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Modern Computational Finance

c omputational concerns, the ability to calculate values and risks of deriva-
tives portfolios practically and in reasonable time, have always been a
major part of quantitative finance. With the rise of bank-wide regulatory
simulations like CVA and capital requirements, it became a matter of sur-
vival. Modern computational finance makes the difference between calculat-
ing CVA risk overnight in large data centers and praying that they complete
by morning, or in real-time, within minutes on a workstation.

K@OBENHAVNS
UNIVERSITET

Computational finance became a key skill, now expected from all quan-
titative analysts, developers, risk professionals, and anyone involved with
financial derivatives. It is increasingly taught in masters programs in finance,
such as the Copenhagen University’s MSc Mathematics - Economics, where
this publication is the curriculum in numerical finance.

Bank

Danske Bank’s quantitative research built its front office and regulatory
systems combining technologies such as model hierarchies, scripting of trans-
actions, parallel Monte-Carlo, a special application of regression proxies,
and Automatic Adjoint Differentiation (AAD).

In 2015, Danske Bank demonstrated the computation of a sizeable CVA
on a laptop in seconds, and its full market risk in minutes, without loss of
accuracy, and won the In-House System of the Year Risk award.
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Wiley’s Computational Finance series, written by some of the very
people who wrote Danske Bank’s systems, offers a unique insight into
the modern implementation of financial models. The volumes combine
financial modeling, mathematics, and programming to resolve real-life
financial problems and produce effective derivatives software.

The scientific, financial, and programming notions are developed in a
pedagogical, self-contained manner. The publications are inseparable from
the professional source code in C++ that comes with them. The books build
the libraries step by step and the code demonstrates the practical application
of the concepts discussed in the publications.

This is an essential reading for developers and analysts, risk managers,
and all professionals involved with financial derivatives, as well as students
and teachers in Masters and PhD programs in finance.

ALGORITHMIC ADJOINT DIFFERENTIATION

This volume is written by Antoine Savine, who co-wrote Danske Bank’s par-
allel simulation and AAD engines, and teaches volatility and computational
finance in Copenhagen University’s MSc Mathematics - Economics.

Arguably the strongest addition to numerical finance of the past decade,
Algorithmic Adjoint Differentiation (AAD) is the technology implemented in
modern financial software to produce thousands of accurate risk sensitivities
within seconds on light hardware. AAD is one of the greatest algorithms of
the 20th century. It is also notoriously hard to learn.

This book offers a one-stop learning and reference resource for AAD,
its practical implementation in C++, and its application in finance. AAD
is explained step by step across chapters that gently lead readers from the
theoretical foundations to the most delicate areas of an efficient implemen-
tation, such as memory management, parallel implementation, and acceler-
ation with expression templates.

The publication comes with a self-contained, complete, general-purpose
implementation of AAD in standard modern C++. The AAD library builds
on the latest advances in AAD research to achieve remarkable speed. The
code is incrementally built throughout the publication, where all the imple-
mentation details are explained.
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The publication also covers the application of AAD to financial deriva-
tives and the design of generic, parallel simulation libraries. Readers with
working knowledge of derivatives and C++ will benefit most, although the
book does cover modern and parallel C++.

The book comes with a professional parallel simulation library in
C++, connected to AAD. Some of the most delicate applications of AAD to
finance, such as the differentiation through calibration, are also explained
in words, mathematics, and code.
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t is now 2018, and the global quant community is realizing that size does

matter: big data, big models, big computing grids, big computations — and
a big regulatory rulebook to go along with it all. Not to speak of the big
headaches that all this has induced across Wall Street.

The era of “big finance” has been creeping up on the banking industry
gradually since the late 1990s, and got a boost when the Financial Crisis
of 2007-2009 exposed a variety of deep complexities in the workings of
financial markets, especially in periods of stress. Not only did this lead to
more complicated models and richer market data with an explosion of basis
adjustments, it also emphasized the need for more sophisticated governance
as well as quoting and risk managements practices. One poster child for these
developments is the new market practice of incorporating portfolio-level
funding, margin, liquidity, capital, and credit effects (collectively known as
“XVAs”) into the prices of even the simplest of options, turning the pre-
viously trivial exercise of pricing, say, a plain-vanilla swap into a cross-
asset high-dimensional modeling problem that requires PhD-level expertise
in computing and model building. Regulators have contributed to the trend
as well, with credit capital calculation requirements under Basel 3 rules that
are at the same level of complexity as XVA calculations, and with the trans-
parency requirements of MiFID II requiring banks to collect and disclose
vast amounts of trade data.

To get a quick sense of the computational effort involved in a basic XVA
calculation, consider that such a computation typically involves path-wise
Monte Carlo simulation of option trade prices through time, from today’s
date to the final maturity of the trades. Let us say that 10,000 simulations are
used, running on a monthly grid for 10 years. As a good-sized bank proba-
bly has in the neighborhood of 1,000,000 options on its books, calculating
a single XVA adjustment on the bank’s derivatives holding will involve in
the order of 10° - 10 - 12 - 10° &~ 10'! option re-pricings, on top of the often
highly significant effort of executing the Monte Carlo simulation of mar-
ket data required for pricing in the first place. Making matters significantly
worse is then the fact that the traders and risk managers looking after the
XVA positions will always require that sensitivities (i.e., partial derivatives)
with respect to key risk factors in the market data are returned along with the
XVA number itself. For complex portfolios, the number of sensitivities that

Xv
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one needs to compute can easily be in the order of 10%; if these are computed
naively (e.g., by finite difference approximations), the number of option re-
pricings needed will then grow to a truly unmanageable order of 10'%.

There are many interesting ways of chipping away at the practical prob-
lems of XVA calculations, but let us focus on the burdens associated with the
computation of sensitivities, for several reasons. First, sensitivities constitute
a perennial problem in the quant world: whenever one computes some quan-
tity, odds are that somebody in a trading or governance function will want
to see sensitivities of said quantity to the inputs that are used in the com-
putation, for limit monitoring, hedging, allocation, sanity checking, and so
forth. Second, having input sensitivities available can be very powerful in an
optimization setting. One rapidly growing area of “big finance” where opti-
mization problems are especially pervasive is in the machine learning space,
an area that is subject to enormous interest at the moment. And third, it just
happens that there exists a very powerful technique to reduce the computa-
tional burden of sensitivity calculations to almost magically low levels.

To expand on the last point above, let us note the following quote by
Phil Wolfe ([1]):

There is a common misconception that calculating a function of n
variables and its gradient is about n+ 1 times as expensive as just
calculating the function. This will only be true if the gradient is eval-
uated by differencing function values or by some other emergency
procedure. If care is taken in bandling quantities, which are com-
mon to the function and its derivatives, the ratio is usually 1.5, not
n+ 1, whether the quantities are defined explicitly or implicitly, for
example, the solutions of differential equations...

The “care” in “handling quantities” that Wolfe somewhat cryptically
refers to is now known as Algorithmic Adjoint Differentiation (AAD), also
known as reverse automatic differentiation or, in machine learning circles,
as backward propagation (or simply backprop). Translated into our XVA
example, the promise of the “cheap gradient” principle underpinning AAD is
that computation of all sensitivities to the XVA metric —no matter how many
thousands of sensitivities this might be — may be computed at a cost that is
order O(1) times the cost of computing the basic XVA metric itself. It can be
shown (see [2]) that the constant in the @(1) term is bounded from above
by 5. To paraphrase [3], this remarkable result can be seen as somewhat of
a “holy grail” of sensitivity computation.

The history of AAD is an interesting one, marked by numerous discover-
ies and re-discoveries of the same basic idea which, despite its profoundness,

INick Trefethen [4] classifies AAD as one of the 30 greatest numerical algorithms of
the 20th century.
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has had a tendency of sliding into oblivion; see [3] for an entertaining and
illuminating account. The first descriptions of AAD date back to the 1960s,
if not earlier, but did not take firm hold in the computer science community
before the late 1980s. In Finance, the first published account took another
20 years to arrive, in the form of the award-winning paper [5].

As one starts reading the literature, it soon becomes clear why AAD
originally had a hard time getting a foothold: the technique is hard to com-
prehend; is often hidden behind thick computer science lingo or is buried
inside applications that have little general interest.? Besides, even if one man-
ages to understand the ideas behind the method, there are often formidable
challenges in actually implementing AAD in code, especially with manage-
ment of memory or retro-fitting AAD into an existing code library.

The book you hold in your hands addresses the above challenges of
AAD head-on. Written by a long-time derivatives quant, Antoine Savine, the
exposition is done at a level, and in an applications setting, that is ideal for a
Finance audience. The conceptual, mathematical, and computational ideas
behind AAD are patiently developed in a step-by-step manner, where the
many brain-twisting aspects of AAD are demystified. For real-life application
projects, the book is loaded with modern C++ code and battle-tested advice
on how to get AAD to run for real.

Select topics include: parallel C++ programming, operator overloading,
tapes, check-pointing, model calibration, and much more. For both new-
comers and those quaint exotics quants among us who need an upgrade to
our coding skills and to our understanding of AAD, my advice is this: start
reading!

2Some of the early expositions of AAD took place in the frameworks of chemical
engineering, electronic circuits, weather forecasting, and compiler optimization.
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Introduction

n the aftermath of the global financial crisis of 2008, massive regulations

were imposed on investment banks, forcing them to conduct frequent,
heavy regulatory calculations. While these regulations made it harder for
banks to conduct derivatives businesses, they also contributed to a new
golden age of computational finance.

