) f1 > 0, f2 <∞:
passband filter (PBF). (d) B = f2 − f1 ≪ (f2 + f1)∕2: narrowband filter (NBF). (e) f1 = 0, f2 = ∞:
allpass filter (APF).

of the frequency responses being equal, a minimum (maximum) phase system concentrates all its energy

on the first (last) samples of the impulse response.

Extending our previous considerations also to IIR filters, if h1 is a causal minimum-phase filter, i.e.

H1(z) = Hmin(z) is a ratio of polynomials in z−1 with poles and zeros inside the unit circle, then Hmax(z) =
K H∗

min

(
1

z∗

)
, where K is a constant, is an anticausal maximum-phase filter, i.e. Hmax(z) is a ratio of

polynomials in z with poles and zeros outside the unit circle.

In the case of a minimum-phase FIR filter with impulse response hmin(n), n = 0, 1,… , q,

H2(z) = z−q H∗
min

(
1

z∗

)
is a causal maximum-phase filter. Moreover, the relation {h2(n)} = {h∗

1
(q − n)},

n = 0, 1,… , q, is satisfied. In this text, we use the notation {h2(n)} = {hB∗
1
(n)}, where B is the backward

operator that orders the elements of a sequence from the last to the first.

In Appendix 1.A multirate transformations for systems are described, in which the time domain of the

input is different from that of the output. In particular, decimator and interpolator filters are introduced,

together with their efficient implementations.

1.3 Signal bandwidth
Definition 1.6
The support of a signal x(𝜉), 𝜉 ∈ ℝ, is the set of values 𝜉 ∈ ℝ for which |x(𝜉)| ≠ 0. ◽

Let us consider a filter with impulse response h and frequency response . If h assumes real val-

ues, then  is Hermitian, (−f ) = ∗(f ), and |(f )| is an even function. Depending on the support
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(a)

(c)

(b)

ff

f

│ (f)│ │ (f)│

│ (f)│

f1 f1f2 f20 0

f3f1 f4f2 0

Figure 1.8 Classification of complex-valued analog filters on the basis of support of |(f )|. (a)
−∞ < f1 ≤ 0, 0 < f2 <∞: lowpass filter. (b) f1 > 0, f2 < ∞: passband filter. (c) f1 > −∞, f2 < 0,
f3 > 0, f4 <∞: passband filter.

of |(f )|, the classification of Figure 1.7 is usually done. If h assumes complex values, the terminology

is less standard. We adopt the classification of Figure 1.8, in which the filter is a lowpass filter (LPF) if

the support |(f )| includes the origin; otherwise, it is a passband filter (PBF).

Analogously, for a signal x, we will use the same denomination and we will say that x is a base-

band (BB) or passband (PB) signal depending on whether the support of |(f )|, f ∈ ℝ, includes or not

the origin.

Definition 1.7
In general, for a real-valued signal x, the set of positive frequencies such that |(f )| ≠ 0 is called pass-
band or simply band :

 = {f ≥ 0 ∶ |(f )| ≠ 0} (1.69)

As |(f )| is an even function, we have |(−f )| ≠ 0, f ∈ . We note that  is equivalent to the support

of  limited to positive frequencies. The bandwidth of x is given by the measure of :

B = ∫
df (1.70)

In the case of a complex-valued signal x,  is equivalent to the support of  , and B is thus given by the

measure of the entire support. ◽

Observation 1.1
The signal bandwidth may also be given different practical definitions. Let us consider an LPF having

frequency response (f ). The filter gain 0 is usually defined as 0 = |(0)|; other definitions of gain

refer to the average gain of the filter in the passband , or as maxf |(f )|. We give the following four

definitions for the bandwidth B of h:

(a) First zero:

B = min{f > 0 ∶ (f ) = 0} (1.71)

(b) Based on amplitude, bandwidth at A dB:

B = max

{

f > 0 ∶
|(f )|
0

= 10
− A

20

}

(1.72)

Typically, A = 3, 40, or 60.
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(c) Based on energy, bandwidth at p%:

∫
B

0

|(f )|2df

∫
∞

0

|(f )|2df
=

p
100

(1.73)

Typically, p = 90 or 99.

(d) Equivalent noise bandwidth:

B =
∫

∞

0

|(f )|2df

2
0

(1.74)

Figure 1.9 illustrates the various definitions for a particular |(f )|. For example, with regard to the

signals of Figure 1.7, we have that for an LPF B = f2, whereas for a PBF B = f2 − f1.

For discrete-time filters, for which  is periodic of period 1∕Tc, the same definitions hold, with the

caution of considering the support of |(f )| within a period, let us say between −1∕(2Tc) and 1∕(2Tc).
In the case of discrete-time highpass filters (HPFs), the passband will extend from a certain frequency

f1 to 1∕(2Tc).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

f (Hz)

|H
(f

)| 
 (

dB
)

B3dB

Breq

B40dB

B50dB

Bz

BE (p = 90)

BE (p = 99)

Figure 1.9 The real signal bandwidth following the definitions of (1) bandwidth at first zero:
Bz = 0.652 Hz; (2) amplitude-based bandwidth: B3 dB = 0.5 Hz, B40 dB = 0.87 Hz, B50 dB = 1.62 Hz;
(3) energy-based bandwidth: BE(p=90) = 1.362 Hz, BE(p=99) = 1.723 Hz; (4) equivalent noise
bandwidth: Breq = 0.5 Hz.
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The sampling theorem

As discrete-time signals are often obtained by sampling continuous-time signals, we will state the fol-

lowing fundamental theorem.

Theorem 1.1 (Sampling theorem)
Let q(t), t ∈ ℝ be a continuous-time signal, in general complex-valued, whose Fourier transform (f )
has support within an interval  of finite measure B0. The samples of the signal q, taken with period Tc
as represented in Figure 1.10a,

hk = q(kTc) (1.75)

univocally represent the signal q(t), t ∈ ℝ, under the condition that the sampling frequency 1∕Tc satisfies

the relation
1

Tc
≥ B0 (1.76)

q(t) kTc

Tc

(a) (b)

hk hk

Tc

gI

q(t)

Figure 1.10 Operation of (a) sampling and (b) interpolation.
◽

For the proof, which is based on the relation (1.23) between a signal and its samples, we refer the

reader to [2].

B0 is often referred to as the minimum sampling frequency. If 1∕Tc < B0 the signal cannot be perfectly

reconstructed from its samples, originating the so-called aliasing phenomenon in the frequency-domain

signal representation.

In turn, the signal q(t), t ∈ ℝ, can be reconstructed from its samples {hk} according to the scheme of

Figure 1.10b, where it is employed an interpolation filter having an ideal frequency response given by

I(f ) =
{

1 f ∈ 
0 elsewhere

(1.77)

We note that for real-valued baseband signals B0 = 2B. For passband signals, care must be taken in

the choice of B0 ≥ 2B to avoid aliasing between the positive and negative frequency components of

(f ).
Heaviside conditions for the absence of signal distortion

Let us consider a filter having frequency response (f ) (see Figures 1.1 or 1.3) given by

(f ) = 0e−j2𝜋f t0 , f ∈  (1.78)

where 0 and t0 are two non-negative constants, and  is the passband of the filter input signal x. Then

the output is given by

(f ) = (f )(f ) = 0(f ) e−j2𝜋f t0 (1.79)

or, in the time domain,

y(t) = 0x(t − t0) (1.80)
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(a)

0

(b)

arg  ( f )

–f2 –f1 –f2 –f1f1 f2

f1 f2

f f0

│ ( f )│

0

Figure 1.11 Characteristics of a filter satisfying the conditions for the absence of signal distortion in
the frequency interval (f1, f2). (a) Magnitude and (b) phase.

In other words, for a filter of the type (1.78), the signal at the input is reproduced at the output with a

gain factor 0 and a delay t0.

A filter of the type (1.78) satisfies the Heaviside conditions for the absence of signal distortion and is

characterized by

1. Constant magnitude
|(f )| = 0, f ∈  (1.81)

2. Linear phase
arg(f ) = −2𝜋f t0, f ∈  (1.82)

3. Constant group delay, also called envelope delay

𝜏(f ) = − 1

2𝜋

d
df

arg(f ) = t0, f ∈  (1.83)

We underline that it is sufficient that the Heaviside conditions are verified within the support of  ; as

|(f )| = 0 outside the support, the filter frequency response may be arbitrary.

We show in Figure 1.11 the frequency response of a PBF, with bandwidth B = f2 − f1, that satisfies

the conditions stated by Heaviside.

1.4 Passband signals and systems

We now provide a compact representation of passband signals and describe their transformation by linear

systems.

Complex representation

For a passband signal x, it is convenient to introduce an equivalent representation in terms of a baseband

signal x(bb).

Let x be a PB real-valued signal with Fourier transform as illustrated in Figure 1.12. The following

two procedures can be adopted to obtain x(bb).
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( f )

f0 f2 f

f

f

f
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Figure 1.12 Transformations to obtain the baseband equivalent signal x(bb) around the carrier
frequency f0 using a phase splitter.

x(t)

Phase splitter

h(a)
x(a)(t) x(bb)(t)

e–j2 πf0t

Figure 1.13 Transformations to obtain the baseband equivalent signal x(bb) around the carrier
frequency f0 using a phase splitter.

PB filter. Referring to Figure 1.12 and to the transformations illustrated in Figure 1.13, given x we

extract its positive frequency components using an analytic filter or phase splitter, h(a), having the fol-

lowing ideal frequency response

(a)(f ) = 2 ⋅ 1(f ) =
{

2 f > 0

0 f < 0
(1.84)

In practice, it is sufficient that h(a) is a complex PB filter, with (a)(f ) ≃ 2 in the passband that extends

from f1 to f2, as (f ), and stopband, in which |(a)(f )| ≃ 0, that extends from −f2 to −f1. The signal x(a)

is called the analytic signal or pre-envelope of x.

It is now convenient to introduce a suitable frequency f0, called reference carrier frequency, which

belongs to the passband (f1, f2) of x. The filter output, x(a), is frequency shifted by f0 to obtain a BB

signal, x(bb). The signal x(bb) is the baseband equivalent of x, also named complex envelope of x around
the carrier frequency f0.

Analytically, we have

x(a)(t) = x ∗ h(a)(t)


←−→  (a)(f ) = (f )(a)(f ) (1.85)

x(bb)(t) = x(a)(t) e−j2𝜋f0t 
←−→  (bb)(f ) =  (a)(f + f0) (1.86)
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and in the frequency domain

 (bb)(f ) =
{

2(f + f0) for f > −f0
0 for f < −f0

(1.87)

In other words, x(bb) is given by the components of x at positive frequencies, scaled by 2 and frequency

shifted by f0.

BB filter. We obtain the same result using a frequency shift of x followed by a lowpass filter (see

Figures 1.14 and 1.15). It is immediate to determine the relation between the frequency responses of the

filters of Figures 1.12 and 1.14:

(f ) = (a)(f + f0) (1.88)

From (1.88) one can derive the relation between the impulse response of the analytic filter and the

impulse response of the lowpass filter:

h(a)(t) = h(t) ej2𝜋f0t (1.89)

2
0

0

0

–2f0

–f2 –f1

f1 – f0

f1

f1 – f0

f1 – f0

f2 – f0

X( f+ f0(t)

f2 – f0

f2 – f0

(f)

X(bb)( f)

f0 f2 f

f

f

f

0

X( f )

Figure 1.14 Illustration of transformations to obtain the baseband equivalent signal x(bb) around the
carrier frequency f0 using a lowpass filter.

x(t)

LPF

h
x(bb)(t)

e–j2 πf0t

Figure 1.15 Transformations to obtain the baseband equivalent signal x(bb) around the carrier
frequency f0 using a lowpass filter.
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x(t)
Re[.]

x(bb)(t) x(a)(t)

ej2πf0 t

Figure 1.16 Relation between a signal, its complex envelope and the analytic signal.

Relation between a signal and its complex representation

A simple analytical relation exists between a real signal x and its complex envelope. In fact, making use

of the property (−f ) = ∗(f ), it follows

(f ) = (f )1(f ) + (f )1(−f ) = (f )1(f ) + ∗(−f )1(−f ) (1.90)

or equivalently,

x(t) = x(a)(t) + x(a)∗(t)
2

= Re [x(a)(t)] (1.91)

Using (1.86) it also follows

x(t) = Re [x(bb)(t)ej2𝜋f0t] (1.92)

as illustrated in Figure 1.16.

Baseband components of a PB signal. We introduce the notation

x(bb)(t) = x(bb)
I (t) + jx(bb)

Q (t) (1.93)

where

x(bb)
I (t) = Re [x(bb)(t)] (1.94)

and

x(bb)
Q (t) = Im [x(bb)(t)] (1.95)

are real-valued baseband signals, named in-phase and quadrature components of x, respectively. Sub-

stituting (1.93) in (1.92), we obtain

x(t) = x(bb)
I (t) cos(2𝜋f0t) − x(bb)

Q (t) sin(2𝜋f0t) (1.96)

as illustrated in Figure 1.17.

Conversely, given x, one can use the scheme of Figure 1.15 and the relations (1.94) and (1.95) to get

the baseband components. If the frequency response (f ) has Hermitian-symmetric characteristics with

respect to the origin, h is real and the scheme of Figure 1.18 holds. The scheme of Figure 1.18 employs

instead an ideal Hilbert filter with frequency response given by

(h)(f ) = −jsgn(f ) = e−j 𝜋
2

sgn(f ) (1.97)

Magnitude and phase of (h)(f ) are shown in Figure 1.19. We note that h(h) phase-shifts by −𝜋∕2 the

positive-frequency components of the input and by 𝜋∕2 the negative-frequency components. In practice,

these filter specifications are imposed only on the passband of the input signal.9 To simplify the notation,

in block diagrams a Hilbert filter is indicated as −𝜋∕2.

