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Preface

When I studied electro-mechanical engineering at the University of Brussels, my
professor of applied mechanics explained how turbopumps and turbines work. He
proved the equation of Euler: he drew two curved lines on the blackboard (yeah, that
was 1970) and proved Euler’s law, a proof of one page. Then he said, “This law applies
to all pumps and turbines.” That was it. I wondered, “What do I know about a pump
or turbine?” I had no answer. It was only when I became a professor and had to teach
courses like “Pumps and compressors” and “Steam and gas turbines” and started to read
magazines, brochures, and books on the subject that I saw what those devices looked
like without a casing and how they worked. I also think that a beautiful or detailed
picture can explain much more than text alone or dry formulas. That opinion informs
this book. There are more than 700 drawings and pictures in this book. I hope you like
them!

I worked a lot as a professor. I started in 1973 giving courses in electricity, electrotech-
nics, electronics, and high-frequency techniques for four years. Then I became a profes-
sor in mechanics, giving courses in thermodynamics, applied thermodynamics (pumps
and compressors, combustion engines, steam and gas turbines, refrigeration techniques,
heat techniques), materials science, fluid mechanics, strength of materials, pneumatics
and hydraulics, CAD2D, CAD3D, CNC, CAM, and so. For these subjects, I designed
detailed courses, first on the typewriter (do you know what that is?) and then, from
1983, on the computer. My first computer had an 8-bit processor with 16 kB of RAM
and the printer was a matrix printer. In total I offered 45 subjects. When I ended my
career, my courses comprised 2857 pages per year.

When I retired in 2007, I started collecting information for this book, beginning with
my own course, and spent a year constantly writing on and researching the subject.
I wrote in my mother tongue: Dutch.

In 2007, a search for “pumps” on Google elicited no fewer than 94 million references.
The word “compressor” had a hit rate of 18 million. This is because both devices account
for a significant part of the infrastructure of buildings, houses, and factories. It is reck-
oned that in a petrochemical plant there is one pump installed for every employee.

With this knowledge and 35 years’ teaching experience, I started to draw up my own
sort of encyclopedia. I collected as much information as possible from the literature,
company brochures, and the Internet in order to catalogue as many of the pumps and
compressors on the market as possible, writing a description of them, including their
properties. It is left to the reader to find out which pump or compressor is the best for
a certain job. That choice will not be distilled immediately from the book. The choice of
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a pump or compressor is not an exact science; it is an assessment of the pros and cons
before a definitive choice can be made. Reasons for choosing a pump for a specific job
are based on price, maintenance, lifecycle, regulation, type of fluid, etc. A reference list
at www.wiley.com/go/borremans/pumps provides a lot of information including videos
and animations that can be found on the internet for most types of pumps and compres-
sors.

Much later, in 2018, I translated it into English, not without doing more research over
several months. What you hold in your hands is the result. Maybe you could do the same
work. But by buying this book you spare yourself a lot of time and money. If you now
search Google using the word “pump”, you will get a lot of hits, but a lot of these will
concern “shoe pumps.” For the word “compressor” you’ll get 21 million hits.

Beyond this, most pictures in the book are not available anymore on the Internet.
Nowadays, nearly all companies just show the casings of their pumps and compressors.
Somebody told me it is because they don’t want their ideas to be stolen. But to me that
is pointless: rival companies can just buy a pump, dismantle it, and reverse engineer it.
Just like the Japanese did after World War II, but they added the concept of constant
quality and so made many improvements.

This book also uses concepts of fluid mechanics and thermodynamics, two subjects I
taught. In fact, pumps and compressors apply the concepts of these two basic branches
of engineering science. Don’t worry if this isn’t your area of expertise: the information
you will need to understand these branches is given in this book. When I started my
career the subject I taught was called “Applied mechanics and thermodynamics” and
later it was separated into “Pumps and compressors,” “Combustion engines and tur-
bines,” and “Refrigeration techniques.”

This book is intended for technical high school students, college students, plant
engineers, process engineers, and pump and compressor sales reps. Of course, in high
schools, one has to make abstract on the mathematical framework. The book is also a
kind of encyclopedia of the greater part of pumps and compressors on the market. It is
impossible for a teacher or professor to go through the whole book in one course.

I use simple language to explain everything and in the hope that it will be easy for the
reader to follow the reasoning. I oppose writing that forces the reader first has to make
a grammatical analysis of every sentence.