A typical example of regulatory calculation is the CVA (Counterparty
Value Adjustment),! an estimation of the loss subsequent to a future default
of a counterparty when the value of the sum of all transactions against that
counterparty (called netting set) is positive, and, therefore, lost. The CVA is
actually the value of a real option a bank gives away whenever it trades with
a defaultable counterparty. This option is a put on the netting set, contingent
on default. It is an exotic option, and a particularly complex one, since the
underlying asset is the netting set, consisting itself in thousands of transac-
tions, some of which may be themselves optional or exotic. In addition, the
netting set typically includes derivatives transactions in different currencies
on various underlying assets belonging to different asset classes. Options
on a set of heterogeneous underlying assets are known to the derivatives
industry and called hybrid options. Investment banks’ quantitative research
departments actively developed hybrid models and related numerical imple-
mentations in the decade 1998-2008 for the risk management of very prof-
itable transactions like Callable Reverse Power Duals (CRPD) in Japan.

The specification, calibration, and simulation of hybrid models are
essentially well known; see, for example, [7], [8], and [9]. What is unprece-
dented is the vast number of cash flows and the high dimension of the
simulation. With a naive implementation, the CVA on a large netting set
can take minutes or even hours to calculate.

In addition, the market and credit risk of the CVA must be hedged.
The CVA is a cost that impacts the revenue and balance sheet of the bank,
and its value may change by hundreds of millions when financial and credit
markets move. In order to hedge the CVA, it is not enough to compute it.

We have a lot of similar regulatory calculations, collectively known as xVA. The
capital charge for derivatives businesses and the cost of that capital are also part of
these calculations.

XXi
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All its sensitivities to market variables must also be produced. And a CVA is
typically sensitive to thousands of market variables: all the underlying assets
that affect the netting set, all the rate and spread curves and volatility sur-
faces for all the currencies involved, as well as all the foreign exchange rates
and their volatility surfaces, and, of course, all the credit curves. In order
to compute all these risks with traditional finite differences, the valuation
of the CVA must be repeated thousands of times with inputs bumped one
by one.

This is of course not viable, so investment banks first implemented crude
approximations, at the expense of accuracy, and distributed calculations
over large data centres, incurring massive hardware, development, and main-
tenance costs.

Calculation speed became a question of survival, and banks had to find
new methodologies and paradigms, at the junction of mathematics, numer-
ics, and computer science, in order to conduct CVA and other regulatory
calculations accurately, practically, and quickly on light hardware.

That search for speed produced new, superior mathematical modeling of
CVA (see, for instance, [10]), a renewed interest in the central technology of
scripting derivatives cash flows (see our dedicated volume [11]), the system-
atic incorporation of parallel computing (Part I of this volume), and exciting
new technologies such as Algorithmic Adjoint Differentiation (AAD, Part III
of this volume) that computes thousands of derivatives sensitivities in con-
stant time.

In the early 2010s, head of Danske Markets Jens Peter Neergaard was
having lunch in New York with quantitative research legend Leif Andersen.
As Leif was complaining about the administration and cost of data centres,
JP replied:

We calculate our CVA on an iPad mini.

In the years that followed, the quantitative research department of
Danske Bank, under Jesper Andreasen’s leadership, turned that provocative
statement into reality, by leveraging cutting-edge technologies in a software
efficient enough to conduct CVA risk on light hardware without loss of
accuracy.

In 20135, at a public Global Derivatives event in Amsterdam, we demon-
strated the computation of various xVA and capital charge over a sizeable
netting set, together with all risk sensitivities, within a minute on an Apple
laptop. That same year, Danske Bank won the In-House System of the Year
Risk award.

We have also been actively educating the market with frequent talks,
workshops, and lectures. These publications are the sum of that work.

Modern quantitative researchers must venture beyond mathematics and
numerical methods. They are also expert C++ programmers, able to lever-
age modern hardware to produce highly efficient software, and master key
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technologies like algorithmic adjoint differentiation and scripting. It is the
purpose of our publications to teach these skills and technologies.

It follows that this book, like the other two volumes in the series, is a new
kind of publication in quantitative finance. It constantly combines financial
modeling, mathematics, and programming, and correspondences between
the three, to resolve real-life financial problems and improve the accuracy
and performance of financial derivatives software. These publications are
inseparable from the professional source code in C++ that comes with them.
The publications build the libraries step by step and the code demonstrates
the practical application of the concepts discussed in the books.

Another unique aspect of these publications is that they are not about
models. The definitive reference on models was already written by Andersen
and Piterbarg [6]. The technologies described in our publications: paral-
lel simulations, algorithmic adjoint differentiation, scripting of cash-flows,
regression proxies, model hierarchies, and how to bring them all together
to better risk manage derivatives and xVA, are all model agnostic: they are
designed to work with all models. We develop a version of Dupire’s popular
model [12] for demonstration, but models have little screen time. The stars
of the show are the general methodologies that allow the model, any model,
to compute and differentiate on an iPad mini.

This volume, written by Antoine Savine, focuses on algorithmic adjoint
differentiation (AAD) (Part III), parallel programming in C++ (Part I), and
parallel simulation libraries (Part II). It is intended as a one-stop learning
and reference resource for AAD and parallel simulations, and is complete
with a professional implementation in C++, freely available to readers in
our source repository.

AAD is a ground-breaking programming technique that allows one to
produce derivative sensitivities to calculation code, automatically, analyti-
cally, and most importantly in constant time. AAD is applied in many scien-
tific fields, including, but not limited to, machine learning (where it is known
under the name “backpropagation”) or meteorology (the powerful improve-
ment of expression templates, covered in Chapter 15, was first suggested by a
professor of meteorology, Robin Hogan). While a recent addition, AAD has
quickly become an essential part of quantitative finance and an indispensable
centrepiece of modern financial libraries. It is, however, still misunderstood
to a large extent by a majority of finance professionals.

This publication offers a complete coverage of AAD, from its theoretical
foundations to the most elaborate constructs of its efficient implementation.
This book follows a pedagogical logic, progressively building intuition and
taking the time to explain concepts and techniques in depth. It is also a
complete reference for AAD and its application in the context of (serial
and parallel) financial algorithms. With the exception of Chapters 12 and
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13,2 Part III covers AAD in itself, without reference to financial applica-
tions. Part IIl and the bundled AAD library in C++ can be applied in various
contexts, including machine learning, although it was tested for maximum
performance in the context of parallel financial simulations.

A second volume [11], co-authored by Jesper Andreasen and Antoine
Savine, is dedicated to the scripting of derivatives cash flows. This central
technology is covered in detail, beyond its typical usage as a convenience for
the structuring of exotics. Scripts are introduced as a practical, transparent,
and effective means to represent and manipulate transactions and cash flows
in modern derivatives systems. The publication covers the development of
scripting in C++, and its application in finance, to its full potential. It is
also complete with a professional implementation in C++. Some advanced
extensions are covered, such as the automation of fuzzy logic to stabilize
risks, and the aggregation, compression, and decoration of cash flows for
the purpose of xVA.3

A third (upcoming) volume, written by Jesper Andreasen, Brian Huge,
and Antoine Savine, explores effective algorithms for the computation and
differentiation of xVA, and covers the details of the efficient implementation,
applications, and differentiation of the LSM* algorithm.

2As well as part of 14.

3We briefly introduced CVA. The other value adjustments banks calculate for fund-
ing, liquidity, cost of capital, etc. are collectively known as xVA and the computation
techniques detailed for CVA are applicable with some adjustments.

“Least Squares Method, sometimes also called the Longstaff-Schwartz Model,
invented in the late 1990s by Carriere [13] and Longstaff-Schwartz [14], and briefly
introduced in Section 5.1.
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his book comes with a professional implementation in C++ freely avail-
able to readers on:

www.wiley.com/go/computationalfinance

In this repository, readers will find:

1. All the source code listed or referenced in this publication.

2. The files AAD*.*1 constitute a self contained, general-purpose AAD
library. The code builds on the advanced techniques exposed in this
publication, in particular those of Chapters 10, 14, and 15, to produce
a particularly fast differentiation library applicable to many contexts.
The code is progressively built and explained in Part III.

3. The files mc*.*2 form a generic, parallel, financial simulation library.
The code and its theoretical foundations are described in Part II.

4. Various files with support code for memory management, interpolation,
or concurrent data structures, such as threadPool.h, which is developed
in Part I and used throughout the book to execute tasks in parallel.

5. A file main.h that lists all the higher level functions that provide an entry
point into the combined library.

6. A Visual Studio 2017 project wrapping all the source files, with project
settings correctly set for maximum optimization. The code uses some
C++ 17 constructs, so the project setting “C++ Language Standard”
on the project property “C/C++ / Language / C++ Language Standard”
must be set to “ISO C++ 17 standard.” This setting is correctly set on
the project file xIComp.vexproj, but readers who compile the files by
other means must be aware of this.

7. A number of xI*.* files that contain utilities and wrappers to export the
main functions to Excel, as a particularly convenient front end for the
library. The project file xIComp.vexproj is set to build an xlIl, a file that
is opened from Excel and makes the exported library functions callable
from Excel like its standard functions. We wrote a tutorial that explains

'With a dependency on gaussians.h for the analytic differentiation of Gaussian func-
tions, and blocklist.h for memory management, both included.
2With dependency on various utility files, all included in the project.