9 We note that the ideal Hilbert filter in Figure 1.19 has an impulse response given by (see Table 1.2 on page 5):

h(h)(t) = 1

𝜋t
(1.98)
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x(t)

–sin(2 πf0t)

cos(2 πf0t)

x(bb)(t)Q

x(bb)(t)I

Figure 1.17 Relation between a signal and its baseband components.

x(t)

x(t)

x(t) –sin(2 πf0 t)

–jsgn( f )

sin(2 πf0 t)

cos(2 πf0 t)

cos(2 πf0 t)

cos(2 πf0 t)

–sin(2 πf0 t)

h

LPF

h

LPF

(a)

(b)

x(bb)(t)Q

x(bb)(t)Q

x(bb)(t)I

x(bb)(t)I

x(h)(t)π
2

–

Figure 1.18 Relations to derive the baseband signal components. (a) Implementation using LPF
and (b) Implementation using Hilbert filter.
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π
2

π
2

arg (h) ( f )

0

0

1

−

f

f

│(h) ( f )│

Figure 1.19 Magnitude and phase responses of the ideal Hilbert filter.

Comparing the frequency responses of the analytic filter (1.84) and of the Hilbert filter (1.97), we

obtain the relation

(a)(f ) = 1 + j(h)(f ) (1.101)

Then, letting

x(h)(t) = x ∗ h(h)(t) (1.102)

the analytic signal can be expressed as

x(a)(t) = x(t) + jx(h)(t) (1.103)

Consequently, from (1.86), (1.94), and (1.95), we have

x(bb)
I (t) = x(t) cos(2𝜋f0t) + x(h)(t) sin(2𝜋f0t) (1.104)

x(bb)
Q (t) = x(h)(t) cos(2𝜋f0t) − x(t) sin(2𝜋f0t) (1.105)

as illustrated in Figure 1.18.10

Consequently, if x is the input signal, the output of the Hilbert filter (also denoted as Hilbert transform of x) is

x(h)(t) = 1

𝜋 ∫
+∞

−∞

x(𝜏)
t − 𝜏

d𝜏 (1.99)

Moreover, noting that from (1.97) (−j sgn f )(−j sgn f ) = −1, taking the Hilbert transform of the Hilbert transform of a

signal, we get the initial signal with the sign changed. Then it results as

x(t) = − 1

𝜋 ∫
+∞

−∞

x(h)(𝜏)
t − 𝜏

d𝜏 (1.100)

10 We recall that the design of a filter, and in particular of a Hilbert filter, requires the introduction of a suitable delay. In

other words, we are only able to produce an output with a delay tD, x(h)(t − tD). Consequently, in the block diagram of

Figure 1.18, also x and the various sinusoidal waveforms must be delayed.
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We note that in practical systems, transformations to obtain, e.g. the analytic signal, the complex

envelope, or the Hilbert transform of a given signal, are implemented by filters. However, it is usually

more convenient to perform signal analysis in the frequency domain by the Fourier transform. In the

following two examples, we use frequency-domain techniques to obtain the complex envelope of a PB

signal.

Example 1.4.1
Consider the sinusoidal signal

x(t) = A cos(2𝜋f0t + 𝜑0) (1.106)

with

(f ) = A
2

ej𝜑0𝛿(f − f0) +
A
2

e−j𝜑0𝛿(f + f0) (1.107)

The analytic signal is given by

 (a)(f ) = Aej𝜑0𝛿(f − f0)
−1

←−→ x(a)(t) = Aej𝜑0 ej2𝜋f0t (1.108)

and

 (bb)(f ) = Aej𝜑0𝛿(f )
−1

←−→ x(bb)(t) = Aej𝜑0 (1.109)

We note that we have chosen as reference carrier frequency of the complex envelope the same carrier

frequency as in (1.106).

Example 1.4.2
Let

x(t) = Asinc(Bt) cos(2𝜋f0t) (1.110)

with the Fourier transform given by

(f ) = A
2B

[

rect

( f − f0
B

)

+ rect

( f + f0
B

)]

(1.111)

as illustrated in Figure 1.20. Then, using f0 as reference carrier frequency,

 (bb)(f ) = A
B

rect

(
f
B

)

(1.112)

and

x(bb)(t) = Asinc(Bt) (1.113)

Another analytical technique to get the expression of the signal after the various transformations is

obtained by applying the following theorem.

Theorem 1.2
Let the product of two real signals be

x(t) = a(t) c(t) (1.114)

where a is a BB signal with a = [0,B) and c is a PB signal with c = [f0,+∞). If f0 > B, then the

analytic signal of x is related to that of c by

x(a)(t) = a(t) c(a)(t) (1.115)

◽
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Proof. We consider the general relation (1.91), valid for every real signal

c(t) = 1

2
c(a)(t) + 1

2
c(a)∗(t) (1.116)

Substituting (1.116) in (1.114) yields

x(t) = a(t)1

2
c(a)(t) + a(t)1

2
c(a)∗(t) (1.117)

In the frequency domain, the support of the first term in (1.117) is given by the interval [f0 − B,+∞),
while that of the second is equal to (−∞,−f0 + B]. Under the hypothesis that f0 ≥ B, the two terms in

(1.117) have disjoint supports in the frequency domain and (1.115) is immediately obtained. ◽

Corollary 1.1
From (1.115), we obtain

x(h)(t) = a(t)c(h)(t) (1.118)

and

x(bb)(t) = a(t)c(bb)(t) (1.119)

In fact, from (1.103) we get

x(h)(t) = Im [x(a)(t)] (1.120)

which substituted in (1.115) yields (1.118). Finally, (1.119) is obtained by substituting (1.86),

x(bb)(t) = x(a)(t)e−j2𝜋f0t (1.121)

in (1.115). ◽

An interesting application of (1.120) is in the design of a Hilbert filter h(h) starting from a lowpass

filter h. In fact, from (1.89) and (1.120), we get

h(h)(t) = h(t) sin(2𝜋f0t) (1.122)

Example 1.4.3
Let a modulated double sideband (DSB) signal be expressed as

x(t) = a(t) cos(2𝜋f0t + 𝜑0) (1.123)

X( f )

f0f0 − 2
B

f0 + 2
B

2
B

−
2
B

2B
A

B
A

X(bb)( f)
0

0

− f0
2
B−f0 − 2

B−f0 +
f

f

Figure 1.20 Frequency response of a PB signal and corresponding complex envelope.
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Table 1.5: Some properties of the Hilbert transform.

property (real) signal (real) Hilbert transform
x(t) x(h)(t)

duality x(h)(t) −x(t)
time inverse x(−t) −x(h)(−t)
even signal x(t) = x(−t) x(h)(t) = −x(h)(−t), odd

odd signal x(t) = −x(−t) x(h)(t) = x(h)(−t), even

product (see Theorem 1.2) a(t) c(t) a(t) c(h)(t)
cosinusoidal signal cos(2𝜋f0t + 𝜑0) sin(2𝜋f0t + 𝜑0)

energy Ex = ∫
+∞

−∞
|x(t)|2 dt = ∫

+∞

−∞
|x(h)(t)|2dt = Ex(h)

orthogonality ∫
+∞

−∞
x(t) x(h)(t) dt = 0

where a is a BB signal with bandwidth B. Then, if f0 > B, from the above theorem we have the following

relations:

x(a)(t) = a(t)ej(2𝜋f0t+𝜑0) (1.124)

x(h)(t) = a(t) sin(2𝜋f0t + 𝜑0) (1.125)

x(bb)(t) = a(t)ej𝜑0 (1.126)

We list in Table 1.5 some properties of the Hilbert transformation (1.102) that are easily obtained by

using the Fourier transform and the properties of Table 1.1.

Baseband equivalent of a transformation

Given a transformation involving also passband signals, it is often useful to determine an equivalent

relation between baseband complex representations of input and output signals. Three transfor-

mations are given in Figure 1.21, together with their baseband equivalent. Note that schemes in

Figure 1.21a,b produce very different output signals, although both use a mixer with the same

carrier.

We will prove the relation illustrated in Figure 1.21b. Assuming that h is the real-valued impulse

response of an LPF and using (1.92),

y(t) =
{

h ∗ Re [x(bb)(𝜏)ej2𝜋f0𝜏
(
cos(2𝜋f0𝜏 + 𝜑1)

)
]
}
(t)

= Re
[(

h ∗ x(bb) e−j𝜑1

2
+ h ∗ x(bb) e+j(2𝜋2f0𝜏+𝜑1)

2

)

(t)
]

(1.127)

= Re
[(

h ∗ x(bb) e−j𝜑1

2

)

(t)
]

where the last equality follows because the term with frequency components around 2f0 is filtered by

the LPF.
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(BB)
Baseband equivalent system

Baseband equivalent system

Baseband equivalent system

(c)

(a)

(b)

(PB)

(PB)

LPF

PBF

x(t)

x(t)

y(t)

y(t)

h h

h h(bb)
h(bb) (t)

Re[.]

x(t)

cos(2 πf0t + φ0)

cos(2 πf0t + φ1)

y(t) x(bb)(t) = x(t) y(bb)(t) = e jφ0x(t)

e jφ0

e–j φ11
2

x(bb)(t)

x(bb)(t) y(bb)(t) = x(bb) *1
21

2

y(bb)(t) y(t)

Figure 1.21 Passband transformations and their baseband equivalent. (a) Modulator, (b)
demodulator, and (c) passband filtering.

We note, moreover, that the filter h(bb) in Figure 1.21 has in-phase component h(bb)
I and quadrature

component h(bb)
Q that are related to (a) by (see (1.94) and (1.95))

(bb)
I (f ) = 1

2
[(bb)(f ) +(bb)∗(−f )]

= 1

2
[(a)(f + f0) +(a)∗(−f + f0)] (1.128)

and

(bb)
Q (f ) = 1

2j
[(bb)(f ) −(bb)∗(−f )]

= 1

2j
[(a)(f + f0) −(a)∗(−f + f0)] (1.129)

Consequently, if (a) has Hermitian symmetry around f0, then

(bb)
I (f ) = (a)

a (f + f0)

and

(bb)
Q (f ) = 0
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In other words, h(bb)(t) = h(bb)
I (t) is real and the realization of the filter

1

2
h(bb) is simplified. In prac-

tice, this condition is verified by imposing that the filter h(a) has symmetrical frequency specifications

around f0.

Envelope and instantaneous phase and frequency

We will conclude this section with a few definitions. Given a PB signal x, with reference to the analytic

signal we define

1. Envelope
Mx(t) = |x(a)(t)| (1.130)

2. Instantaneous phase
𝜑x(t) = arg x(a)(t) (1.131)

3. Instantaneous frequency
fx(t) =

1

2𝜋

d
dt
𝜑x(t) (1.132)

In terms of the complex envelope signal x(bb), from (1.86) the equivalent relations follow:

Mx(t) = |x(bb)(t)| (1.133)

𝜑x(t) = arg x(bb)(t) + 2𝜋f0t (1.134)

fx(t) =
1

2𝜋

d
dt
[arg x(bb)(t)] + f0 (1.135)

Then, from the polar representation, x(a)(t) = Mx(t) ej𝜑x(t) and from (1.91), a PB signal x can be written

as

x(t) = Re [x(a)(t)] = Mx(t) cos(𝜑x(t)) (1.136)

For example if x(t) = A cos(2𝜋f0t + 𝜑0), it follows that

Mx(t) = A (1.137)

𝜑x(t) = 2𝜋f0t + 𝜑0 (1.138)

fx(t) = f0 (1.139)

With reference to the above relations, three other definitions follow.

1. Envelope deviation
ΔMx(t) = |x(a)(t)| − A = |x(bb)(t)| − A (1.140)

2. Phase deviation
Δ𝜑x(t) = 𝜑x(t) − (2𝜋f0t + 𝜑0) = arg x(bb)(t) − 𝜑0 (1.141)

3. Frequency deviation
Δfx(t) = fx(t) − f0 = 1

2𝜋

d
dt
Δ𝜑x(t) (1.142)

Then (1.136) becomes

x(t) = [A + ΔMx(t)] cos(2𝜋f0t + 𝜑0 + Δ𝜑x(t)) (1.143)
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1.5 Second-order analysis of random processes

We recall the functions related to the statistical description of random processes, especially those func-

tions concerning second-order analysis.

1.5.1 Correlation

Let x(t) and y(t), t ∈ ℝ, be two continuous-time complex-valued random processes. We indicate the

expectation operator with E.

1. Mean value
𝚖x(t) = E[x(t)] (1.144)

2. Statistical power
𝙼x(t) = E[|x(t)|2] (1.145)

3. Autocorrelation
𝚛x(t, t − 𝜏) = E[x(t)x∗(t − 𝜏)] (1.146)

4. Crosscorrelation
𝚛xy(t, t − 𝜏) = E[x(t)y∗(t − 𝜏)] (1.147)

5. Autocovariance

𝚌x(t, t − 𝜏) = E[(x(t) − 𝚖x(t))(x(t − 𝜏) − 𝚖x(t − 𝜏))∗]

= 𝚛x(t, t − 𝜏) − 𝚖x(t)𝚖∗x (t − 𝜏) (1.148)

6. Crosscovariance

𝚌xy(t, t − 𝜏) = E[(x(t) − 𝚖x(t))(y(t − 𝜏) − 𝚖y(t − 𝜏))∗]

= 𝚛xy(t, t − 𝜏) − 𝚖x(t)𝚖∗y (t − 𝜏) (1.149)

Observation 1.2

● x and y are orthogonal if 𝚛xy(t, t − 𝜏) = 0, ∀t, 𝜏. In this case, we write x ⟂ y.11

● x and y are uncorrelated if 𝚌xy(t, t − 𝜏) = 0, ∀t, 𝜏.