XXV


http://www.wiley.com/go/computationalfinance

XXVi ABOUT THE COMPANION C++ CODE

how to export C++ code to Excel. The tutorial ExportingCpp2xl.pdf
is available in the folder xICpp along with the necessary source files.
The wrapper xIExport.cpp file in our project precisely follows the direc-
tives of the tutorial and readers can inspect it to better understand these
techniques.

8. Finally, we provide a pre-built xIComp.xlI> and a spreadsheet
x|Test.xlsx that demonstrates the main functions of the library. All the
figures and numerical results in this publication were obtained with this
spreadsheet and this xll, so readers can reproduce them immediately.
The computation times were measured on an iMac Pro (Xeon W
2140B, 8 cores, 3.20 GHz, 4.20 max) running Windows 10. We also
carefully checked that we have consistent calculation times on a recent
quad core laptop (Surface Book 2, i7-8650U, 4 cores, 1.90 GHz, 4.20
max), that is, (virtually) identical time in single threaded mode, twice
the time in multi-threaded mode.

The code is entirely written in standard C++, and compiles on Visual
Studio 2017 out of the box, without any dependency to on a third-party
library.

3To run xIComp.xll, readers may need to install Visual Studio redistributables
VC_redist.x86.exe and VC_redist.x64.exe, also included in the repository.
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Introduction

his part is a self-contained tutorial and reference on high-performance

programming in C++, with a special focus on parallel and concurrent
programming. The second part applies the notions and constructs developed
here to build a generic parallel financial simulation library.

A working knowledge of C++ is expected from readers. We cover mod-
ern and parallel C++11, and we illustrate the application of many STL (stan-
dard template library) data structures and algorithms, but we don’t review
the basic syntax, constructs, and idioms of C++. Readers unfamiliar with
basic C++ should read an introductory textbook before proceeding. Mark
Joshi’s website http://www.markjoshi.com/RecommendedBooks.html#C
contains a list of recommended C++ textbooks.

Readers already familiar with advanced C++ and concurrent program-
ming, or those using different material, such as Anthony Williams’ [15], may
skip this part and move on to Parts IT and III. They will need the thread pool,
which we build in Section 3.18 and use in the rest of the publication. The
code for the thread pool is in ThreadPool.h, ThreadPool.cpp, and Concur-
rentQueue.h in our repository.

PARALLEL ALGORITHMS

Parallel programming may allow calculations to complete faster by com-
puting various parts simultaneously on multiple processing units. The
improvement in speed is at best linear in the number of units. To hit a linear
improvement (or any improvement at all), parallel algorithms must be
carefully designed and implemented. One simple, yet fundamental example
is a transformation, implemented in the transform() function of the C++
standard library, where some function f is applied to all the elements {x;}
in a source collection S to produce a destination collection D = {y; = f(x,)}.
Such transformation is easily transposed in parallel with the “divide-and-
conquer” idiom: partition S into a number of subsets {S.:} and process the

i
transformation of the different subsets, simultaneously, on different units.
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The chart below illustrates the idiom for the transformation of 8 elements
on 2 units.

Unit 1 ¥y =1(x4) Yo = f(x) 3 = fx3) Ya = 1(x4)
Unit 2 Vs = f(xs) Y6 = f(Xe) ¥z =1(x7) yg = f(xg)
—_— — — — — <+ Time
1 2 3 4

The 8 transformations are processed in the time of 4. Parallel processing
cuts time by the number of units, a linear speed-up. With 7 transformations
on p units, each unit evaluates f 7#/p times, and the units work simultane-
ously, so that the entire transformation completes in the time of 7/p eval-
uations, as opposed to 7 evaluations in the serial version. In addition, this
linear improvement is easily achieved in practice, assuming / computes an
output y out of an input x without any side effect (like logging into a con-
sole window or a file, or updating a static cache).! Such problems that are
trivially transposed and implemented in parallel are called “embarrassingly
parallel.”

Another classical family of fundamental algorithms is the reduction,
implemented in the standard C++ accumulate() function, which computes
an aggregate value (sum, product, average, variance...) from a collection of
elements. One simple example is the sum z = )/ ; x;. In order to compute z
in parallel, we can compute partial sums over subsets, which leaves us with
a lower number of partial sums to sum-up. A parallel reduction is therefore
recursive in nature: we compute partial sums, then partial sums of partial

We call such a function “thread safe.” It is a fundamental principle of functional pro-
gramming that functions should not be allowed to have side effects. This is enforced
in pure functional languages like Haskell, where all functions are thread safe and
suitable for parallel application. C++ allows side effects, so thread safe design is
the developer’s responsibility. In particular, it should be made very clear which func-
tions have side effects and which don’t. Thread safe design is closely related to const
correctness, as we will see in the next chapters.
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sums, and so forth, until we get a final sum. The chart below illustrates the

sum of 8 terms on 2 units:

=

=

£
«Y1=X1+ X3
X2
Unit 1 “zi=yi 4y
X3 A 6
/ LY
Vo= X3+ X, L=+ =2 X
% Z 5
e N
vY3=X5+ Xg
Xe
Unit 2 “Zy=ys+ys
X7 A
F Y
vY4=X7+ Xg
\ Xg _,/
*Time
1 2 3 4
| ' [ |
step 1 step 2 step 3

A reduction of 8 elements is, again, completed in the time of 4. A parallel
reduction also produces a linear improvement. But the algorithm is no longer
trivial; it involves 3 steps in a strict sequential order, and logic additional to
the serial version. In general, to reduce 7 elements in parallel on p units,
assuming 7 is even, we partition S = {x;, 1 <i < n} into 7/2 pairs and sum
the 2 elements of the 72/2 pairs in parallel. To process 7/2 adds in parallel
on p units takes the time of 72/2p serial adds. Denoting 6 the time of a serial
add, we reduced S into /2 partial sums in (17/2p)§ time. Assuming again
that /2 is even, we repeat and reduce the 7/2 partial sums into 7/4 pairwise
sums in a time (72/4p)5. By recursion, and assuming that 7 is a power of 2:
n = 2", the entire reduction completes in 7 = log,n steps, where the step
number i consists in 72/2" pairwise adds on p units and takes (1/2'p)s time.

The total time is therefore:

l(s:n—l

- 0
2'p p

M s

4

Il
_

as opposed to (7 — 1)§ for the serial reduction, hence an improvement by p.
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In a more general case where 7 is not necessarily a power of 2, we still
achieve a linear improvement. To demonstrate this, we note that 7z can be
uniquely decomposed into a sum of powers of 2:

M
n= Zni,ni—l i
=1

This is called the binary decomposition of n.> We conduct parallel reduc-
tions over the M subsets of 7; = 2™ elements, each one in time §(1; — 1)/p,
as explained above, a total time of 6(z — M)/p. We repeat and reduce the
M partial sums in subsets of sizes the binary decomposition of M, in a time
(M — M,)/p, where M, is the number of terms in the binary decomposition
of M, reduce the M, results, and repeat recursively until we obtain one final
reduction of the whole set, in a total time 6(z — 1)/p.

As for the transformation, we get a linear improvement, but with a less
trivial algorithm, both to comprehend and design, and to implement in prac-
tice. All units must complete a step before the next step begins, so units must
wait on one another, and the algorithm must incorporate some form of syn-
chronization. Synchronization overhead, combined with the fact that the last
steps involve fewer elements to sum-up than available units, makes a linear
speed-up hard to achieve in practice.

Of course, this classical algorithm applies to all forms of reduction,
not only sums, but also products, dot products, variance and covariance
estimates, etc. Because it applies to dot products, it also applies to matrix
products, where every cell in the result matrix is a dot product.

We have introduced two fundamental examples. One is embarrassingly
parallel and fully benefits from parallelism without difficulty. The other one
takes work and rarely achieves full parallel efficiency. In finance, deriva-
tives risk management mainly involves two families of valuation algorithms:
Monte-Carlo (MC) simulations and finite difference methods (FDM). MC
simulations compute the average outcome over many simulated evolutions
of the world. FDM computes the same result as the solution of a partial dif-
ferential equation, numerically, over a grid. MC simulations are slow, heavy,
and embarrassingly parallel. They are also applicable in a vast number of
contexts. MC is therefore, by far, the most widely used method in modern
finance; it is easy to implement in parallel, and the linear speed improvement
makes a major difference due to the slow performance of the serial version.
Part IT is dedicated to the implementation of parallel MC. In contrast, FDM
is light and fast, but applicable in a limited number of situations. FDM is

2To implement a binary decomposition is a trivial exercise, and an unnecessary one,
since the chip’s native representation of (unsigned) integers is binary.
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less trivial to implement in parallel, and the resulting acceleration may not
make a significant difference, FDM performing remarkably fast in its serial
form. FDM and its parallel implementation are not covered in this text.

THE MANY FLAVORS OF PARALLEL PROGRAMMING

Distributed and concurrent proyramming

Parallel programming traditionally comes in two flavors: distributed and
concurrent. The distributed flavor divides work between multiple processes.
Processes run in parallel in separate memory spaces, the operating system
(OS) scheduling their execution over the available processing units. Dis-
tributed computing is safe by design because processes cannot interfere with
one another. It is also scalable to a large number of processing units, because
different processes may run on the same computer or on multiple comput-
ers on a network. Since processes cannot communicate through memory,
their synchronization is achieved through messaging. Distributed comput-
ing is very flexible. The cooperation of different nodes through messaging
can accommodate many parallel designs.

Distributed programming is not implemented in standard C++ and
requires specialized hardware and software.? The creation and the man-
agement of processes takes substantial overhead. Processes cannot share
memory, so the entire context must be copied on every node. Distributed
programming is best suited for high-level parallelism, like the distribution of
a derivatives book, by transaction, over multiple machines in a data center.
A lighter form of parallel computing, called shared memory parallelism
or concurrent programming, is best suited for the implementation of
parallelism in the lower level valuation and risk algorithms themselves.

Concurrent programming divides work between multiple threads that
run on the same process and share common memory space. Threads are
light forms of processes. Their execution is also scheduled by the OS over
the available processing units, but limited to a single computer. The over-
head for their creation and management is orders of magnitude lower. They
share context and communicate directly through memory. The management
of threads in C++ is standard and portable since C++11. All modern compil-
ers, including Visual Studio since 2010, incorporate the Standard Threading
Library out of the box. The threading library provides all the necessary tools
and constructs for the manipulation of threads. It is also well documented,
in particular in the book [15] written by one of its developers.

3A number of frameworks exist to facilitate distributed programming, the best
known being the Message Passing Interface (MPI).
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Concurrent programming is generally the preferred framework for
the implementation of parallel algorithms. This text focuses on concurrent
programming and does not cover distributed programming. Concurrent
computing is not without constraints: it is limited to the processing units
available on one computer, and, contrary to the distributed memory model,
it is not safe by design. Threads may interfere with one another in shared
memory, causing severe problems like crashes, incorrect results, slowdowns,
or deadlocks, and it is the developer’s responsibility to implement thread safe
design and correct synchronization to prevent these. The Standard Thread-
ing Library provides a framework and multiple tools to facilitate correct
concurrent programming. This library and its application to the develop-
ment of safe, efficient parallel algorithms, is the main subject of this part.

CPU and GPU programming

A particular form of concurrent computing is with GPU (Graphic Process-
ing Unit) parallelism. Modern GPUs provide a massive number of processing
units for limited hardware costs. GPUs were initially designed to process the
computation of two- and three-dimensional graphics, and later evolved to
offer general-purpose computing capabilities. Nvidia, in particular, offers a
freely available C++-like language, CUDA (Compute Unified Device Archi-
tecture), for programming their chips. GPU programming is implemented
today in many scientific and commercial applications besides graphic design
and video games. In particular, GPU accelerates many machine learning and
financial risk management softwares. Reliable sources in the financial indus-
try report speed improvements of order 50x for production Monte Carlo
code; see for instance [16].

GPU programming is evidently not standard C++. In addition to spe-
cialized hardware and software, effective GPU programming requires algo-
rithms to be written in a specific manner, down to low level, to accommodate
the design and constraints of GPUs. GPU parallelism may come with unbeat-
able hardware cost; it is also subject to prohibitive development cost. For this
reason, GPUs somewhat fell out of favor recently in the financial industry;
see for instance [17].

CPU (Central Processing Unit) manufacturers like Intel have been sys-
tematically increasing the number of cores on their chips in recent years, so
that CPUs may compute with GPUs, without the need for specialized GPU
programming. High-end modern workstations now include up to 48 cores
(up to 18 on Apple’s slim iMac Pro). CPU cores are truly separate units, so
different cores may conduct independent, unrelated work concurrently. GPU
cores are not quite that flexible. CPU cores are also typically substantially
faster than their GPU counterparts. More importantly, CPU parallelism is
programmed in standard C++.
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In addition, it is very challenging to effectively run memory-intensive
algorithms, like AAD, on GPUs. Algorithmic adjoint differentiation (AAD)
produces risk sensitivities in constant time (see our dedicated Part III), some-
thing no amount of parallelism can achieve. AAD is the most effective accel-
eration implemented in the financial industry in the past decade.* It is not
particularly difficult to implement AAD on parallel CPU. We do that in Part
III. On the other hand, to our knowledge, AAD has not yet been convincingly
implemented on GPU, despite recent encouraging results by Uwe Naumann
from RWTH Aachen University.

For those reasons, we don’t explore GPU parallelism further and focus
on CPU concurrency. Readers interested in learning GPU programming are
referred to one of the many available CUDA textbooks.

Muiti-threading and SIMD programming

Finally, concurrent CPU programming itself splits into two distinct, mutually
compatible forms of parallelism: multi-threading and SIMD.

Multi-threading (MT) consists in the concurrent execution of different
parts of some calculation on different threads running on different cores. The
cores are effectively independent CPUs, so they may run unrelated calcula-
tions concurrently without loss of performance.’ For example, the trans-
formation of a collection can be multi-threaded by transforming different
subsets over different threads. In this case, the different cores will execute
the same sequence of instructions, but over different data. In a simple video
game, the management of the player’s star ship and the management of the
enemies can be processed on two different threads. In that case, the two cores
that execute the two threads conduct different, independent work. The game
still runs twice as fast, providing a more satisfactory experience.

Multi-threading is a particularly flexible, efficient form of concurrent
CPU programming, and the subject of Chapter 3. In Part II, it is applied to
accelerate financial simulations.

By contrast, SIMD (Same Instruction Multiple Data) refers to the ability
of every core in a modern CPU (or GPU) to apply the same instruction to
multiple data, simultaneously. In a transformation, for instance, one single
core could apply the function f to multiple xs simultaneously. SIMD applies
CPU instructions to a vector of data at a time, as opposed to a single data.
For this reason, it is also called “vectorization.” Modern mainstream CPUs
(implementing AVX2) can process four doubles (32 bytes, 256 bits) at a time.

“In our opinion, AAD is the most effective algorithm implemented in finance
since FDM.
3 Although they may interfere through shared memory and cache as we will see later
in this part.
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Higher-end CPUs (AVXS512) can process eight doubles (64 bytes, 512 bits)
in a single instruction.

SIMD may be combined with multi-threading, in a process sometimes
called “GPU on CPU” because GPUs implement a similar technology. For the
transformation of a collection, multiple subsets can be processed on different
threads running on different cores while every core applies SIMD to process
multiple elements of the subset in a single instruction.

The theoretical acceleration from combining MT with SIMD is the prod-
uct of the number of cores by the SIMD vector width. In a standard 8-
core workstation with AVX2, this is 32. On an 18-core high-end iMac Pro
(AVX512), this is a vertiginous 144, well above the acceleration reportedly
obtained on GPU. But this is theoretical of course. MT usually achieves lin-
ear acceleration as long as the code is correctly designed, as we will see in
the rest of this book. SIMD acceleration is a different story.

SIMD is very restrictive: only simple functions applied to simple types
may be vectorized. In addition, the data must be coalescent and properly
aligned in memory. For example, a simple transformation x — cosx of a
set S = {x;,1 <i<n} can be vectorized, and Visual Studio would indeed
automatically vectorize a loop implementing this transformation. With a
different function, like x — logx if x > 0 or — log —x otherwise, the trans-
formation cannot (easily) be vectorized: the effective CPU instruction that
applies to each data depends on whether the number is positive or negative;
we are no longer in a same instruction multiple data context. Visual Studio
would not vectorize the transformation.

SIMD is low level, close to the metal parallelism. It is not implemented
in standard C++ or supported in standard libraries. SIMD is implemented in
the compiler. Contrary to multi-threading, it is not scheduled at run time. It
is at compile time, when the C++ code is turned into CPU instructions, that
vectorization occurs or not. Standard compilers like Visual Studio offer little
support for SIMD. Visual Studio automatically vectorizes simple loops, and
may be set to reports which loops are vectorized and which are not. Other
compilers, like Intel’s, offer much more extensive support for vectorization
in the form of settings and pragmas.®

Intel also offers its Integrated Performance Primitives (IPP) and Math
Kernel Library (MKL) as a free download. These libraries include a vast
number of vectorized mathematical functions and algorithms. With direct
relevance for Monte-Carlo simulations, IPP offers a vectorized imple-
mentation of the inverse Normal distribution ippsErfclnv_64f_A26().

Special instructions inserted in the body of the code that are not part of the C++
code to be compiled, but some directives for the compiler about how code is to be
compiled. Pragmas are therefore compiler specific.
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Hence, and even though Visual Studio supports SIMD for the occasional
auto-vectorization of loops, an effective, systematic implementation of vec-
torization takes a specialized compiler and specialized third-party libraries.

In addition, in order to systematically benefit from SIMD, code must be
written in a special way, so that mathematical operations are applied simul-
taneously to multiple data at low level. SIMD acceleration is intrusive. We
will see in Part II that this is not the case for MT. We implement parallel sim-
ulations without modification of the model or the product code (as long as
that code is thread safe). To vectorize simulations, we would need to rewrite
the simulation code in models and products entirely.