● if at least one of the two random processes has zero mean, orthogonality is equivalent to uncorre-
lation.

● x is wide-sense stationary (WSS) if

1. 𝚖x(t) = 𝚖x, ∀t,
2. 𝚛x(t, t − 𝜏) = 𝚛x(𝜏), ∀t.

In this case, 𝚛x(0) = E[|x(t)|2] = 𝙼x is the statistical power, whereas 𝚌x(0) = 𝜎2
x = 𝙼x − |𝚖x|

2 is the

variance of x.

11 We observe that the notion of orthogonality between two random processes is quite different from that of orthogonality
between two deterministic signals. In fact, while in the deterministic case, it is sufficient that ∫ ∞

−∞ x(t)y∗(t)dt = 0, in the

random case, the crosscorrelation must be zero for all the delays and not only for the zero delay. In particular, we note

that the two random variables 𝑣
1

and 𝑣
2

are orthogonal if E[𝑣
1
𝑣∗

2
] = 0.
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● x and y are jointly wide-sense stationary if

1. 𝚖x(t) = 𝚖x, 𝚖y(t) = 𝚖y, ∀t,
2. 𝚛xy(t, t − 𝜏) = 𝚛xy(𝜏), ∀t.

Properties of the autocorrelation function

1. 𝚛x(−𝜏) = 𝚛∗x (𝜏), 𝚛x(𝜏) is a function with Hermitian symmetry.

2. 𝚛x(0) ≥ |𝚛x(𝜏)|.
3. 𝚛x(0)𝚛y(0) ≥ |𝚛xy(𝜏)|2.

4. 𝚛xy(−𝜏) = 𝚛∗yx(𝜏).
5. 𝚛x∗ (𝜏) = 𝚛∗x (𝜏).

1.5.2 Power spectral density

Given the WSS random process x(t), t ∈ ℝ, its power spectral density (PSD) is defined as the Fourier

transform of its autocorrelation function

x(f ) =  [𝚛x(𝜏)] = ∫
+∞

−∞
𝚛x(𝜏)e−j2𝜋f 𝜏d𝜏 (1.150)

The inverse transformation is given by the following formula:

𝚛x(𝜏) = ∫
+∞

−∞
x(f )ej2𝜋f 𝜏df (1.151)

In particular from (1.151), we obtain the statistical power

𝙼x = 𝚛x(0) = ∫
+∞

−∞
x(f )df (1.152)

Hence, the name PSD for the function x(f ): it represents the distribution of the statistical power in the

frequency domain.

The pair of equations (1.150) and (1.151) are obtained from the Wiener–Khintchine theorem [3].

Definition 1.8
The passband  of a random process x is defined with reference to its PSD function. ◽

Spectral lines in the PSD

In many applications, it is important to detect the presence of sinusoidal components in a random process.

With this intent we give the following theorem.

Theorem 1.3
The PSD of a WSS process, x(f ), can be uniquely decomposed into a component  (c)

x (f ) without delta

functions and a discrete component consisting of delta functions (spectral lines)  (d)
x (f ), so that

x(f ) =  (c)
x (f ) +  (d)

x (f ) (1.153)

where  (c)
x (f ) is an ordinary (piecewise linear) function and

 (d)
x (f ) =

∑

i∈
𝙼i𝛿(f − fi) (1.154)

where  identifies a discrete set of frequencies {fi}, i ∈ . ◽
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The inverse Fourier transform of (1.153) yields the relation

𝚛x(𝜏) = 𝚛(c)x (𝜏) + 𝚛(d)x (𝜏) (1.155)

with

𝚛(d)x (𝜏) =
∑

i∈
𝙼iej2𝜋fi𝜏 (1.156)

The most interesting consideration is that the following random process decomposition corresponds to

the decomposition (1.153) of the PSD:

x(t) = x(c)(t) + x(d)(t) (1.157)

where x(c) and x(d) are orthogonal processes having PSD functions

x(c) (f ) =  (c)
x (f ) and x(d) (f ) =  (d)

x (f ) (1.158)

Moreover, x(d) is given by

x(d)(t) =
∑

i∈
xiej2𝜋fit (1.159)

where {xi} are orthogonal random variables (r.v.s.) having statistical power

E[|xi|
2] = 𝙼i, i ∈  (1.160)

where 𝙼i is defined in (1.154).

Observation 1.3
The spectral lines of the PSD identify the periodic components in the process.

Definition 1.9
A WSS random process is said to be asymptotically uncorrelated if the following two properties hold:

(1) lim
𝜏→∞

𝚛x(𝜏) = |𝚖x|
2 (1.161)

(2) 𝚌x(𝜏) = 𝚛x(𝜏) − |𝚖x|
2 is absolutely integrable (1.162)

The property (1) shows that x(t) and x(t − 𝜏) become uncorrelated for 𝜏 → ∞. ◽

For such processes, one can prove that

𝚛(c)x (𝜏) = 𝚌x(𝜏) and 𝚛(d)x (𝜏) = |𝚖x|
2 (1.163)

Hence,  (d)
x (f ) = |𝚖x|

2𝛿(f ), and the process exhibits at most a spectral line at the origin.

Cross power spectral density

One can extend the definition of PSD to two jointly WSS random processes:

xy(f ) =  [𝚛xy(𝜏)] (1.164)

Since 𝚛xy(−𝜏) ≠ 𝚛∗xy(𝜏), xy(f ) is in general a complex function.
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Properties of the PSD

1. x(f ) is a real-valued function. This follows from property 1 of the autocorrelation.

2. x(f ) is generally not an even function. However, if the process x is real valued, then both 𝚛x(𝜏)
and x(f ) are even functions.

3. x(f ) is a non-negative function.

4. yx(f ) = ∗
xy(f ).

5. x∗ (f ) = x(−f ).

Moreover, the following inequality holds:

0 ≤ |xy(f )|2 ≤ x(f )y(f ) (1.165)

Definition 1.10 (White random process)
The zero-mean random process x(t), t ∈ ℝ, is called white if

𝚛x(𝜏) = K𝛿(𝜏) (1.166)

with K a positive real number. In this case, x(f ) is a constant, i.e.

x(f ) = K (1.167)
◽

PSD through filtering

With reference to Figure 1.22, by taking the Fourier transform of the various crosscorrelations, the

following relations are easily obtained:

yx(f ) = x(f )(f ) (1.168)

y(f ) = x(f )|(f )|2 (1.169)

yz(f ) = x(f )(f )∗(f ) (1.170)

The relation (1.169) is of particular interest since it relates the PSDs of the output process of a filter

to the PSD of the input process, through the frequency response of the filter. In the particular case in

which y and z have disjoint passbands, i.e. y(f )z(f ) = 0, then from (1.165) 𝚛yz(𝜏) = 0, and y ⟂ z.

1.5.3 PSD of discrete-time random processes

Let {x(k)} and {y(k)} be two discrete-time random processes. Definitions and properties of Section 1.5.1

remain valid also for discrete-time processes: the only difference is that the correlation is now defined

h
y

g
z

x

Figure 1.22 Reference scheme of PSD computations.
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on discrete time and is called autocorrelation sequence (ACS). It is however interesting to review the

properties of PSDs. Given a discrete-time WSS random process x, the PSD is obtained as

x(f ) = Tc [𝚛x(n)] = Tc

+∞∑

n=−∞
𝚛x(n)e−j2𝜋fnTc (1.171)

We note a further property: x(f ) is a periodic function of period 1∕Tc. The inverse transformation

yields:

𝚛x(n) = ∫
1

2Tc

− 1

2Tc

x(f )ej2𝜋fnTc df (1.172)

In particular, the statistical power is given by

𝙼x = 𝚛x(0) = ∫
1

2Tc

− 1

2Tc

x(f )df (1.173)

Definition 1.11 (White random process)
A discrete-time random process {x(k)} is white if

𝚛x(n) = 𝜎2
x 𝛿n (1.174)

In this case, the PSD is a constant:

x(f ) = 𝜎2
x Tc (1.175)

◽

Definition 1.12
If the samples of the random process {x(k)} are statistically independent and identically Distributed, we

say that {x(k)} has i.i.d. samples. ◽

Generating an i.i.d. sequence is not simple; however, it is easily provided by many random number

generators [4]. However, generating, storing, and processing a finite length, i.i.d. sequence requires a

complex processor and a lot of memory. Furthermore, the deterministic correlation properties of such a

subsequence may not be very good. Hence, in Appendix 1.C we introduce a class of pseudonoise (PN)

sequences, which are deterministic and periodic, with very good correlation properties. Moreover, the

symbol alphabet can be just binary.

Spectral lines in the PSD

Also the PSD of a discrete time random process can be decomposed into ordinary components and

spectral lines on a period of the PSD. In particular for a discrete-time WSS asymptotically uncorrelated
random process, the relation (1.163) and the following are true

 (c)
x (f ) = Tc

+∞∑

n=−∞
𝚌x(n) e−j2𝜋fnTc (1.176)

 (d)
x (f ) = |𝚖x|

2

+∞∑

𝓁=−∞
𝛿

(

f − 𝓁
Tc

)

(1.177)

We note that, if the process has non-zero mean value, the PSD exhibits lines at multiples of 1∕Tc.
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Example 1.5.1
We calculate the PSD of an i.i.d. sequence {x(k)}. From

𝚛x(n) =
{

𝙼x n = 0

|𝚖x|
2 n ≠ 0

(1.178)

it follows that

𝚌x(n) =
{
𝜎2

x n = 0

0 n ≠ 0
(1.179)

Then

𝚛(c)x (n) = 𝜎2
x 𝛿n, 𝚛(d)x (n) = |𝚖x|

2 (1.180)

 (c)
x (f ) = 𝜎2

x Tc,  (d)
x (f ) = |𝚖x|

2

+∞∑

𝓁=−∞
𝛿

(

f − 𝓁
Tc

)

(1.181)

PSD through filtering

Given the system illustrated in Figure 1.3, we want to find the relation between the PSDs of the input

and output signals, assuming these processes are individually as well as jointly WSS. We introduce the

z-transform of the correlation sequence:

Px(z) =
+∞∑

n=−∞
𝚛x(n)z−n (1.182)

From the comparison of (1.182) with (1.171), the PSD of x is related to Px(z) by

x(f ) = TcPx(ej2𝜋f Tc ) (1.183)

Using Table 1.3 in page 6, we obtain the relations between ACS and PSD listed in Table 1.6. Let the

deterministic autocorrelation of h be defined as12

𝚛h(n) =
+∞∑

k=−∞
h(k)h∗(k − n) = [h(m) ∗ h∗(−m)](n) (1.184)

whose z-transform is given by

Ph(z) =
+∞∑

n=−∞
𝚛h(n) z−n = H(z) H∗

(
1

z∗

)

(1.185)

Table 1.6: Relations between ACS and PSD for
discrete-time processes through a linear filter.

ACS PSD

𝚛yx(n) = 𝚛x ∗ h(n) Pyx(z) = Px(z)H(z)

𝚛xy(n) = [𝚛x(m) ∗ h∗(−m)](n) Pxy(z) = Px(z)H∗(1∕z∗)
𝚛y(n) = 𝚛xy ∗ h(n)

= 𝚛x ∗ 𝚛h(n)
Py(z) = Pxy(z)H(z)

= Px(z)H(z)H∗(1∕z∗)

12 We use the same symbol to indicate the correlation between random processes and the correlation between

deterministic signals.
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In case Ph(z) is a rational function, from (1.185) one deduces that, if Ph(z) has a pole (zero) of the type

ej𝜑|a|, it also has a corresponding pole (zero) of the type ej𝜑∕|a|. Consequently, the poles (and zeros) of

Ph(z) come in pairs of the type ej𝜑|a|, ej𝜑∕|a|.
From the last relation in Table 1.6, we obtain the relation between the PSDs of input and output signals,

i.e.

y(f ) = x(f )
|
|
|
H(ej2𝜋f Tc )||

|

2

(1.186)

In the case of white noise input

Py(z) = 𝜎2
x H(z)H∗

(
1

z∗

)

(1.187)

and

y(f ) = Tc𝜎
2
x
|
|
|
H(ej2𝜋f Tc )||

|

2

(1.188)

In other words, y(f ) has the same shape as the filter frequency response.

In the case of real filters

H∗
(

1

z∗

)

= H(z−1) (1.189)

Among the various applications of (1.188), it is worth mentioning the process synthesis, which

deals with the generation of a random process having a pre-assigned PSD. Two methods are shown in

Section 4.1.9.

Minimum-phase spectral factorization

In the previous section, we introduced the relation between an impulse response {h(k)} and its ACS

{𝚛h(n)} in terms of the z-transform. In many practical applications, it is interesting to determine the

minimum-phase impulse response for a given autocorrelation function: with this intent we state the

following theorem [5].

Theorem 1.4 (Spectral factorization for discrete-time processes)
Consider the process y with ACS {𝚛y(n)} having z-transform Py(z), which satisfies the Paley–Wiener

condition for discrete-time systems, i.e.

∫1∕Tc

|
|
|
ln Py(ej2𝜋f Tc )||

|
df <∞ (1.190)

where the integration is over an arbitrarily chosen interval 1∕Tc. Then the function Py(z) can be factorized

as follows:

Py(z) = f 2
0

F̃(z) F̃∗
(

1

z∗

)

(1.191)

where

F̃(z) = 1 + f̃1z−1 + f̃2z−2 + · · · (1.192)

is monic, minimum phase, and associated with a causal sequence {1, f̃1, f̃2,…}. The factor f0 in (1.191)

is the geometric mean of Py(ej2𝜋f Tc ):

ln f 2
0
= Tc∫1∕Tc

ln Py(ej2𝜋f Tc ) df (1.193)

The logarithms in (1.190) and (1.193) may have any common base.

The Paley–Wiener criterion implies that Py(z) may have only a discrete set of zeros on the unit circle,

and that the spectral factorization (1.191) (with the constraint that F̃(z) is causal, monic and minimum
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phase) is unique. For rational Py(z), the function f0F̃(z) is obtained by extracting the poles and zeros of

Py(z) that lie inside the unit circle (see (1.453) and the considerations relative to (1.185)). Moreover, in

(1.191) f0F̃∗(1∕z∗) is the z-transform of an anticausal sequence f0{… , f̃ ∗
2
, f̃ ∗

1
, 1}, associated with poles

and zeros of Py(z) that lie outside the unit circle. ◽

1.5.4 PSD of passband processes

Definition 1.13
A WSS random process x is said to be PB (BB) if its PSD is of PB (BB) type. ◽

PSD of in-phase and quadrature components

Let x be a real PB WSS process. Our aim is to derive the PSD of the in-phase and quadrature compo-

nents of the process. We assume that x does not have direct current (DC) components, i.e. a frequency

component at f = 0, hence, its mean is zero and consequently also x(a) and x(bb) have zero mean.

We introduce the two (ideal) filters with frequency response

(+)(f ) = 1(f ) and (−)(f ) = 1(−f ) (1.194)

Note that they have non-overlapping passbands. For the same input x, the output of the two filters is,

respectively, x(+) and x(−). We find that

x(t) = x(+)(t) + x(−)(t) (1.195)

with x(−)(t) = x(+)∗(t). The following relations hold

x(+) (f ) = |(+)(f )|2x(f ) = x(f )1(f ) (1.196)

x(−) (f ) = |(−)(f )|2x(f ) = x(f )1(−f ) (1.197)

and

x(+)x(−) (f ) = 0 (1.198)

as x(+) and x(−) have non-overlapping passbands. Then x(+) ⟂ x(−), and (1.195) yields

x(f ) = x(+) (f ) + x(−) (f ) (1.199)

where x(−) (f ) = x(+)∗ (f ) = x(+) (−f ), using Property 5 of the PSD. The analytic signal x(a) is equal to

2x(+), hence,

𝚛x(a) (𝜏) = 4𝚛x(+) (𝜏) (1.200)

and

x(a) (f ) = 4x(+) (f ) (1.201)

Moreover, being x(a)∗ = 2x(−), it follows that x(a) ⟂ x(a)∗ and

𝚛x(a)x(a)∗ (𝜏) = 0 (1.202)

The complex envelope x(bb) is related to x(a) by (1.86) and

𝚛x(bb) (𝜏) = 𝚛x(a) (𝜏)e−j2𝜋f0𝜏 (1.203)

Hence,

x(bb) (f ) = x(a) (f + f0) = 4x(+) (f + f0) (1.204)

Moreover, from (1.202), it follows that x(bb) ⟂ x(bb)∗.
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Using (1.204), (1.199) can be written as

x(f ) =
1

4
[x(bb) (f − f0) + x(bb) (−f − f0)] (1.205)

Finally, from

x(bb)
I (t) = Re [x(bb)(t)] = x(bb)(t) + x(bb)∗(t)

2
(1.206)

and

x(bb)
Q (t) = Im [x(bb)(t)] = x(bb)(t) − x(bb)∗(t)

2j
(1.207)

we obtain the following relations:

𝚛x(bb)
I
(𝜏) = 1

2
Re [𝚛x(bb) (𝜏)] (1.208)

x(bb)
I
(f ) = 1

4
[x(bb) (f ) + x(bb) (−f )] (1.209)

𝚛x(bb)
Q
(𝜏) = 𝚛x(bb)

I
(𝜏) (1.210)

𝚛x(bb)
Q x(bb)

I
(𝜏) = 1

2
Im [𝚛x(bb) (𝜏)] (1.211)

x(bb)
Q x(bb)

I
(f ) = 1

4j
[x(bb) (f ) − x(bb) (−f )] (1.212)

𝚛x(bb)
I x(bb)

Q
(𝜏) = −𝚛x(bb)

Q x(bb)
I
(𝜏) = −𝚛x(bb)

I x(bb)
Q
(−𝜏) (1.213)

The second equality in (1.213) follows from Property 4 of ACS.

From (1.213), we note that 𝚛x(bb)
I x(bb)

Q
(𝜏) is an odd function. Moreover, from (1.212), we obtain x(bb)

I ⟂

x(bb)
Q only if x(bb) is an even function; in any case, the random variables x(bb)

I (t) and x(bb)
Q (t) are always

orthogonal since 𝚛x(bb)
I x(bb)

Q
(0) = 0. Referring to the block diagram in Figure 1.18b, as

x(h) (f ) = x(f ) and x(h)x(f ) = −jsgn(f ) x(f ) (1.214)

we obtain

𝚛x(h) (𝜏) = 𝚛x(𝜏) and 𝚛x(h)x(𝜏) = 𝚛(h)x (𝜏) (1.215)

Then

𝚛x(bb)
I
(𝜏) = 𝚛x(bb)

Q
(𝜏) = 𝚛x(𝜏) cos(2𝜋f0𝜏) + 𝚛(h)x (𝜏) sin(2𝜋f0𝜏) (1.216)

and

𝚛x(bb)
I x(bb)

Q
(𝜏) = −𝚛(h)x (𝜏) cos(2𝜋f0𝜏) + 𝚛x(𝜏) sin(2𝜋f0𝜏) (1.217)

In terms of statistical power, the following relations hold:

𝚛x(+) (0) = 𝚛x(−) (0) =
1

2
𝚛x(0) (1.218)

𝚛x(bb) (0) = 𝚛x(a) (0) = 4𝚛x(+) (0) = 2𝚛x(0) (1.219)

𝚛x(bb)
I
(0) = 𝚛x(bb)

Q
(0) = 𝚛x(0) (1.220)

𝚛x(h) (0) = 𝚛x(0) (1.221)

Example 1.5.2
Let x be a WSS process with PSD

x(f ) =
N0

2

[

rect

( f − f0
B

)

+ rect

( f + f0
B

)]

(1.222)
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Figure 1.23 Spectral representation of a PB process and its BB components.

depicted in Figure 1.23. It is immediate to get

x(a) (f ) = 2N0rect

( f − f0
B

)

(1.223)

and

x(bb) (f ) = 2N0rect

(
f
B

)

(1.224)

Then

x(bb)
I
(f ) = x(bb)

Q
(f ) = 1

2
x(bb) (f ) = N0rect

(
f
B

)

(1.225)

Moreover, being x(bb)
I x(bb)

Q
(f ) = 0, we have that x(bb)

I ⟂ x(bb)
Q .

Cyclostationary processes

We have seen that, if x is a real passband WSS process, then its complex envelope is WSS, and x(bb) ⟂
x(bb)∗. The converse is also true: if x(bb) is a WSS process and x(bb) ⟂ x(bb)∗, then

x(t) = Re [x(bb)(t) ej2𝜋f0t] (1.226)

is WSS with PSD given by (1.205). If x(bb) is WSS, however, with

𝚛x(bb)x(bb)∗ (𝜏) ≠ 0 (1.227)
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observing (1.226) we find that the autocorrelation of x is a periodic function in t of period 1∕f0:

𝚛x(t, t − 𝜏) =
1

4

[
𝚛x(bb) (𝜏)ej2𝜋f0𝜏 + 𝚛∗x(bb) (𝜏)e−j2𝜋f0𝜏 + 𝚛x(bb)x(bb)∗ (𝜏)e−j2𝜋f0𝜏ej4𝜋f0t + 𝚛∗x(bb)x(bb)∗ (𝜏)ej2𝜋f0𝜏e−j4𝜋f0t]

(1.228)

In other words, x is a cyclostationary process of period T0 = 1∕f0.13

In this case, it is convenient to introduce the average correlation

𝚛x(𝜏) =
1

T0
∫

T0

0

𝚛x(t, t − 𝜏)dt (1.229)

whose Fourier transform is the average PSD

x(f ) =  [𝚛x(𝜏)] =
1

T0
∫

T0

0

x(f , t)dt (1.230)

where

x(f , t) = 𝜏 [𝚛x(t, t − 𝜏)] (1.231)

In (1.231), 𝜏 denotes the Fourier transform with respect to the variable 𝜏. In our case, it is

x(f ) =
1

4
[x(bb) (f − f0) + x(bb) (−f − f0)] (1.232)

as in the stationary case (1.205).

Example 1.5.3
Let x be a modulated DSB signal (see (1.123)), i.e.

x(t) = a(t) cos(2𝜋f0t + 𝜑0) (1.233)

with a real random BB WSS process with bandwidth Ba < f0 and autocorrelation 𝚛a(𝜏). From (1.126) it

results x(bb)(t) = a(t) ej𝜑0 . Hence, we have

𝚛x(bb) (𝜏) = 𝚛a(𝜏), 𝚛x(bb)x(bb)∗ (𝜏) = 𝚛a(𝜏) ej2𝜑0 (1.234)

Because 𝚛a(𝜏) is not identically zero, observing (1.227) we find that x is cyclostationary with period

1∕f0. From (1.232), the average PSD of x is given by

x(f ) =
1

4
[a(f − f0) + a(f + f0)] (1.235)

Therefore, x has a bandwidth equal to 2Ba and an average statistical power

𝙼x =
1

2
𝙼a (1.236)

We note that one finds the same result (1.235) assuming that 𝜑0 is a uniform r.v. in [0, 2𝜋); in this case

x turns out to be WSS.

Example 1.5.4
Let x be a modulated single sideband (SSB) with an upper sideband, i.e.

x(t) = Re
[

1

2

(
a(t) + ja(h)(t)

)
ej(2𝜋f0t+𝜑0)

]

= 1

2
a(t) cos(2𝜋f0t + 𝜑0) −

1

2
a(h)(t) sin(2𝜋f0t + 𝜑0) (1.237)

13 To be precise, x is cyclostationary in mean value with period T
0
= 1∕f

0
, while it is cyclostationary in correlation with

period T
0
∕2.
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Re[.]hhPB

PBF

(a)

cos(2πf0t + φ0)

(b)

LPF

e–j φ0
1
2

Figure 1.24 Coherent DSB demodulator and baseband-equivalent scheme. (a) Coherent DSB
demodulator and (b) baseband-equivalent scheme.

where a(h) is the Hilbert transform of a, a real WSS random process with autocorrelation 𝚛a(𝜏) and

bandwidth Ba.

We note that the modulating signal (a(t) + ja(h)(t)) coincides with the analytic signal a(a) and its spec-

tral support contains only positive frequencies.

Being

x(bb)(t) = 1

2
(a(t) + ja(h)(t))ej𝜑0

it results that x(bb) and x(bb)∗ have non-overlapping passbands and

𝚛x(bb)x(bb)∗ (𝜏) = 0 (1.238)

The process (1.237) is then stationary with

x(f ) =
1

4
[a(+) (f − f0) + a(+) (−f − f0)] (1.239)

where a(+) is defined in (1.195). In this case, x has bandwidth equal to Ba and statistical power given by

𝙼x =
1

4
𝙼a (1.240)

Example 1.5.5 (DSB and SSB demodulators)
Let the signal r be the sum of a desired part x and additive white noise 𝑤 with PSD equal to 𝑤(f ) =
N0∕2,

r(t) = x(t) +𝑤(t) (1.241)

where the signal x is modulated DSB (1.233). To obtain the signal a from r, one can use the coherent

demodulation scheme illustrated in Figure 1.24 (see Figure 1.21b), where h is an ideal lowpass filter,

having a frequency response

(f ) = 0 rect

(
f

2Ba

)

(1.242)

Let ro be the output signal of the demodulator, given by the sum of the desired part xo and noise 𝑤o:

ro(t) = xo(t) +𝑤o(t) (1.243)

We evaluate now the ratio between the powers of the signals in (1.243),

Λo =
𝙼xo

𝙼𝑤o

(1.244)

in terms of the reference signal-to-noise ratio

Γ =
𝙼x

(N0∕2) 2Ba
(1.245)
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Using the equivalent block scheme of Figure 1.24 and (1.126), we have

r(bb)(t) = a(t) ej𝜑0 +𝑤(bb)(t) (1.246)

with 𝑤(bb) (f ) = 2N0 1(f + f0). Being

h ∗ a(t) = 0 a(t) (1.247)

it results

xo(t) = Re
[
h ∗ 1

2
e−j𝜑1 a ej𝜑0

]
(t)

=
0

2
a(t) cos(𝜑0 − 𝜑1)

(1.248)

Hence, we get

𝙼xo
=

2
0

4
𝙼acos2(𝜑0 − 𝜑1) (1.249)

In the same baseband equivalent scheme, we consider the noise 𝑤eq at the output of filter h; we find

𝑤eq
(f ) = 1

4
|(f )|2 2N0 1(f + f0)

=
2

0

2
N0 rect

(
f

2Ba

)

(1.250)

Being now 𝑤 WSS, 𝑤(bb) is uncorrelated with 𝑤(bb)∗ and thus 𝑤eq with 𝑤∗
eq. Then, from

𝑤o(t) = 𝑤eq,I(t) (1.251)

and using (1.209) it follows

𝑤0
(f ) =

2
0

4
N0 rect

(
f

2Ba

)

(1.252)

and

𝙼𝑤0
=

2
0

4
N0 2Ba (1.253)

In conclusion, using (1.236), we have

Λo =
(2

0
∕4) 𝙼acos2(𝜑0 − 𝜑1)
(2

0
∕4) N0 2Ba

= Γcos2(𝜑0 − 𝜑1) (1.254)

For 𝜑1 = 𝜑0 (1.254) becomes

Λo = Γ (1.255)

It is interesting to observe that, at the demodulator input, the ratio between the power of the desired

signal and the power of the noise in the passband of x is given by

Λi =
𝙼x

(N0∕2) 4Ba
= Γ

2
(1.256)

For 𝜑1 = 𝜑0 then

Λo = 2Λi (1.257)

We will now analyse the case of a SSB signal x (see (1.237)), coherently demodulated, following the

scheme of Figure 1.25, where hPB is a filter used to eliminate the noise that otherwise, after the mixer,

would have fallen within the passband of the desired signal. The ideal frequency response of hPB is

given by

PB(f ) = rect

( f − f0 − Ba∕2

Ba

)

+ rect

(−f − f0 − Ba∕2

Ba

)

(1.258)
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h(bb) * h
PB

1
2

r(bb)(t)ro (t) ro (t)r(t)
Re[.]hhPB

PBF

(a) (b)

LPF

cos(2 πf0t + φ0)
e–j φ11

2

Figure 1.25 (a) Coherent SSB demodulator and (b) baseband-equivalent scheme.