A full SIMD acceleration is only achieved when the exact same CPU
instructions are applied to different data. Whenever we have control flow in
the code (if, while and friends), SIMD may be partially applied at best. Partial
parallelism is a known pitfall in parallel programming. When perfect paral-
lelism (acceleration by the number of units p) is achieved in a proportion u of
some algorithm, a proportion 1 — y remains sequential, resulting in a global
acceleration by a factor p/[u + (1 — u)p],” very different from the perhaps
intuitive but completely wrong pu. The resulting acceleration is typically
counterintuitively weak. For instance, the perfect parallel implementation
of 75% of an algorithm over 8 units results in an acceleration by a factor
2.9, terribly disappointing® and far from a perhaps mistakenly expected fac-
tor 6. Even when 90% of the algorithm is parallel with efficiency 100%,
the resulting global acceleration is only 4.7, a parallel efficiency below 50%.
Naive parallel implementation often causes bad surprises, and partial par-
allelism, in particular, generally produces disappointing results. Therefore,
to achieve a linear acceleration with SIMD over complex, structured code
is almost impossible. Besides, that theoretical limit is only 4x on most cur-
rent CPUs. By contrast, a linear acceleration of up to 24x is easily achieved
with MT. As long as the multi-threaded code is thread safe and lock-free,
high-level multi-threading is, by construction, immune to partial parallelism.
Of course, MT code is also vulnerable to sometimes challenging flaws and
inefficiencies, which we will encounter, and resolve, in the chapters of this
book. We do achieve a linear acceleration for our simulation code, including
differentiation with AAD.

Finally, and most importantly, it is extremely challenging to combine
SIMD with AAD. Vectorized AAD may be the subject of a future paper, but

"This result is known as Amdahl’s law. It is immediately visible that, when the serial
calculation time is A, the parallel calculation time is A[u/p + (1 — mu)], and the result
follows.

8The ratio of the speed-up over the number of parallel units is called “parallel effi-
ciency.” Parallel efficiency is always between 0 (excluded) and 1 (included). The
purpose of parallel algorithms is to achieve an efficiency as close as possible to 1.
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it is way out of the scope of this book. In contrast, MT naturally combines
with AAD, as demonstrated in detail in Chapter 12, where we apply AAD
over multi-threaded simulations.

We see that the combination of MT with SIMD offers similar perfor-
mance to GPU but suffers from the same constraints. This is not a coinci-
dence. GPUs are essentially collections of a large number of slower cores with
wide SIMD capabilities. Systematic vectorization requires rewriting calcula-
tion code, down to a low level, with a specialized compiler and specialized
libraries. Of course, all of this also requires specialized skills. We will not
cover SIMD in detail, and we will not attempt to write specialized code for
SIMD acceleration. On the contrary, we will study MT in detail in Chapter
3, and implement it throughout the rest of this text.

We will also apply casual vectorization, whereby we write loops in a
way to encourage the compiler to auto-vectorize them, for instance, by
using the general algorithms of the standard C++ library, like transform()
or accumulate(), in place of hand-crafted loops, whenever possible. Those
algorithms are optimized, including for vectorization when possible, and
typically produce faster code. In addition, it makes our code more expressive
and easier to read. It is therefore a general principle to apply STL (Standard
Template Library) algorithms whenever possible. C++ programmers must
know those algorithms and how to use them. We use a number of STL
algorithms in the rest of the publication, and refer to [18] for a complete
reference.

Readers interested in further learning SIMD are referred to Intel’s doc-
umentation. For an overview and applications to finance, we refer to [19].
To our knowledge, there exists no textbook on SIMD programming. MT
programming is covered in detail in [15], and, in a more condensed form, in
our Chapter 3.

Multi-threading programming frameworks

There exist many different frameworks for concurrent MT programming.
The responsibility for the management of threads and their scheduling on
hardware cores belongs to the operating system, and all major OS provide
specific APIs for the creation and the management of threads. Those APIs,
however, are generally not particularly user friendly, and obviously result in
non-portable code. Vendors like Intel or Microsoft released multiple libraries
that facilitate concurrent programming, but those products, while excellent,
remain hardware or OS dependent.

Prior to C++11, two standardization initiatives were implemented
to provide portable concurrent programming frameworks: OpenMP and
Boost. Thread. OpenMP offers compile time concurrency and is supported
by all modern compilers on all major platforms, including Visual Studio on
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Windows. Its consists of a number of compiler directives, called pragmas,
that instruct the compiler to automatically generate parallel code for loops.
OpenMP is particularly convenient for the parallelization of simple loops,
and we provide an example in Chapter 1. OpenMP is available out of the
box with most modern compilers, and therefore results in portable code.
Using OpenMP is also amazingly simple, as demonstrated in our example.

For multi-threading complex, structured code, however, we need the
full flexibility of a threading library. Boost. Thread provides such a library,
with run-time parallelism, in the form of functions and objects that client
code uses to create and manage threads and send tasks for concurrent exe-
cution.” Boost is available on all major OSs, and offers a consistent API
for the management of threads and parallel tasks while encapsulating OS
and hardware-specific logic. Many developers consider Boost as “almost
standard,” and applications written with Boost. Thread are often considered
portable. However, compilers don’t incorporate Boost out of the box. Appli-
cations using Boost.Thread must include Boost headers and link to Boost
libraries. This is not a particularly simple, user friendly exercise, especially
on Windows. It is also hard work to update Boost libraries in a vast project,
for instance, when upgrading to a new version of Visual Studio.

Since C++11, C++ comes with a Standard Threading Library, which
is essentially a port of Boost.Thread, better integrated within the C++ lan-
guage, and consistent with other C++11 innovations and design patterns.
Contrary to Boost.Thread, the Standard Threading Library is provided out
of the box with all modern compilers, including Visual Studio, without the
need to install or link against a third-party library. Applications using the
Standard Threading Library are fully portable across compilers, OS, and
hardware. In addition, as part of C++11 standard, this library is well doc-
umented, and the subject of numerous dedicated books, the best in our
opinion being [15]. The Standard Threading Library is our preferred way
of implementing parallelism. With very few exceptions, all the algorithms
and developments that follow use this library.

WRITING MULTI-THREADED PROGRAMS

So, there exists many flavors of parallel computing and a wide choice of
hardware and software environments for a practical implementation of each.
Distributed, concurrent, and SIMD processing are not mutually exclusive.
They form a hierarchy from the highest to the lowest level of parallelism.
In Chapter 1, we implement a matrix product by multi-threading over the

“Before Boost.Thread, the pthread C library offered similar functionality in plain C.
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outermost loop and vectorizing the innermost loop. In a financial context,
the risk of a bank’s trading books can be split into multiple portfolios dis-
tributed over many computers. Each computer that calculates a portfolio
may distribute multiple tasks concurrently across its cores. The calculation
code that executes on every core may be written and compiled in a way
to enable SIMD. Similarly, banks using GPUs distribute their trading book
across several machines, and further split the sub-books across the multi-
ple cores on a computer, each core controlling one GPU that implements
the risk algorithm. Maximum performance is obtained with the combina-
tion of multiple levels of parallelism. For the purpose of this publication,
we made the choice, motivated by the many reasons enumerated above, to
cover multi-threading with the Standard Threading Library.

As Moore’s law has been showing signs of exhaustion over the past
decade with CPU speeds limiting around 4GHz, chip manufacturers have
been multiplying the number of cores in a chip as an alternative means of
improving performance. However, whereas a program automatically runs
faster on a faster chip, a single-threaded code does not automatically paral-
lelize over the available cores. Algorithms other than embarrassingly parallel
must be rethought, code must be rewritten with parallelism in mind, extreme
care must be given to interference between threads when sharing memory,
and, more generally, developers must learn new skills and rewrite their soft-
ware to benefit from the multiple cores. It is often said that the exhaustion
of Moore’s law terminated a free option for developers. Modern hardware
comes with better parallelism, but to benefit from that takes work. This part
teaches readers the necessary skills to effectively program parallel algorithms
in C++.

PARALLEL COMPUTING IN FINANCE

Given such progress in the development of parallel hardware and software,
programmers from many fields have been writing parallel code for years.
However, this trend only reached finance in the very recent years. Danske
Bank, an institution generally well known for its cutting-edge technology,
only implemented concurrent Monte-Carlo simulations in their production
systems in 2013. This is all the more surprising as the main algorithm in
finance, Monte-Carlo simulations, is embarrassingly parallel. The reason
is there was little motivation for parallel computing in investment banks
prior to 2008-2011. Quantitative analysts almost exclusively worked on
the valuation and risk management of exotics. Traders held thousands
of exotic transactions in their books. Risk sensitivities were computed by
“bumping” market variables one by one, then recomputing values. Values
and risk sensitivities were additive across transactions. Hence, to produce
the value and risk for a portfolio, the valuation of the transactions was
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repeated for every transaction and in every “bumped” market scenario.
A large number of small valuations were conducted, which encouraged
high-level parallelism, where valuations were distributed across transactions
and scenarios but the internal algorithms that produce a value in a given
context remained sequential.

That changed with regulatory calculations like CVA (Counterparty
Value Adjustment) that estimates the loss incurred from a counterparty
defaulting when the net present value (PV) of all transactions against
this counterparty is positive. CVA is not additive due to netting effects
across different transactions, and must be computed for all transactions
at once, in one (particularly heavy) simulation. A CVA is also typically
sensitive to thousands of market variables, and risk sensitivities cannot be
produced by bumping in reasonable time. The response to this particular
challenge, and arguably the strongest addition to computational finance
over the past decade, is AAD, an alternative to bumping that computes all
derivatives together with the value in constant time (explained in detail in
Part III). So we no longer conduct many light computations but a single,
extremely heavy one. The time taken by that computation is of crucial
importance to financial institutions: slow computations result in substantial
hardware costs and the inability to compute risk sensitivities in time. The
computations must be conducted in parallel to take advantage of modern
hardware. Hence, parallel computing only recently became a key skill for
quantitative analysts and a central feature of modern financial libraries. It is
the purpose of this part to teach these skills.