Note that in this scheme, we have assumed the phase of the receiver carrier equal to that of the transmitter,

to avoid distortion of the desired signal.

Being

(bb)
PB (f ) = 2 rect

( f − Ba∕2

Ba

)

(1.259)

the filter of the baseband-equivalent scheme is given by

heq(t) =
1

2
h(bb)

PB ∗ h(t) (1.260)

with frequency response

eq(f ) = 0 rect

( f − Ba∕2

Ba

)

(1.261)

We now evaluate the desired component xo. Using the fact x(bb) ∗ heq(t) = 0 x(bb)(t), it results

xo(t) = Re
[
heq ∗ 1

2
e−j𝜑0

1

2
(a + j a(h)) ej𝜑0

]
(t)

=
0

4
Re

[
a(t) + j a(h)(t)

]
=

0

4
a(t) (1.262)

In the baseband-equivalent scheme, the noise 𝑤eq at the output of heq has a PSD given by

𝑤eq
(f ) = 1

4
|eq(f )|2 2N0 1(f + f0) =

N0

2
2

0
rect

( f − Ba∕2

Ba

)

(1.263)

From the relation 𝑤o = 𝑤eq,I and using (1.209), which is valid because 𝑤eq ⟂ 𝑤∗
eq, we have

𝑤o
(f ) = 1

4
[𝑤eq

(f ) + 𝑤eq
(−f )] =

2
0

8
N0 rect

(
f

2Ba

)

(1.264)

and

𝙼𝑤o
=

2
0

8
N0 2Ba (1.265)

Then we obtain

Λo =
(2

0
∕16) 𝙼a

(2
0
∕8) N0 2Ba

(1.266)

which using (1.240) and (1.245) can be written as

Λo = Γ (1.267)

We note that the SSB system yields the same performance (for 𝜑1 = 𝜑0) of a DSB system, even though

half of the bandwidth is required. Finally, it results

Λi =
𝙼x

(N0∕2) 2Ba
= Λo (1.268)
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Observation 1.4
We note that also for the simple examples considered in this section, the desired signal is analysed

via the various transformations, whereas the noise is analysed via the PSD. As a matter of fact, we are

typically interested only in the statistical power of the noise at the system output. The demodulated signal

xo, on the other hand, must be expressed as the sum of a desired component proportional to a and an

orthogonal component that represents the distortion, which is, typically, small and has the same effects

as noise.

In the previous example, the considered systems do not introduce any distortion since xo is proportional

to a.

1.6 The autocorrelation matrix
Definition 1.14
Given the discrete-time wide-sense stationary random process {x(k)}, we introduce the random vector

with N components

xT (k) = [x(k), x(k − 1),… , x(k − N + 1)] (1.269)

The N × N autocorrelation matrix of x∗(k) is given by

R = E[x∗(k)xT (k)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝚛x(0) 𝚛x(−1) … 𝚛x(−N + 1)

𝚛x(1) 𝚛x(0) … 𝚛x(−N + 2)

⋮ ⋮ ⋱ ...

𝚛x(N − 1) 𝚛x(N − 2) … 𝚛x(0)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1.270)

◽

Properties

1. R is Hermitian: RH = R. For real random processes R is symmetric: RT = R.

2. R is a Toeplitz matrix, i.e. all elements along any diagonal are equal.

3. R is positive semi-definite and almost always positive definite. Indeed, taking an arbitrary vector

𝒗T = [𝑣0,… , 𝑣N−1], and letting yk = xT (k)𝒗, we have

E[|yk|
2] = E[𝒗Hx∗(k)xT (k)𝒗] = 𝒗HR𝒗 =

N−1∑

i=0

N−1∑

j=0

𝑣∗i 𝚛x(i − j)𝑣j ≥ 0 (1.271)

If 𝒗HR𝒗 > 0, ∀𝒗 ≠ 𝟎, then R is said to be positive definite and all its principal minor determinants

are positive; in particular R is non-singular.

Eigenvalues

We indicate with det R the determinant of a matrix R. The eigenvalues of R are the solutions 𝜆i, i =
1,… ,N, of the characteristic equation of order N

det[R − 𝜆I] = 0 (1.272)

and the corresponding column eigenvectors ui, i = 1,… ,N, satisfy the equation

Rui = 𝜆iui (1.273)
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Table 1.7: Correspondence between
eigenvalues and eigenvectors of four
matrices.

R Rm R−1 I − 𝜇R
Eigenvalue 𝜆i 𝜆m

i 𝜆−1
i (1 − 𝜇𝜆i)

Eigenvector ui ui ui ui

Example 1.6.1
Let {𝑤(k)} be a white noise process. Its autocorrelation matrix R assumes the form

R =

⎡
⎢
⎢
⎢
⎢
⎣

𝜎2
𝑤 0 … 0

0 𝜎2
𝑤 … 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝜎2

𝑤

⎤
⎥
⎥
⎥
⎥
⎦

(1.274)

from which it follows that

𝜆1 = 𝜆2 = · · · = 𝜆N = 𝜎2
𝑤 (1.275)

and

ui can be any arbitrary vector 1 ≤ i ≤ N (1.276)

Example 1.6.2
We define a complex-valued sinusoid as

x(k) = ej(𝜔k+𝜑), 𝜔 = 2𝜋f Tc (1.277)

with 𝜑 a uniform r.v. in [0, 2𝜋). The autocorrelation matrix R is given by

R =

⎡
⎢
⎢
⎢
⎢
⎣

1 e−j𝜔 … e−j(N−1)𝜔

ej𝜔 1 … e−j(N−2)𝜔

⋮ ⋮ ⋱ ⋮
ej(N−1)𝜔 ej(N−2)𝜔 … 1

⎤
⎥
⎥
⎥
⎥
⎦

(1.278)

One can see that the rank of R is 1 and it will therefore have only one eigenvalue. The solution is given

by

𝜆1 = N (1.279)

and the relative eigenvector is

uT
1
= [1, ej𝜔,… , ej(N−1)𝜔] (1.280)

Other properties
1. From Rmu = 𝜆mu, we obtain the relations of Table 1.7.

2. If the eigenvalues are distinct, then the eigenvectors are linearly independent:

N∑

i=1

ciui ≠ 𝟎 (1.281)

for all combinations of {ci}, i = 1, 2,… ,N, not all equal to zero. Therefore, in this case, the eigen-

vectors form a basis in ℝN .



�

� �

�

1.6. The autocorrelation matrix 45

3. The trace of a matrix R is defined as the sum of the elements of the main diagonal, and we indicate

it with tr R. It holds

tr R =
N∑

i=1

𝜆i (1.282)

Eigenvalue analysis for Hermitian matrices

As previously seen, the autocorrelation matrix R is Hermitian, thus enjoys the following properties:

1. The eigenvalues of a Hermitian matrix are real.

By left multiplying both sides of (1.273) by uH
i , it follows

uH
i Rui = 𝜆iuH

i ui (1.283)

from which, by the definition of norm, we obtain

𝜆i =
uH

i Rui

uH
i ui

=
uH

i Rui

‖ui‖
2

(1.284)

The ratio (1.284) is defined as Rayleigh quotient. As R is positive semi-definite, uH
i Rui ≥ 0, from

which 𝜆i ≥ 0.

2. If the eigenvalues of R are distinct, then the eigenvectors are orthogonal. In fact, from (1.273), we

obtain:

uH
i Ruj = 𝜆juH

i uj (1.285)

uH
i Ruj = 𝜆iuH

i uj (1.286)

Subtracting the second equation from the first:

0 = (𝜆j − 𝜆i)uH
i uj (1.287)

and since 𝜆j − 𝜆i ≠ 0 by hypothesis, it follows uH
i uj = 0.

3. If the eigenvalues of R are distinct and their corresponding eigenvectors are normalized, i.e.

‖ui‖
2 = uH

i ui =
{

1 i = j
0 i ≠ j

(1.288)

then the matrix U = [u1,u2,… ,uN], whose columns are the eigenvectors of R, is a unitary matrix,

that is

U−1 = UH (1.289)

This property is an immediate consequence of the orthogonality of the eigenvectors {ui}. More-

over, if we define the matrix

𝚲 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜆1 0 … 0

0 𝜆2 … 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝜆N

⎤
⎥
⎥
⎥
⎥
⎦

(1.290)

we get

UHRU = 𝚲 (1.291)

From (1.291), we obtain the following important relations:

R = U𝚲UH =
N∑

i=1

𝜆iuiuH
i (1.292)



�

� �

�

46 Chapter 1. Elements of signal theory

and

I − 𝜇R = U(I − 𝜇𝚲)UH =
N∑

i=1

(1 − 𝜇𝜆i)uiuH
i (1.293)

4. The eigenvalues of a positive semi-definite autocorrelation matrix R and the PSD of x are related

by the inequalities,

min
f
{x(f )} ≤ 𝜆i ≤ max

f
{x(f )}, i = 1,… ,N (1.294)

In fact, let Ui(f ) be the Fourier transform of the sequence represented by the elements of ui, i.e.

Ui(f ) =
N∑

n=1

ui,ne−j2𝜋fnTc (1.295)

where ui,n is the n-th element of the eigenvector ui. Observing that

uH
i Rui =

N∑

n=1

N∑

m=1

u∗
i,n𝚛x(n − m)ui,m (1.296)

and using (1.172) and (1.295), we have

uH
i Rui = ∫

1

2Tc

− 1

2Tc

x(f )
N∑

n=1

u∗
i,nej2𝜋fnTc

N∑

m=1

ui,me−j2𝜋fmTc df

= ∫
1

2Tc

− 1

2Tc

x(f ) |Ui(f )|2df (1.297)

Substituting the latter result in (1.284) one finds

𝜆i =
∫

1

2Tc

− 1

2Tc

x(f ) |Ui(f )|2df

∫
1

2Tc

− 1

2Tc

|Ui(f )|2df

(1.298)

from which (1.294) follows.

If we indicate with 𝜆min and 𝜆max, respectively, the minimum and maximum eigenvalue of R, in view

of the latter point, we can define the eigenvalue spread as:

𝜒(R) =
𝜆max

𝜆min
≤ maxf {x(f )}

minf {x(f )}
(1.299)

From (1.299), we observe that 𝜒(R) may assume large values in the case x(f ) exhibits large variations.

Moreover, 𝜒(R) assumes the minimum value of 1 for a white process.

1.7 Examples of random processes

Before reviewing some important random processes, we recall the definition of Gaussian complex-

valued random vector.
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Example 1.7.1
A complex r.v. with a Gaussian distribution can be generated from two r.v.s. with uniform distribution

(see Appendix 1.B for an illustration of the method).

Example 1.7.2
Let xT = [x1,… , xN] be a real Gaussian random vector, each component has mean 𝚖xi

and variance 𝜎2
xi

,

denoted as xi ∼  (𝚖xi
, 𝜎2

xi
). The joint probability density function (pdf) is

px(𝝃) = [(2𝜋)N det CN]
− 1

2 e−
1

2
(𝝃−mx)T C−1

N (𝝃−mx) (1.300)

where 𝝃T = [𝜉1,… , 𝜉N], mx = E[x] is the vector of its components’ mean values and

CN = E[(x − mx)(x − mx)T ] is its covariance matrix.