We cover concurrent programming under the Standard Threading
Library, discuss the challenges involved, and explain how to develop effec-
tive parallel algorithms in modern C++. C++11 is a major modernization
of C++ and includes a plethora of new features, constructs, and patterns.
The Standard Threading Library is probably the most significant one, and
it was designed consistently with the rest of C++11. For this reason, we
review the main innovations of C++11 before we delve into its threading
library.

Chapter 1 discusses high-performance programming in general terms,
shows some concrete examples of the notions we just introduced, and
delivers some important considerations for the development of fast appli-
cations in C++ on modern hardware. Chapter 2 discusses the most useful
innovations in C++11, and, in particular, explains some important modern
C++ idioms and patterns applied, among other places, in the Standard
Threading Library. These patterns are also useful on their own right.
Chapter 3 explores many aspects of concurrent programming with the
Standard Threading Library, shows how to manage threads and send
tasks for parallel execution, and illustrates its purpose with simple parallel
algorithms. We also build a #hread pool, which is applied in Parts IT and I
to situations of practical relevance in finance.
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Effective C++

It is often said that quantitative analysts and developers should focus on
algorithms and produce a readable, modular code and leave optimization
to the compiler. It is a fact that substantial progress was made recently in
the domain of compiler optimization, as demonstrated by the massive dif-
ference in speed for code compiled in release mode with optimizations turned
on, compared to debug mode without the optimizations. It is also obviously
true that within a constantly changing financial and regulatory environment,
quantitative libraries must be written with clear, generic, loosely coupled,
reusable code that is easy to read, debug, extend, and maintain. Finally,
better code may produce a linear performance improvement while better
algorithms increase speed by orders of magnitude. It is a classic result that
1D finite differences converge in AT? and AX? while Monte Carlo simula-
tions converge in v/N; hence FDM is preferable whenever possible. We will
also demonstrate in Part III that AAD can produce thousands of derivative
sensitivities for a given computation in constant time. No amount of code
magic will ever match such performance. Even in Python, which is quite lit-
erally hundreds of times slower than C++, a good algorithm would beat a
bad algorithm written in C++.

However, speed is so critical in finance that we cannot afford to overlook
the low-level phenomena that affect the execution time of our algorithms.
Those low-level details, including memory cache, vector lanes, and multiple
cores, do not affect algorithmic complexity or theoretical speed, but their
impact on real-world performance may be very substantial.

A typical example is memory allocation. It is well known that allocations
are expensive. We will repeatedly recall that as we progress through the pub-
lication and strive to preallocate at high level the memory required by the
lower level algorithms in our code. This is not an optimization the compiler
can conduct on our behalf. We must do that ourselves, and it is not always
easy to do so and maintain a clean code. We will demonstrate some tech-
niques when we deal with AAD in Part III. AAD records every mathematical
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operation, so with naive code, every single addition, subtraction, multipli-
cation, or division would require an allocation. We will use custom memory
pools to eliminate that overhead while preserving the clarity of the code.

Another expensive operation is locking. We lock unsafe parts of the code
so they cannot be executed concurrently on different threads. We call thread
safe such code that may be executed concurrently without trouble. All code
is not always thread safe. The unsafe pieces are called critical regions and
they may be locked (using primitives that we explore later in this part) so
that only one thread can execute them at a time. But locking is expensive.
Code should be thread safe by design and locks should be encapsulated in
such a way that they don’t produce unnecessary overhead. It is not only
explicit locks we must worry about, but also hidden locks. For example,
memory allocations involve locks. Therefore, all allocations, including the
construction and copy of containers, must be banned from code meant for
concurrent execution.! We will show some examples in Chapters 7 and 12
when we multi-thread our simulation library and preallocate all necessary
memory beforehand.

Another important example is memory caches. The limited amount of
memory located in CPU caches is orders of magnitude faster than RAM.
Interestingly perhaps, this limitation is not technical, but economical. We
could produce RAM as fast as cache memory, but it would be too expensive
for the PC and workstation markets. We may envision a future where this
ultra-fast memory may be produced for a reasonable cost, and CPU caches
would no longer be necessary. In the meantime, we must remember caches
when we code. CPU caches are a hardware optimization based on a locality
assumption, whereby when data is accessed in memory, the same data, or
some data stored nearby in memory, is likely to be accessed next. So, every
access in memory causes a duplication of the nearby memory in the cache for
faster subsequent access. For this reason, code that operates on data stored
nearby in memory — or coalescent — runs substantially faster. In the context
of AAD, this translates into a better performance with a large number of
small tapes than a small number of large tapes,” despite “administrative”
costs per tape. This realization leads us to differentiate simulations path-
wise, and, more generally, systematically rely on checkpointing, a technique
that differentiates algorithms one small piece at a time over short tapes. This
is all explained in detail in Part IIL.

Intel, among others, offers a concurrent lock-free allocator with its freely available
Threading Building Blocks (TBB) library. Without recourse to third-party libraries,
we must structure our code to avoid concurrent allocations altogether.

2The tape is the data structure that records all mathematical operations.
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For now, we make our point more concrete with the extended example
of an elementary matrix product. We need a simplistic matrix class, which
we develop as a wrapper over an STL vector. Matrices are most often imple-
mented this way, for example, in Numerical Recipes [20].

template <class T>

class matrix
// Dimensions
size_t myRows ;
size t myCols;

// Data
vector<T> myVector;

public:
using value_type = T;

// Constructors
matrix() : myRows(0), myCols(0) {}
matrix(const size_t rows, const size t cols)
: myRows (rows), myCols(cols), myVector (rows*cols) {}

// Access

size t rows() const { return myRows; }

size t cols() const { return myCols; }

// So we can call matrix [i] []]

T* operator[] (const size_t row)
{ return amyVector [row*myColsl; }

const T* operator[] (const size t row) const
{ return smyVector [row*myCols]; }

We test a naive matrix product code that sequentially computes the
result cells as the dot product of each row vector on the left matrix with
the corresponding column vector on the right matrix. Such code is a direct
translation of matrix algebra and we saw it implemented in a vast number
of financial libraries.

inline void matrixProductNaive (
const matrix<double>& a,

const matrix<double>& b,
matrix<double>& c)

{

const size t rows = a.rows(), cols = b.cols(), n = a.cols();

// Outermost loop on result rows
for (size t i = 0; i < rows; ++i)
const auto ai = alil;
auto ci = cl[il;

// Loop on result columns
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for (size t j = 0; j < cols; ++3j)

{
// Innermost loop for dot product
double res = 0.0;
for (size_t k = 0; k < n; ++k)

{
res += ailk]l * b[k][j];
}
// Set result
c[i]l [J] = res;

This code is compiled on Visual Studio 2017 in release 64 bits mode,
with all optimizations on. Note that the following settings must be set on
the project’s properties page, tab “C/C++7:

® “Code Generation / Enable Enhanced Instruction Set” must be set to
“Advanced Vector Extensions 2” to produce AVX2 code.

® “Language / OpenMP Support” must be set to “yes” so we can use
OpenMP pragmas.

For two random 1,000 x 1,000 matrices, it takes around 1.25 seconds
to complete the computation on our iMac Pro. Looking into the innermost
loop, we locate the code on line 21, executed 1 billion times:

res += ailk] * blk][jl;

One apparent bottleneck is that b[k][/] resolves into (&b.myVector[k
b.myCols))[j]. The multiplication k % b.myCols, conducted a billion times, is
unnecessary and may be replaced by an order of magnitude faster addition,
at the cost of a somewhat ugly code, replacing the lines 17-22 by:

// Dot product
double res = 0.0;
const double* bkj = &b[0] [j];
size t r = b.rows();
for (size t k = 0; k < n; ++k)
{

res += ailk]l * *bkj;

bkj += r;

}

And the result is still 1.25 second! The compiler was already making
that optimization and we polluted the code unnecessarily. So far, the theory
that optimization is best left to compilers holds. We revert the unnecessary
modification. But let’s see what is going on with memory in that inner-
most loop.
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The loop iterates on k and each iteration reads ai[k] and b[k][] (for a
fixed j). Data storage on the matrix class is row major, so successive ai[k] are
localized in memory next to each other. But the successive b[k][/] are distant
by 1,000 doubles (8,000 bytes). As mentioned earlier, CPU caches are based
on locality: every time memory is accessed that is not already duplicated in
the cache, that memory and the cache line around it, generally 64 bytes, or
8 doubles, are transferred into the cache. Therefore, the access to a is cache
efficient, but the access to b is not. For every b[k][j] read in memory, the line
around it is unnecessarily transferred into the cache. On the next iteration,
blk + 1][f], localized 8,000 bytes away, is read. It is obviously not in the
cache; hence, it is transferred along with its line again. Such unnecessary
transfer may even erase from the cache some data needed for forthcoming
calculations, like parts of a. So the code is not efficient, not because the
number of mathematical operations is too large, but because it uses the cache
inefficiently.

To remedy that, we modify the order of the loops so that the innermost
loop iterates over coalescent memory for both matrices:

inline void matrixProductSmartNoVec (
const matrix<double>& a,

const matrix<double>& b,
matrix<double>& c)

{

const size t rows = a.rows(), cols = b.cols(), n = a.cols();

// zero result first

for (size t i = 0; i < rows; ++i)
{

auto ci = cl[il;

for (size t j = 0; j < cols; ++3j)

{

ci[j] = 0;

}
}
// Loop on result rows as before
for (size_t i = 0; i < rows; ++i)
{

const auto ai = alil;
auto ci = cl[il;

// Then loop not on result columns but on dot product
for (size t k = 0; k < n; ++k)
{

const auto bk = bl[k];

// We still jump when reading memory,

// but not in the innermost loop

const auto aik = ail[k];

// And finally loop over columns in innermost loop
// without vectorization to isolate impact of cache alone
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#pragma loop (no_ vector)

for (size t j = 0; j < cols; ++3j)

{
// No more jumping through memory
ci[j] += aik * bkI[jl;

The pragma on line 34 will be explained ahead.