Example 1.7.3
Let xT = [x1,I + jx1,Q,… , xN,I + jxN,Q] be a complex-valued Gaussian random vector. If the in-phase

component xi,I and the quadrature component xi,Q are uncorrelated,

E[(xi,I − 𝚖xi,I
)(xi,Q − 𝚖xi,Q

)] = 0, i = 1, 2,… ,N (1.301)

Moreover, we have

𝜎2
xi,I

= 𝜎2
xi,Q

= 1

2
𝜎2

xi
(1.302)

then the joint pdf is

px(𝝃) = [𝜋N det CN]−1e−(𝝃−mx)H C−1
N (𝝃−mx) (1.303)

with the vector of mean values and the covariance matrix given by

mx = E[x] = E[xI] + jE[xQ] (1.304)

CN = E[(x − mx)(x − mx)H] (1.305)

Vector x is called circularly symmetric Gaussian random vector. For the generic component, we write

xi ∼  (𝚖xi
, 𝜎2

xi
) and

pxi
(𝜉i) =

1
√

2𝜋𝜎2
xi,I

e
−

|𝜉i,I−𝚖xi,I |
2

2𝜎2
xi,I

1
√

2𝜋𝜎2
xi,Q

e
−

|𝜉i,Q−𝚖xi,Q |2

2𝜎2
xi,Q (1.306)

= 1

𝜋𝜎2
xi

e
−

|𝜉i−𝚖xi |
2

𝜎2
xi (1.307)

with 𝜉i = 𝜉i,I + j𝜉i,Q complex valued.

Example 1.7.4
Let xT = [x1,… , xN] = [x1(t1),… , xN(tN)] be a complex-valued Gaussian (vector) process, with each

element xi(ti) having real and imaginary components that are uncorrelated Gaussian r.v.s. whose pdf

is with zero mean and equal variance for all values of ti. The vector x is called circularly symmetric
Gaussian random process. The joint pdf in this case results

px(𝝃) = [𝜋N det C]−1e−𝝃H C−1𝝃 (1.308)

where C is the covariance matrix of [x1(t1), x2(t2),… , xN(tN)].
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Example 1.7.5
Let x(t) = A sin(2𝜋ft + 𝜑) be a real-valued sinusoidal signal with 𝜑 r.v. uniform in [0, 2𝜋), for which we

will use the notation 𝜑 ∼  [0, 2𝜋). The mean of x is

𝚖x(t) = E[x(t)]

= ∫
2𝜋

0

1

2𝜋
A sin(2𝜋ft + a)da (1.309)

= 0

and the autocorrelation function is given by

𝚛x(𝜏) = ∫
2𝜋

0

1

2𝜋
A sin(2𝜋ft + a)A sin[2𝜋f (t − 𝜏) + a]da

= A2

2
cos(2𝜋f 𝜏) (1.310)

Example 1.7.6
Consider the sum of N real-valued sinusoidal signals, i.e.

x(t) =
N∑

i=1

Ai sin(2𝜋fit + 𝜑i) (1.311)

with 𝜑i ∼  [0, 2𝜋) statistically independent, from Example 1.7.5 it is immediate to obtain the mean

𝚖x(t) =
N∑

i=1

𝚖xi
(t) = 0 (1.312)

and the autocorrelation function

𝚛x(𝜏) =
N∑

i=1

A2
i

2
cos(2𝜋fi𝜏) (1.313)

We note that, according to the Definition 1.9, page 31, the process (1.311) is not asymptotically uncor-

related.

Example 1.7.7
Consider the sum of N complex-valued sinusoidal signals, i.e.

x(t) =
N∑

i=1

Ai ej(2𝜋fit+𝜑i) (1.314)

with 𝜑i ∼  [0, 2𝜋) statistically independent. Following a similar procedure to that used in Examples

1.7.5 and 1.7.6, we find

𝚛x(𝜏) =
N∑

i=1

|Ai|
2 ej2𝜋fi𝜏 (1.315)

We note that the process (1.315) is not asymptotically uncorrelated.



�

� �

�

1.7. Examples of random processes 49

hTx
x(k)

T

y(t)

Figure 1.26 Modulator of a PAM system as interpolator filter.

Example 1.7.8
Let the discrete-time random process y(k) = x(k) +𝑤(k) be given by the sum of the random process x
of Example 1.7.7 and white noise 𝑤 with variance 𝜎2

𝑤. Moreover, we assume x and 𝑤 uncorrelated. In

this case,

𝚛y(n) =
N∑

i=1

|Ai|
2 ej2𝜋finTc + 𝜎2

𝑤𝛿n (1.316)

Example 1.7.9
We consider a signal obtained by pulse-amplitude modulation (PAM), expressed as

y(t) =
+∞∑

k=−∞
x(k) hTx(t − kT) (1.317)

The signal y is the output of the system shown in Figure 1.26, where hTx is a finite-energy pulse and

{x(k)} is a discrete-time (with T-spaced samples) WSS sequence, having PSD x(f ). We note that x(f )
is a periodic function of period 1∕T .

Let the deterministic autocorrelation of the signal hTx be

𝚛hTx
(𝜏) = ∫

+∞

−∞
hTx(t)hTx

∗ (t − 𝜏)dt = [hTx(t) ∗ hTx
∗ (−t)](𝜏) (1.318)

with Fourier transform |Tx(f )|2. In general, y is a cyclostationary process of period T . In fact, we have

1. Mean

𝚖y(t) = 𝚖x

+∞∑

k=−∞
hTx(t − kT) (1.319)

2. Correlation

𝚛y(t, t − 𝜏) =
+∞∑

i=−∞
𝚛x(i)

+∞∑

m=−∞
hTx(t − (i + m) T)h∗

Tx(t − 𝜏 − mT) (1.320)

If we introduce the average spectral analysis

−
𝚖y =

1

T ∫
T

0

𝚖y(t) dt = 𝚖xTx(0) (1.321)

𝚛y(𝜏) =
1

T ∫
T

0

𝚛y(t, t − 𝜏)dt = 1

T

+∞∑

i=−∞
𝚛x(i)𝚛hTx

(𝜏 − iT) (1.322)

and

y(f ) =  [𝚛y(𝜏)] =
|
|
|
|

1

T
Tx(f )

|
|
|
|

2x(f ) (1.323)

we observe that the modulator of a PAM system may be regarded as an interpolator filter with

frequency response Tx∕T .
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3. Average power for a white noise input For a white noise input with power 𝙼x, from (1.322), the

average statistical power of the output signal is given by

𝙼y = 𝙼x
Eh

T
(1.324)

where Eh = ∫ +∞
−∞ |hTx(t)|2 dt is the energy of hTx.

4. Moments of y for a circularly symmetric i.i.d. input
Let {x(k)} be a complex-valued random circularly symmetric sequence with zero mean (see (1.301)

and (1.302)), i.e. letting

xI(k) = Re[x(k)], xQ(k) = Im[x(k)] (1.325)

we have

E[x2
I (k)] = E[x2

Q(k)] =
E[|x(k)|2]

2
(1.326)

and

E[xI(k) xQ(k)] = 0 (1.327)

These two relations can be merged into the single expression

E[x2(k)] = E[x2
I (k)] − E[x2

Q(k)] + 2j E[xI(k) xQ(k)] = 0 (1.328)

Filtering the i.i.d. input signal {x(k)} by using the system depicted in Figure 1.26, and from the

relation

𝚛yy∗ (t, t − 𝜏) =
+∞∑

i=−∞
𝚛xx∗ (i)

+∞∑

m=−∞
hTx(t − (i + m)T)hTx(t − 𝜏 − mT) (1.329)

we have

𝚛xx∗ (i) = E[x2(k)]𝛿(i) = 0 (1.330)

and

𝚛yy∗ (t, t − 𝜏) = 0 (1.331)

that is y ⟂ y∗. In particular, we have that y is circularly symmetric, i.e.

E[y2(t)] = 0 (1.332)

We note that the condition (1.331) can be obtained assuming the less stringent condition that x ⟂ x∗;

on the other hand, this requires that the following two conditions are verified

𝚛xI
(i) = 𝚛xQ

(i) (1.333)

and

𝚛xI xQ
(i) = −𝚛xI xQ

(−i) (1.334)

Observation 1.5
It can be shown that if the filter hTx has a bandwidth smaller than 1∕(2T) and {x(k)} is a WSS sequence,

then {y(k)} is WSS with PSD (1.323).

Example 1.7.10
Let us consider a PAM signal sampled with period TQ = T∕Q0, where Q0 is a positive integer number.

Let

yq = y(q TQ), hp = hTx(p TQ) (1.335)
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from (1.317) it follows

yq =
+∞∑

k=−∞
x(k) hq−kQ0

(1.336)

If Q0 ≠ 1, (1.336) describes the input–output relation of an interpolator filter (see (1.536)). We recall the

statistical analysis given in Table 1.6, page 34. We denote with (f ) the Fourier transform (see (1.17))

and with 𝚛h(n) the deterministic autocorrelation (see (1.184)) of the sequence {hp}. We also assume

that {x(k)} is a WSS random sequence with mean 𝚖x and autocorrelation 𝚛x(n). In general, {yq} is a

cyclostationary random sequence of period Q0 with

1. Mean

𝚖y(q) = 𝚖x

+∞∑

k=−∞
hq−kQ0

(1.337)

2. Correlation

𝚛y(q, q − n) =
+∞∑

i=−∞
𝚛x(i)

+∞∑

m=−∞
hq−(i+m)Q0

h∗
q−n−m Q0

(1.338)

By the average spectral analysis, we obtain

𝚖y =
1

Q0

Q0−1∑

q=0

𝚖y(q) = 𝚖x
(0)
Q0

(1.339)

where

(0) =
+∞∑

p=−∞
hp (1.340)

and

𝚛y(n) =
1

Q0

Q0−1∑

q=0

𝚛y(q, q − n) = 1

Q0

+∞∑

i=−∞
𝚛x(i) 𝚛h(n − iQ0) (1.341)

Consequently, the average PSD is given by

y(f ) = TQ  [𝚛y(n)] =
|
|
|
|
|

1

Q0

(f )
|
|
|
|
|

2

x(f ) (1.342)

If {x(k)} is white noise with power 𝙼x, from (1.341) it results

𝚛y(n) = 𝙼x
𝚛h(n)
Q0

(1.343)

In particular, the average power of the filter output signal is given by

𝙼y = 𝙼x
Eh

Q0

(1.344)

where Eh =
∑+∞

p=−∞ |hp|
2 is the energy of {hp}. We point out that the condition 𝙼y = 𝙼x is satisfied if

the energy of the filter impulse response is equal to the interpolation factor Q0.
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gM

y (t0) = gu (t0) + wu (t0)

e–j2π ft0

x(t) = g(t) + w(t)

*( f )
M ( f ) = K

w(f)

t0y(t)

Figure 1.27 Reference scheme for the matched filter.

1.8 Matched filter

Referring to Figure 1.27, we consider a finite-energy signal pulse g in the presence of additive noise 𝑤

having zero mean and PSD 𝑤. The signal

x(t) = g(t) +𝑤(t) (1.345)

is filtered with a filter having impulse response gM . We indicate with gu and𝑤u, respectively, the desired

signal and the noise component at the output:

gu(t) = gM ∗ g(t) (1.346)

𝑤u(t) = gM ∗ 𝑤(t) (1.347)

The output is

y(t) = gu(t) +𝑤u(t) (1.348)

We now suppose that y is observed at a given instant t0. The problem is to determine gM so that the ratio

between the square amplitude of gu(t0) and the power of the noise component 𝑤u(t0) is maximum, i.e.

gM ∶ max
gM

|gu(t0)|2

E[|𝑤u(t0)|2]
(1.349)

The optimum filter has frequency response

M(f ) = K
∗(f )
𝑤(f )e−j2𝜋f t0 (1.350)

where K is a constant. In other words, the best filter selects the frequency components of the desired

input signal and weights them with weights that are inversely proportional to the noise level.

Proof. gu(t0) coincides with the inverse Fourier transform of M(f )(f ) evaluated in t = t0, while the

power of 𝑤u(t0) is equal to

𝚛𝑤u
(0) = ∫

+∞

−∞
𝑤(f )|M(f )|2df (1.351)

Then we have

|gu(t0)|2

𝚛𝑤u
(0)

=

|
|
|
|
|
∫

+∞

−∞
M(f )(f )ej2𝜋f t0 df

|
|
|
|
|

2

∫
+∞

−∞
𝑤(f )|M(f )|2df

=

|
|
|
|
|
|
∫

+∞

−∞
M(f )

√𝑤(f ) (f )
√𝑤(f )

ej2𝜋f t0 df
|
|
|
|
|
|

2

∫
+∞

−∞
𝑤(f )|M(f )|2df

(1.352)
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where the integrand at the numerator was divided and multiplied by
√𝑤(f ). Implicitly, it is assumed

that 𝑤(f ) ≠ 0. Applying the Schwarz inequality14 to the functions

M(f )
√𝑤(f ) (1.355)

and ∗(f )
√𝑤(f )

e−j2𝜋f t0 (1.356)

it turns out

|gu(t0)|2

𝚛𝑤u
(0)

≤ ∫
+∞

−∞

|
|
|
|
|
|

(f )
√𝑤(f )

ej2𝜋f t0
|
|
|
|
|
|

2

df = ∫
+∞

−∞

|
|
|
|
|
|

(f )
√𝑤(f )

|
|
|
|
|
|

2

df (1.357)

Therefore, the maximum value is equal to the right-hand side of (1.357) and is achieved for

M(f )
√𝑤(f ) = K

∗(f )
√𝑤(f )

e−j2𝜋f t0 (1.358)

where K is a constant. From (1.358), the solution (1.350) follows immediately. ◽

White noise case

If 𝑤 is white, then 𝑤(f ) = 𝑤 is a constant and the optimum solution (1.350) becomes

M(f ) = K∗(f )e−j2𝜋f t0 (1.359)

Correspondingly, the filter has impulse response

gM(t) = Kg∗(t0 − t) (1.360)

from which the name of matched filter (MF), i.e. matched to the input signal pulse. The desired signal

pulse at the filter output has the frequency response

u(f ) = K|(f )|2e−j2𝜋f t0 (1.361)

From the definition of the autocorrelation function of pulse g,

𝚛g(𝜏) = ∫
+∞

−∞
g(a)g∗(a − 𝜏)da (1.362)

then, as depicted in Figure 1.28,

gu(t) = K𝚛g(t − t0) (1.363)

i.e. the pulse at the filter output coincides with the autocorrelation function of the pulse g. If Eg is the

energy of g, using the relation Eg = 𝚛g(0) the maximum of the functional (1.349) becomes

|gu(t0)|2

𝚛𝑤u
(0)

=
|K|2𝚛2

g(0)
𝑤|K|2𝚛g(0)

=
Eg

𝑤 (1.364)

14 Given two signals x and y it holds

|
|
|
|∫

∞

−∞
x(t)y∗(t)dt

|
|
|
|

2

≤ ∫
∞

−∞
|x(t)|2dt ∫

∞

−∞
|y(t)|2dt (1.353)

where equality holds if and only if

y(t) = Kx(t) (1.354)

with K a complex constant.
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t0 y(t0)

M
g

gM (t) = Kg*(t0 – t)

x(t) = g(t) + w(t) y(t) = Krg (t – t0) + wu (t)

Figure 1.28 Matched filter for an input pulse in the presence of white noise.

tg

tg

tg

t0 = tg

t0 = 0

–tg

–tg

t0

t0

t0

rg (t)

t

g(t)

0

gM (t)

gM (t)

Figure 1.29 Various pulse shapes related to a matched filter.