This code produces the exact same result as before, in 550 milliseconds,
more than twice as fast! And we conducted just the same amount of opera-
tions. The only difference is cache efficiency. To modify the order of the loops
is an operation too complex for the compiler to make for us. It is something
we must do ourselves.

It is remarkable and maybe surprising how much cache efficiency mat-
ters. We increased the speed more than twice just changing the order of the
loops. Modern CPUs operate a lot faster than RAM so our software is mem-
ory bound, meaning CPUs spend most of their time waiting on memory,
unless the useful memory is cached in the limited amount of ultra-fast mem-
ory that sits on the CPU. When we understand this and structure our code
accordingly, our calculations complete substantially faster.

And we are not quite done there yet.

What does this “#pragma loop(no_vector)” on line 34 stand for? We
introduced SIMD (Single Instruction Multiple Data) in the Introduction.
SIMD only works when the exact same instructions are applied to multiple
data stored side by side in memory. The naive matrix product code could not
apply SIMD because the data for b was not coalescent. This was corrected
in the smart code, so the innermost loop may now be vectorized. We wanted
to measure the impact of cache efficiency alone, so we disabled SIMD with
the pragma “#pragma loop(no_vector)” over the innermost loop.

Visual Studio, like other modern compilers, auto-vectorizes (inner-
most?) loops whenever it believes it may do so safely and efficiently. If we
remove the pragma but leave the code otherwise unchanged, the compiler
should auto-vectorize the innermost loop*. Effectively, removing the pragma

3Evidently, given SIMD constraints, innermost loops are the only candidates for vec-
torization.

“Provided the setting “C/C++/ Code Generation / Floating Point Model” is manually
set to Fast in the project properties page for the release configuration on the relevant
platform, presumably x64. When this is not the case, Visual Studio does not vectorize
reductions. Whether the reduction was vectorized or not can be checked by writing
“/Qvec-report:2” in the “Additional Options” box in the “C/C++ / Command Line”
setting.
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further accelerates calculation by 60%, down to 350 milliseconds. The
SIMD improvement is very significant, if somewhat short of the theoretical
acceleration. We note that the innermost loop is a reduction, having
explained in the Introduction how parallel reductions work and why they
struggle to achieve parallel efficiency. In addition, data must be aligned
in memory in a special way to fully benefit from AVX2 vectorization,
something that we did not implement, this being specialized code, outside
of the scope of this text.

What this teaches us is that we must be SIMD aware. SIMD is applied
in Visual Studio outside of our control, but we can check which loops the
compiler effectively vectorized by adding “/Qvec-report:2” (without the
quotes) in the “Configuration Properties/ C/C++ / Command Line/ Addi-
tional Options” box of the project’s properties. We should strive to code
innermost loops in such a way as to encourage the compiler to vectorize
them and then check that it is effectively the case at compile time.’ To fail
to do so may produce code that runs at half of its potential speed or less.

Altogether, to change the order of the loops accelerated the computation
by a factor 3.5, from 1250 to 350 milliseconds. Over half is due to cache
efficiency, and the rest is due to vectorization.

Always try to structure calculation code so that innermost loops sequen-
tially access coalescent data. Do not hesitate to modify the order of the loops
to make that happen. This simple manipulation accelerated our matrix prod-
uct by a factor close to 4, similar to multi-threading over a quad core CPU.

Finally, we may easily distribute the outermost loop over the available
CPU cores with another simple pragma above line 19:

// OpenMp directive: execute loop in parallel
#pragma omp parallel for
for (int i1 = 0; i < rows; ++i)

const auto ai = alil;

auto ci = cl[il;

for (size t k = 0; k < n; ++k)

{
const auto bk = b[k];
const auto aik = ailk];

SVisual Studio is somewhat parsimonious in its auto-vectorization and frequently
declines to vectorize perfectly vectorizable loops (although it would never vectorize
a loop that should not be vectorized). Therefore we must check that our loops are
effectively vectorized and, if not, rewrite them until such time the compiler finally
accepts to apply SIMD. This may be a frustrating process. STL algorithms are gen-
erally easier auto-vectorized than hand-crafted loops, yet another reason to prefer
these systematically.
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for (size t j = 0; j < cols; ++3j)

{
}

ci[j]l += aik * bkI[jl;

}

This pragma is an OpenMP directive that instructs the compiler to multi-
thread the loop below it over the available cores on the machine running the
program. Note that we changed the type of the outermost counter i from
size_t to int so OpenMP would accept to multi-thread the loop. OpenMP’s
auto-parallelizer is somewhat peculiar this way, not unlike Visual Studio’s
auto-vectorizer.

This code produces the exact same result in just 40 milliseconds, approx-
imately 8.125 times faster, more than our number (8) of cores! This is due to
a so-called “hyper-threading” technology developed by Intel for their recent
chips, consisting of two hardware threads per core that allow each core to
switch between threads at hardware level while waiting for memory access.
The OS effectively “sees” 16 hardware threads, as may be checked on the
Windows Task Manager, and their scheduling over the 8 physical cores is
handled on chip. Depending on the context, hyper-threading may increase
calculation speed by up to 20%. In other cases, it may decrease performance
due to excessive context switches on a physical core when execution switches
between two threads working with separate regions of memory.

Contrary to SIMD, multi-threading is not automatic; it is controlled by
the developer. In very simple cases, it can be done with simple pragmas over
loops as demonstrated here. But even in these cases, this is not fully sat-
isfactory. The code is multi-threaded at compile time, which means that
it always runs concurrently. But users may want to control that behavior.
For instance, when the matrix product is part of a program that is itself
multi-threaded at a higher level, it is unnecessary, and indeed decreases per-
formance, to run it concurrently. Concurrency is best controlled at run time.
Besides, to multi-thread complex, structured code like Monte-Carlo simula-
tions, we need more control than OpenMP offers. In very simple contexts,
however, OpenMP provides a particularly light, easy, and effective solution.

Altogether, with successive modifications of our naive matrix product
code, but without any change to the algorithm, its complexity, or the math-
ematical operations involved, we increased the execution speed by a factor
of 30, from 1,250 to 40 milliseconds. Obviously, the results are unchanged.
We achieved this very remarkable speed-up by tweaking our code to take
full advantage of our modern hardware, including on-chip cache, SIMD, and
multiple cores. It is our responsibility to know these things and to develop
code that leverages them to their full potential. The compiler will not do that
for us on its own.
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Modern C++

c++ was thoroughly modernized in 2011 with the addition of a plethora
of features and constructs borrowed from more recent programming lan-
guages. As a result, C++ kept its identity as the language of choice for
programming close to the metal, high-performance software in demanding
contexts, and at the same time, adapted to the demands of modern hardware,
adopted modern programming idioms borrowed from the field of functional
programming, and incorporated useful constructs into its syntax and stan-
dard library that were previously available only from third party libraries.
The major innovation is the new Standard Threading Library, which is
explored in the next chapter. Since we are using new C++11 constructs in the
rest of the text, this chapter selectively introduces some particularly useful
innovations. A more complete picture can be found online or in up-to-date
C++ textbooks. Readers familiar with C++11 may easily skip this chapter.

2.1 LAMBDA EXPRESSIONS

One of the most useful features in C++11, borrowed from the field of func-
tional programming, is the ability to define anonymous function objects on
the fly with the lambda syntax like in:

auto myLambda = [] (const double r, const double t)

{
}:

double temp = r * t; return exp( -temp);

The new auto keyword provides automatic type deduction, which is par-
ticularly useful with lambdas that produce a different compiler-generated
type for every lambda declaration. A lambda declaration starts with a cap-
ture clause [], followed by the list of its arguments (a lambda is after all
a function, or more exactly a callable object), and its body, the sequence
of instructions that are executed when the lambda is called, just like the
body of functions and methods. The difference is that lambdas are declared
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within functions. Once declared, they may be called like any other function
or function object, for example:

cout << myLambda( 0.01, 10) << endl;

One powerful feature of lambdas is their ability to capture variables
from their environment on declaration.

[ means no capture.

[=] means capture by value, that is, by copy, of all variables in
scope used in the lambda’s body.

[&] means capture all variables by reference.

We may also capture variables selectively with the syntax:

[x] means capture only x, by value with this syntax or by reference
with [&x].

[=, &x, &y| means capture x and y by reference, and all others by value.
Obviously [&, x,y] means capture x and y by value and all
others by reference.

[x, &y] means capture x by value, y by reference and nothing else.

For instance,

double mat = 10;
auto myLambdaRef = [&mat] (const double r)

{
}:
auto myLambdaCopy = [mat] (const double r)

{
)

return exp( -mat * r);

return exp( -mat * r);

cout << myLambdaRef( 0.01) << endl;
// exp( -10 * 0.01)

cout << myLambdaCopy( 0.01) << endl;
// exp( -10 * 0.01)

mat = 20;

cout << myLambdaRef( 0.01) << endl;
// exp( -20 * 0.01)

cout << myLambdaCopy( 0.01) << endl;
// exp( -10 * 0.01)

Behind the scenes, the compiler creates a function object when we
declare a lambda, that is, an object that defines the operator () (with the
arguments of the lambda) and therefore is callable (like a function). The
captured variables are implicitly declared as data members with a value type
when captured by value and a reference type when captured by reference,
initialized with the captured data on declaration. Hence, the syntax:
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void main()

{
double a, x;
//
auto 1 = [=, &x] (const double y) { return a*x*y; }
J0 ooc
double z = 1(y);
}

is equivalent to the (much heavier):

class Lambda

{
const double myA;
const double& myX;
public:
Lambda (const double a, const double& x) : myA(a), myX(x) {}
operator () (const double y) const { return myA * myX * y; }
I
void main()
{
double a, x;
07  ooc
Lambda 1l(a, x);
J  ooc
double z = 1(y);
}

As a function object, a lambda can be passed as an argument or returned
from functions. Functions that manipulate functions are called higher-order
functions, and the standard <algorithm> library provides a vast number of
these.

Lambdas are also incredibly useful as adapters and resolve a constant
annoyance C++ developers face when calling functions with signatures
inconsistent with their data. The Standard Template Library (STL), for
instance, includes a wealth of useful generic algorithms. But to use these
algorithms we must respect their functions’ signatures. Say we hold a vector
of times from today:

vector<double> times;

and we want to compute an annuity given a constant rate . We could write
a hand-crafted loop, of course:

double ann =
for(size_t i

{
}

i

0.0
= 0; i < times.size(); ++i)

ann += exp(-r*times[i]);
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but it is considered best professional practice to apply generic algorithms
instead.! The computation we just conducted is a reduction, where a col-
lection is traversed sequentially and an accumulator is updated for each
element. The STL algorithm for reductions is accumulate(), located in the
<numeric> header. The version of interest to us has the following signature:

template< class InputIt, class T, class BinaryOperation >
T accumulate( InputIt first, InputIt last, T init,
BinaryOperation op );

The type T of the accumulator in our case is double, as is *Inputlt, so
the function op that updates the accumulator acc for each element x must
be consistent with the form:

double op(const double& acc, const double& Xx);

but our instruction for the update of the accumulator is:

acc += exp(-r*x);

and prior to C++11, it would have been such an annoyance to squeeze that
line of code into the required signature that we would probably have ended
up with the hand-crafted loop. With the lambda syntax, it takes a line to do
that right:

double ann = accumulate (times.begin(), times.end(), 0.0,
[r] (const double& acc, const double& x)

{

return acc + exp(-r*x);

RE

There are of course many other uses of lambdas, and we will discuss a
few later, but their ability to seamlessly adapt data to signatures is the reason
why we use them every day.

C++11 also provides dedicated adapter functions bind() and mem_fn()
in the <functional> header (the latter turning member functions class.func()
into free functions func(class)), although lambdas can also do this in more
convenient manner. The syntax for bind() in particular is rather peculiar and
it is easier to achieve the exact same behavior with lambdas.

We will be working with lambdas throughout the book.

2.2 FUNCTIONAL PROGRAMMING IN C++

The introduction of lambdas is part of an effort to modernize C++ with
idioms borrowed from the growing and fashionable field of functional
programming. Although C++ does not, and never will, support functional
programming idioms the way a language like Haskell does, C++ does

'For reasons explained for instance in Scott Meyers [18].
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support some key elements of functional programming, in particular value
semantics for functions and higher-order functions.

Value semantics means that functions may be manipulated just like other
types and in particular they can be assigned to variables and passed as argu-
ments or returned as results by higher-order functions. Note that lambdas
are literals for functions, which means that the instruction:

auto £ = [] (const double x) { return 2*x; };

assigns a function literal to f in the same way we assign number or string
literals in:

double x
string s

2.0;
"C++11";

C++11 defines the function template class in the <functional> header
as a unique class for holding functions and anything callable. That means
that a concrete type like

function<double (const double) >

can hold anything that may be called with a double to return a double: a C
style function pointer, a function object, including a lambda, or a member
function bound to an object. An object of that type is itself callable of course,
and it has value semantics, in the sense that it can be assigned or passed as
an argument, or returned as a result from a higher-order function.

It looks peculiar and at first sight impossible in C++ to define a type
based on the behavior rather than the nature of the objects it holds.? function
is implemented with an interesting, advanced design pattern called type era-
sure. Unfortunately, this versatility comes with a cost. Type erasure neces-
sarily involves the storage of the underlying objects on the heap. Hence,
to initialize, assigning or copying a function object involves an allocation.’
For this reason, we refrain from using this class despite its convenience, and
manipulate functions as template types instead.*

Composition

As a first example, we consider the composition of functions, and write a
(higher-order) function that takes two functions as arguments and returns
the function resulting from their composition.

2This is sometimes called “duck-typing”: if it walks like a duck and quacks like a
duck, then it is a duck.

3Visual Studio implements a small object optimization (SMO) whereby a small buffer
is allocated for every object on the stack to minimize heap allocations.

4The implementation of type erasure is outside of our subject; interested readers can
find information online, in particular on Stack Overflow.
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template<class F1l, class F2=F1>
auto compose (const Fl& £, const F2& g)

{
}

return [=] (const auto& x) { return £(g(x)); };

We use the auto keyword so that types are deduced at compile time. Note
that it is a function, not a number, that is returned. For instance, the follow-
ing code creates a function by composing an exponential with a square root:

int main ()

{
auto f = compose([] (const double x) { return exp(x); },
[1 (const double x) { return sqrt(x); });
cout << £(0.5) << endl;
}

Lambdas are obviously unnecessary here; they wrap the functions exp()
and sqrt() without adapting anything. However, the following does not com-
pile on Visual Studio:

int main()

{
auto £ = compose(exp, sqrt);
cout << £(0.5) << endl;

Standard mathematical functions are overloaded so they work with
many different types, and the compiler doesn’t know which overload to
pick to instantiate the templates. For this reason, we must explicitly state
the function types when we compose standard functions, as follows:

auto £ = compose<double(double)>(exp, sqgrt);

We are not limited to numerical functions. Any function that takes an
argument of type T and returns a result of type T, (which we denote f :
T,— > T,) may be composed with any function g : T,— > T; to create a
function b : T;— > T5. We can imagine a function that creates a vector 1..n
out of an unsigned integer:

vector<unsigned> generateVec (const unsigned n)

{
vector<unsigned> result(n);
generate (result.begin(), result.end(),
[counter = 0] () mutable { return ++counter; });
return result;
}

where generate() is an STL algorithm from the header <algorithm> that
fills a sequence by repeated calls to a function, and the lambda is marked
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mutable because its execution modifies its internal data counter. We can
code a function that sums up the values in a vector:

template <class T>
T accumulateVec (const vector<T>& V)

{
}

return accumulate(v.begin(), v.end(), T());

where the STL accumulate() algorithm was discussed earlier. We could define
a (particularly inefficient) way to compute the sum of the first # numbers by
composition:

int main()

{

auto h = compose(accumulateVec<unsigned>, generateVec) ;

cout << h(100) << endl;

We could even design ways to compose functions of multiple arguments,
either by binding or currying. We have to stop here and refer interested read-
ers to a specialized publication like [21].

Lifting

Another useful idiom borrowed from functional programming is lifting.
To lift a function means to turn it into one that operates on compound
types. For instance, we may implement a lift that turns a scalar function
into a vector function that applies the original function to all the elements
of a vector:

template <class F>
auto lift(const F& f)

{
return [f] (const vector<double>& v)
{
vector<double> result(v.size());
transform(v.begin(), v.end(), result.begin(), £f);
return result;
bE
}

transform() is a generic STL algorithm from header <algorithm> that applies
a unary function to all the elements in a collection. What is returned from
lift() is not a vector but a function of a vector that returns a vector. It can
be used as follows (we lift the exp() function into a vExp() that computes a
vector of exponentials from a vector of numbers):
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int main()

{
auto vExp = lift<double(double) > (exp) ;
vector<double> v = { 1., 2., 3., 4., 5. };
vector<double> r = VExp (V) ;
for each(r.begin(), r.end(),
[1 (const double& x) {cout << x << endl; });
}

for_each() is another generic algorithm from the <algorithm> header that
sequentially applies an action to all the elements in a collection. We use it to
display the entries in the result vector 7.

As a (slightly) more advanced example, suppose we have a function that
implements the Black and Scholes formula from [22]:

double blackScholes (const double spot,
const double strike,
const double expiry,
const double vol);

We can lift it into a function that computes a vector of option prices
from a vector of spots, but we must first turn it into a function of the spot
alone by binding the other arguments. That could be done with a lambda,
or with the bind() function from the header <functional>:

#include <functional>
using namespace std;
using namespace placeholders;

int main()
{
// Create unary pricing function out of spot alone
// by binding the other arguments
auto BSfromS = bind(
blackScholes, // Function to bind

_dlg // spot = lst arg of bound function
100., // strike = 100

1., // maturity = 1

.10); // vol = 10

// Lift the unary function into a vector function
auto vBlackScholes = lift(BSfromsS);

// Apply the lifted function to a vector of spots
vector<double> spots = { 50., 75., 100., 125., 150. };
vector<double> calls = vBlackScholes (spots) ;

// Display results
for each(calls.begin(), calls.end(),
[1 (const double& x) {cout << x << endl; });