In Figure 1.29, the different pulse shapes are illustrated for a signal pulse g with limited duration tg.

Note that in this case, the matched filter has also limited duration, and it is causal if t0 ≥ tg.

Example 1.8.1 (MF for a rectangular pulse)
Let

g(t) = 𝚠T (t) = rect

(
t − T∕2

T

)

(1.365)

with

𝚛g(𝜏) = T
(

1 − |𝜏|

T

)

rect
(
𝜏

2T

)
(1.366)
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For t0 = T , the matched filter is proportional to g

gM(t) = K𝚠T (t) (1.367)

and the output pulse in the absence of noise is equal to

gu(t) = KT
(

1 −
|
|
|
|

t − T
T

|
|
|
|

)

rect
( t − T

2T

)
(1.368)

1.9 Ergodic random processes

The functions that have been introduced in the previous sections for the analysis of random processes

give a valid statistical description of an ensemble of realizations of a random process. We investigate now

the possibility of moving from ensemble averaging to time averaging, that is we consider the problem

of estimating a statistical descriptor of a random process from the observation of a single realization.

Let x be a discrete-time WSS random process having mean 𝚖x. If in the limit it holds15

lim
K→∞

1

K

K−1∑

k=0

x(k) = E[x(k)] = 𝚖x (1.369)

then x is said to be ergodic in the mean. In other words, for when the above limit holds, the time-average

of samples tends to the statistical mean as the number of samples increases. We note that the existence

of the limit (1.369) implies the condition

lim
K→∞

E
⎡
⎢
⎢
⎣

|
|
|
|
|
|

1

K

K−1∑

k=0

x(k) − 𝚖x

|
|
|
|
|
|

2⎤
⎥
⎥
⎦

= 0 (1.370)

or equivalently

lim
K→∞

1

K

K−1∑

n=−(K−1)

[

1 − |n|
K

]

𝚌x(n) = 0 (1.371)

From (1.371), we see that for a random process to be ergodic in the mean, some conditions on the

second-order statistics must be verified. Analogously to definition (1.369), we say that x is ergodic in
correlation if in the limits it holds:

lim
K→∞

1

K

K−1∑

k=0

x(k)x∗(k − n) = E[x(k)x∗(k − n)] = 𝚛x(n) (1.372)

Also for processes that are ergodic in correlation, one could get a condition of ergodicity similar to

that expressed by the limit (1.371). Let y(k) = x(k)x∗(k − n). Observing (1.372) and (1.369), we find that

the ergodicity in correlation of the process x is equivalent to the ergodicity in the mean of the process y.

Therefore, it is easy to deduce that the condition (1.371) for y translates into a condition on the statistical

moments of the fourth order for x.

In practice, we will assume all stationary processes to be ergodic; ergodicity is however difficult

to prove for non-Gaussian random processes. We will not consider particular processes that are not

ergodic such as x(k) = A, where A is a random variable, or x(k) equal to the sum of sinusoidal signals

(see (1.311)).

15 The limit is meant in the mean square sense, that is the variance of the r.v.
(

1

K

∑K−1

k=0
x(k) − 𝚖x

)
vanishes for K → ∞.
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x( f ) = lim E
K

K–1 2K–1

k=0 k=0KTc
K Tc x(k)e–j2 πfk Tc11

+∞

x(n) = lim x(k)x* (k–n)
K +∞

∑

x ( f) = 
+ ∞

n = –∞

Tc x(n)e–j2 πfn Tc∑

∑

ACS

  x(n)
PSD
x( f )

Signal
{x(k)}

Fourier transform

Figure 1.30 Relation between ergodic processes and their statistical description.

The property of ergodicity assumes a fundamental importance if we observe that from a single Real-

ization, it is possible to obtain an estimate of the autocorrelation function, and from this, the PSD.

Alternatively, one could prove that under the hypothesis16

+∞∑

n=−∞
|n| 𝚛x(n) < ∞ (1.373)

the following limit holds:

lim
K→∞

E
⎡
⎢
⎢
⎣

1

KTc

|
|
|
|
|
|

Tc

K−1∑

k=0

x(k) e−j2𝜋fkTc

|
|
|
|
|
|

2⎤
⎥
⎥
⎦

= x(f ) (1.374)

Then, exploiting the ergodicity of a WSS random process, one obtains the relations among the process

itself, its autocorrelation function, and PSD shown in Figure 1.30. We note how the direct computation of

the PSD, given by (1.374), makes use of a statistical ensemble of the Fourier transform of the process x,

while the indirect method via ACS makes use of a single realization.

If we let

̃KTc
(f ) = Tc  [x(k) 𝚠K(k)] (1.375)

where 𝚠K is the rectangular window of length K (see (1.401)) and Td = KTc, (1.374) becomes

x(f ) = lim
Td→∞

E[|̃Td
(f )|2]

Td
(1.376)

The relation (1.376) holds also for continuous-time ergodic random processes, where ̃Td
(f ) denotes

the Fourier transform of the windowed realization of the process, with a rectangular window of

duration Td.

16 We note that for random processes with non-zero mean and/or sinusoidal components this property is not verified.

Therefore, it is usually recommended that the deterministic components of the process be removed before the spectral

estimation is performed.
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1.9.1 Mean value estimators

Given the random process {x(k)}, we wish to estimate the mean value of a related process {y(k)}: for

example to estimate the statistical power of x we set y(k) = |x(k)|2, while for the estimation of the cor-

relation of x with lag n, we set y(k) = x(k)x∗(k − n). Based on a realization of {y(k)}, from (1.369) an

estimate of the mean value of y is given by the expression

𝚖̂y =
1

K

K−1∑

k=0

y(k) (1.377)

In fact, (1.377) attempts to determine the average component of the signal {y(k)}. As illustrated in

Figure 1.31a, in general, we can think of extracting the average component of {y(k)} using an LPF

filter h having unit gain, i.e. (0) = 1, and suitable bandwidth B. Let K be the length of the impulse

response with support from k = 0 to k = K − 1. Note that for a unit step input signal, the transient part

of the output signal will last K − 1 time instants. Therefore, we assume

𝚖̂y = z(k) = h ∗ y(k) for k ≥ K − 1 (1.378)

We now compute the mean and variance of the estimate. From (1.378), the mean value is given by

E[𝚖̂y] = 𝚖y(0) = 𝚖y (1.379)

as (0) = 1. Using the expression in Table 1.6 of the correlation of a filter output signal given the input,

the variance of the estimate is given by

var[𝚖̂y] = 𝜎2
y =

+∞∑

n=−∞
𝚛h(−n)𝚌y(n) (1.380)

Assuming

S =
+∞∑

n=−∞
|𝚌y(n)| = 𝜎2

y

+∞∑

n=−∞

|𝚌y(n)|

𝜎2
y

<∞ (1.381)

and being |𝚛h(n)| ≤ 𝚛h(0), the variance in (1.380) is bounded by

var[𝚖̂y] ≤ EhS (1.382)

where Eh = 𝚛h(0).
For an ideal lowpass filter,

(f ) = rect

(
f

2B

)

, |f | < 1

2Tc
(1.383)

assuming as filter length K that of the principal lobe of {h(k)}, and neglecting a delay factor, it results

as Eh = 2B and K ≃ 1∕B. Introducing the criterion that for a good estimate, it must be

var [𝚖̂y] ≤ 𝜀 (1.384)

with 𝜀 ≪ |𝚖y|
2, from (1.382) it follows

B ≤ 𝜀

2S
(1.385)

and

K ≥ 2S
𝜀

(1.386)

In other words, from (1.381) and (1.386), for a fixed 𝜀, the length K of the filter impulse response

must be larger, or equivalently the bandwidth B must be smaller, to obtain estimates for those processes

{y(k)} that exhibit larger variance and/or larger correlation among samples. Because of their simple

implementation, two commonly used filters are the rectangular window and the exponential filter, whose

impulse responses are shown in Figure 1.31.
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Figure 1.31 (a) Time average as output of a narrow band lowpass filter. (b) Typical impulse
responses: exponential filter with parameter a = 1 − 2−5 and rectangular window with K = 33.
(c) Corresponding frequency responses.

Rectangular window

For a rectangular window,

h(k) =
⎧
⎪
⎨
⎪
⎩

1

K
k = 0, 1,… ,K − 1

0 elsewhere

(1.387)

the frequency response is given by (see (1.24))

(f ) = e−j2𝜋f
(

K−1

2

)
Tc sincK(fKTc) (1.388)
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We have Eh = 1∕K and, adopting as bandwidth the frequency of the first zero of |(f )|, B = 1∕(KTc).
The filter output is given by

z(k) =
K−1∑

n=0

1

K
y(k − n) (1.389)

that can be expressed as

z(k) = z(k − 1) +
y(k) − y(k − K)

K
(1.390)

Exponential filter

For an exponential filter

h(k) =
{

(1 − a)ak k ≥ 0

0 elsewhere
(1.391)

with |a| < 1, the frequency response is given by

(f ) = 1 − a
1 − ae−j2𝜋f Tc

(1.392)

Moreover, Eh = (1 − a)∕(1 + a) and, adopting as length of h the time constant of the filter, i.e. the inter-

val it takes for the amplitude of the impulse response to decrease of a factor e,

K − 1 = 1

ln 1∕a
≃ 1

1 − a
(1.393)

where the approximation holds for a ≃ 1. The 3 dB filter bandwidth is equal to

B = 1 − a
2𝜋

1

Tc
for a > 0.9 (1.394)

The filter output has a simple expression given by the recursive equation

z(k) = az(k − 1) + (1 − a) y(k) (1.395)

We note that choosing a as

a = 1 − 2−l (1.396)

then (1.395) becomes

z(k) = z(k − 1) + 2−l(y(k) − z(k − 1)) (1.397)

whose computation requires only two additions and one shift of l bits. Moreover, from (1.393), the filter

time constant is given by

K − 1 = 2l (1.398)

General window

In addition to the two filters described above, a general window can be defined as

h(k) = A𝚠(k) (1.399)

with {𝚠(k)} window17 of length K. Factor A in (1.399) is introduced to normalize the area of h to 1.

We note that, for random processes with slowly time-varying statistics, (1.390) and (1.397) give an

expression to update the estimates.

17 We define the continuous-time rectangular window with duration Td as

𝚠Td
(t) = rect

( t − Td∕2

Td

)

=
{

1 0 < t < Td
0 elsewhere

(1.400)

Commonly used discrete-time windows are:
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1.9.2 Correlation estimators

Let {x(k)}, k = 0, 1,… ,K − 1, be a realization of a random process with K samples. We examine two

estimates.

Unbiased estimate

The unbiased estimate

𝚛̂x(n) =
1

K − n

K−1∑

k=n
x(k)x∗(k − n) n = 0, 1,… ,K − 1 (1.405)

has mean

E[𝚛̂x(n)] =
1

K − n

K−1∑

k=n
E[x(k)x∗(k − n)] = 𝚛x(n) (1.406)

If the process is Gaussian, one can show that the variance of the estimate is approximately given by

var[𝚛̂x(n)] ≃
K

(K − n)2

+∞∑

m=−∞
[𝚛2

x(m) + 𝚛x(m + n)𝚛x(m − n)] (1.407)

from which it follows

var [𝚛̂x(n)] −−−−→K→∞
0 (1.408)

The above limit holds for n ≪ K. Note that the variance of the estimate increases with the correlation

lag n.

Biased estimate

The biased estimate

𝚛̌x(n) =
1

K

K−1∑

k=n
x(k)x∗(k − n) =

(

1 − |n|
K

)

𝚛̂x(n) (1.409)

1. Rectangular window

𝚠(k) = 𝚠D(k) =
{

1 k = 0, 1,… ,D − 1

0 elsewhere
(1.401)

where D denotes the length of the rectangular window expressed in number of samples.

2. Raised cosine or Hamming window

𝚠(k) =
⎧
⎪
⎨
⎪
⎩

0.54 + 0.46 cos

(

2𝜋
k − D−1

2

D − 1

)

k = 0, 1,… ,D − 1

0 elsewhere

(1.402)

3. Hann window

𝚠(k) =
⎧
⎪
⎨
⎪
⎩

0.50 + 0.50 cos

(

2𝜋
k − D−1

2

D − 1

)

k = 0, 1,… ,D − 1

0 elsewhere

(1.403)

4. Triangular or Bartlett window

𝚠(k) =
⎧
⎪
⎨
⎪
⎩

1 − 2

|
|
|
|
|
|

k − D−1

2

D − 1

|
|
|
|
|
|

k = 0, 1,… ,D − 1

0 elsewhere

(1.404)
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has mean satisfying the following relations:

E[𝚛̌x(n)] =
(

1 − |n|
K

)

𝚛x(n) −−−−→K→∞
𝚛x(n) (1.410)

Unlike the unbiased estimate, the mean of the biased estimate is not equal to the autocorrelation function,

but approaches it as K increases. Note that the biased estimate differs from the autocorrelation function

by one additive constant, denoted as bias:

𝜇bias = E[𝚛̌x(n)] − 𝚛x(n) (1.411)

For a Gaussian process, the variance of the biased estimate is

var[𝚛̌x(n)] =
(

K − |n|
K

)2

var[𝚛̂x(n)] ≃
1

K

+∞∑

m=−∞
[𝚛2

x(m) + 𝚛x(m + n)𝚛x(m − n)] (1.412)

In general, the biased estimate of the ACS exhibits a mean-square error18 larger than the unbiased,

especially for large values of n. It should also be noted that the estimate does not necessarily yield

sequences that satisfy the properties of autocorrelation functions: for example the following property

may not be verified:

𝚛̂x(0) ≥ |𝚛̂x(n)|, n ≠ 0 (1.414)

1.9.3 Power spectral density estimators

After examining ACS estimators, we review some spectral density estimation methods.

Periodogram or instantaneous spectrum

Let ̃(f ) = Tc(f ), where (f ) is the Fourier transform of {x(k)}, k = 0,… ,K − 1; an estimate of the

statistical power of {x(k)} is given by

𝙼̂x =
1

K

K−1∑

k=0

|x(k)|2 = 1

KTc ∫
1

2Tc

− 1

2Tc

|̃(f )|2 df (1.415)

using the properties of the Fourier transform (Parseval theorem). Based on (1.415), a PSD estimator

called periodogram is given by

PER(f ) =
1

KTc
|̃(f )|2 (1.416)

We can write (1.416) as

PER(f ) = Tc

K−1∑

n=−(K−1)
𝚛̌x(n) e−j2𝜋fnTc (1.417)

18 For example, for the estimator (1.405) the mean-square error is defined as

E
[
|𝚛̂x(n) − 𝚛x(n)|

2
]
= var[𝚛̂x(n)] + |𝜇bias|

2 (1.413)
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and, consequently,

E[PER(f )] = Tc

K−1∑

n=−(K−1)
E[𝚛̌x(n)]e−j2𝜋fnTc

= Tc

K−1∑

n=−(K−1)

(

1 − |n|
K

)

𝚛x(n)e−j2𝜋fnTc (1.418)

= TcB ∗ x(f )

where B(f ) is the Fourier transform of the symmetric Bartlett window

𝚠B(n) =

{
1 − |n|

K
|n| ≤ K − 1

0 |n| > K − 1
(1.419)

and

B(f ) = K [sincK(fkTc)]2 (1.420)

We note the periodogram estimate is affected by bias for finite K. Moreover, it also exhibits a large

variance, as PER(f ) is computed using the samples of 𝚛̌x(n) even for lags up to K − 1, whose variance

is very large.

Welch periodogram

This method is based on applying (1.374) for finite K. Given a sequence of K samples, different subse-

quences of consecutive D samples are extracted. Subsequences may partially overlap. Let x(s) be the s-th

subsequence, characterized by S samples in common with the preceding subsequence x(s−1) and with

the following one x(s+1). In general, 0 ≤ S ≤ D∕2, with the choice S = 0 yielding subsequences with no

overlap and therefore with less correlation. The number of subsequences Ns is19

Ns =
⌊K − D

D − S
+ 1

⌋
(1.421)

Let 𝚠 be a window (see footnote 17 on page 59) of D samples: then

x(s)(k) = 𝚠(k) x(k + s(D − S)), k = 0, 1,… ,D − 1 s = 0, 1,… ,Ns − 1 (1.422)

For each s, compute the Fourier transform

̃ (s)(f ) = Tc

D−1∑

k=0

x(s)(k)e−j2𝜋fkTc (1.423)

and obtain

 (s)
PER(f ) =

1

DTc𝙼𝚠
|̃ (s)(f )|2 (1.424)

where

𝙼𝚠 = 1

D

D−1∑

k=0

𝚠2(k) (1.425)

is the normalized energy of the window. As a last step, for each frequency, average the periodograms:

WE(f ) =
1

Ns

Ns−1∑

s=0

 (s)
PER(f ) (1.426)

19 The symbol ⌊a⌋ denotes the function floor, that is the largest integer smaller than or equal to a. The symbol ⌈a⌉
denotes the function ceiling, that is the smallest integer larger than or equal to a.



�

� �

�

1.9. Ergodic random processes 63

The mean of the estimate is given by

E[WE(f )] = Tc[||2 ∗ x](f ) (1.427)

where

(f ) =
D−1∑

k=0

𝚠(k)e−j2𝜋fkTc (1.428)

Assuming the process Gaussian and the different subsequences statistically independent, we get20

var[WE(f )] ∝
1

Ns
2

x (f ) (1.429)

Note that the partial overlap introduces correlation between subsequences. From (1.429), we see that

the variance of the estimate is reduced by increasing the number of subsequences. In general, D must

be large enough so that the generic subsequence represents the process21 and also Ns must be large to

obtain a reliable estimate (see (1.429)); therefore, the application of the Welch method requires many

samples.

Blackman and Tukey correlogram

For an unbiased estimate of the ACS, {𝚛̂x(n)}, n = −L,… ,L, consider the Fourier transform

BT (f ) = Tc

L∑

n=−L
𝚠(n)𝚛̂x(n) e−j2𝜋fnTc (1.430)

where 𝚠 is a window22 of length 2L + 1, with 𝚠(0) = 1. If K is the number of samples of the realization

sequence, we require that L ≤ K∕5 to reduce the variance of the estimate. Then if the Bartlett window

(1.420) is chosen, one finds that BT (f ) ≥ 0.

In terms of the mean value of the estimate, we find

E[BT (f )] = Tc( ∗ x)(f ) (1.431)

For a Gaussian process, if the Bartlett window is chosen, the variance of the estimate is given by

var[BT (f )] =
1

K
2

x (f )E𝚠 = 2

3

L
K
2

x (f ) (1.432)

Windowing and window closing

The windowing operation of time sequence in the periodogram, and of the ACS in the correlogram, has

a strong effect on the performance of the estimate. In fact, any truncation of a sequence is equivalent to a

windowing operation, carried out via the rect function. The choice of the window type in the frequency

domain depends on the compromise between a narrow central lobe (to reduce smearing) and a fast decay

of secondary lobes (to reduce leakage). Smearing yields a lower spectral resolution, that is the capability

to distinguish two spectral lines that are close. On the other hand, leakage can mask spectral components

that are further apart and have different amplitudes.

The choice of the window length is based on the compromise between spectral resolution and the vari-

ance of the estimate. An example has already been seen in the correlogram, where the condition L ≤ K∕5

must be satisfied. Another example is the Welch periodogram. For a given observation of K samples, it is

20 Notation a ∝ b means that a is proportional to b.
21 For example, if x is a sinusoidal process, DTc must at least be greater than 5 or 10 periods of x.
22 The windows used in (1.430) are the same introduced in footnote 17: the only difference is that they are now centered

around zero instead of (D − 1)∕2. To simplify the notation, we will use the same symbol in both cases.
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initially better to choose a small number of samples over which to perform the DFT, and therefore a large

number of windows (subsequences) over which to average the estimate. The estimate is then repeated

by increasing the number of samples per window, thus decreasing the number of windows. In this way,

we get estimates with not only a higher resolution but also characterized by an increasing variance. The

procedure is terminated once it is found that the increase in variance is no longer compensated by an

increase in the spectral resolution. The aforementioned method is called window closing.

Example 1.9.1
Consider a realization of K = 10 000 samples of the signal:

y(kTc) =
1

Ah

16∑

n=−16

h(nTc)𝑤((k − n)Tc) + A1 cos(2𝜋f1kTc + 𝜑1) + A2 cos(2𝜋f2kTc + 𝜑2) (1.433)

where 𝜑1, 𝜑2 ∼  [0, 2𝜋),𝑤(nTc) is a white random process with zero mean and variance 𝜎2
𝑤 = 5, Tc =

0.2, A1 = 1∕20, f1 = 1.5, A2 = 1∕40, f2 = 1.75, and

Ah =
16∑

−16

h(kTc) (1.434)

Moreover

h(kTc) =
sin

(

𝜋(1 − 𝜌)
kTc

T

)

+ 4𝜌
kTc

T
cos

(

𝜋(1 + 𝜌)
kTc

T

)

𝜋

[

1 −
(

4𝜌
kTc

T

)2
]

kTc

T

rect

( kTc

8T + Tc

)

(1.435)

with T = 4Tc and 𝜌 = 0.32.

Actually y is the sum of two sinusoidal signals and filtered white noise through h. Consequently,

observing (1.188) and (1.313),

y(f ) = 𝜎2
𝑤 Tc

|(f )|2

A2
h

+
A2

1

4
(𝛿(f − f1) + 𝛿(f + f1))

+
A2

2

4
(𝛿(f − f2) + 𝛿(f + f2)) (1.436)

where (f ) is the Fourier transform of {h(kTc)}.

The shape of the PSD in (1.436) is shown in Figures 1.32–1.34 as a solid line. A Dirac impulse is

represented by an isosceles triangle having a base equal to twice the desired frequency resolution Fq.

Consequently, a Dirac impulse, for example of area A2
1
∕4 will have a height equal to A2

1
∕(4Fq), thus,

maintaining the equivalence in statistical power between different representations.

We now compare several spectral estimates, obtained using the previously described methods; in

particular, we will emphasize the effect on the resolution of the type of window used and the number of

samples for each window.

We state beforehand the following important result. Windowing a complex sinusoidal signal {ej2𝜋f1kTc}
with {w(k)} produces a signal having Fourier transform equal to (f − f1), where (f ) is the Fourier

transform of 𝑤. Therefore, in the frequency domain, the spectral line of a sinusoidal signal becomes a

signal with shape (f ) centred around f1.

In general, from (1.424), the periodogram of a real sinusoidal signal with amplitude A1 and frequency

f1 is

PER(f ) =
Tc

D𝙼𝚠

(
A1

2

)2

|(f − f1) +(f + f1)|2 (1.437)
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Figure 1.32 Comparison between spectral estimates obtained with Welch periodogram method,
using the Hamming or the rectangular window, and the analytical PSD given by (1.436).

Figure 1.32 shows, in addition to the analytical PSD (1.436), the estimate obtained by the Welch

periodogram method using the Hamming or the rectangular windows. Parameters used in (1.423) and

(1.426) are: D = 1000, Ns = 19, and 50% overlap between windows. We observe that the use of the

Hamming window yields an improvement of the estimate due to less leakage. Likewise Figure 1.33

shows how the Hamming window also improves the estimate carried out with the correlogram; in par-

ticular, the estimates of Figure 1.33 were obtained using in (1.430) L = 500. Lastly, Figure 1.34 shows

how the resolution and the variance of the estimate obtained by the Welch periodogram vary with the

parameters D and Ns, using the Hamming window. Note that by increasing D, and hence decreasing Ns,

both resolution and variance of the estimate increase.

1.10 Parametric models of random processes

ARMA

Let us consider the realization of a random process x according to the auto-regressive moving average
(ARMA) model illustrated in Figure 1.35. In other words, the process x, also called observed sequence,

is the output of an IIR filter having as input white noise with variance 𝜎2
𝑤 , and is given by the recursive
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Figure 1.33 Comparison between spectral estimates obtained with the correlogram using the
Hamming or the rectangular window, and the analytical PSD given by (1.436).

equation23

x(k) = −
p∑

n=1

𝚊nx(k − n) +
q∑

n=0

𝚋n𝑤(k − n) (1.438)

and the model is denoted as ARMA(p, q).
Rewriting (1.438) in terms of the filter impulse response hARMA, we find in general

x(k) =
+∞∑

n=0

hARMA(n)𝑤(k − n) (1.439)

which indicates that the filter used to realize the ARMA model is causal. From (1.63), one finds that

the filter transfer function is given by

HARMA(z) =
B(z)
A(z)

where

⎧
⎪
⎪
⎨
⎪
⎪
⎩

B(z) =
q∑

n=0

𝚋nz−n

A(z) =
p∑

n=0

𝚊nz−n assuming 𝚊0 = 1

(1.440)

Using (1.188), the PSD of the process x is given by

x(f ) = Tc𝜎
2
𝑤

|
|
|
|

(f )
(f )

|
|
|
|

2

where

{(f ) = B(ej2𝜋f Tc )
(f ) = A(ej2𝜋f Tc ) (1.441)

23 In a simulation of the process, the first samples x(k) generated by (1.438) should be neglected because they depend

on the initial conditions. Specifically, if NARMA is the length of the filter impulse response hARMA, the minimum number

of samples to be ignored is NARMA − 1, equal to the filter transient.