Marc Borremans
borremans.m@telenet.be
https://www.borremansengineering.com

www.wiley.com/go/borremans/pumps
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Used Symbols

Symbol Meaning Unit

a Acceleration m/s2

a′ Acceleration in suction line m/s2

A Section piston m2

A Cross section channel m2

A surface m2

A′ Section suction line M2

A′ Perpendicular surface m2

c⟂ Velocity perpendicular on surface m/s
c∥ Velocity along surface m/s
c Absolute velocity at impeller m/s
c Absolute at inlet rotor m/s
cl Velocity lower surface hydrofoil m/s
cp Specific heat at constant pressure J/kg.K
cv Specific heat at constant volume J/kg.K
cu Velocity upper surface hyrdofoil m/s
c1r Radial component m/s
CL Lift factor -
CD Drag factor -
D Diameter m
D Drag force N
D Diameter impeller m
DH Hydraulic diameter m
F Force N
FC Centrifugal force N
g Gravity acceleration m/s2

H Height m
h Depth impeller m
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Symbol Meaning Unit

h Specific enthalpy J/kg
Hgeo Geodetic height m
Hman Manometric height (head) m
Hp Geodetic press height m
Hs Geodetic suction height m
Hs,max Maximum suction head m
Hf Friction loss head m
k Absolute roughness m
l1 Distance covered during suction stroke m
l2 Distance covered during press stroke m
L Length piston rod m
L Lift force N
L Length pipe line m
L′ Fictive length suction line m
m Mass kg
m* Displaced mass per cylinder kg
M Molar mass kg/kmol
n Polytropic exponent -
N Speed rmp
Ns Specific speed m3/4 ⋅ s−3/2

Nss Suction specific speed m3/4 ⋅ s−3/2

Nq Dimionless specific speed -
N
𝜔

Dimensionless specific speed -
NPSHa Available net positive suction head m
NPSHss Suction net positive suction head -
NPSHr Required net positive suction head m
Ocd Surface under curve cd J
Oab Surface under curve ab J
pv Vapor pressure Pa
p Static pressure Pa
pa Atmospheric pressure Pa
pabs Absolute pressure Pa
peff Effective pressure Pa
pdyn Dynamic pressure Pa
pman Manometric (feed) pressure Pa
pgeo Geodetic (feed) pressure Pa
pv,p Vapor pressure press vessel Pa
pv,s Vapor pressure suction vessel Pa
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Symbol Meaning Unit

pr,p Pressure press chamber Pa
pr,s Pressure suction chamber Pa
pf,s Friction pressure suction pipe Pa
pf,p Friction pressure press pipe
pl,p Friction loss in pump
ps Static feed pressure Pa
Ptot,s Total pressure suction side Pa
Ptot,p Total pressure press side Pa
Pt Technical power on drive shaft W
q Specific heat J/kg
QM Mass flow Kg/s
QV Volumetric flow m3∕s
Qv,a Average volumetric flow m3∕s
QVeff Effective volumetric flow m3∕s
Qn,nom Nominal effective flow m3∕s
u Peripheral speed m∕s
U Voltage V
R Universal gas constant J/kmol.K
R, r Crankstroke, radius m
s Stroke length m
T Absolute temperature K
u Circumpheral velocity impeller m/s
v Specific volume m3/kg
V Total volume m3
w Relative velocity m/s
w Specific work J/kg
wc Specific compression work J/kg
wt Specific technical work J/kg
Wc Total compression work J
Wt Total technical work J
x Position m
z Number of vanes (channels) -

Greek Symbols

𝛼 Absolute angle impeller ∘ or rad
𝛽 Relative angle impeller ∘ or rad
𝛾 Isentropic exponent -



xxii Used Symbols

n Polytropic exponent -
𝛿 Correction factor laminar flow -
𝜀 Factor dead volume -
𝜌 Specific mass kg/m3

𝜃 Angle of incidence ∘ or rad
Δ Difference -
Δpot Specific change of potential energy J/kg
Δkin Specific change of kinetic energy J/kg
ΔH Geodetical height m
𝜆 Hydraulic resistance factor -
𝜆 Volumetric efficiency -
𝜆 Mean free length m
𝜏 Formation time s
𝜑(..) Function of -
𝜔 Angular velocity rad/s
𝜁 Correction factor laminar flow -
𝜈 Kinematic viscosity m/s2

𝜈 Axial velocity m/s
𝜂 Dynamic viscosity Pa⋅s
𝜉 Hydraulic resistance factor -
Γ Reaction degree -
Σ Sum -
Π Product -
Π1 1st number of Rateau -
Π2 2nd number of Rateau m-1⋅s2

Indexes

1 State 1, inlet impeller
2 State 2, outlet impeller
3 State 3
a State a
b State b
c State c
d State d
d Dead
s Stroke
a allowable
c compression
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t technical
ab State change ab
ac State change ac
cd State change cd
12 State change 12
13 State change 13
23 State change 23

Upper indexes

‘ 1st stage
“ 2nd stage
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1.1 Hydrostatics

Consider an incompressible liquid at rest. The law of Pascal applies (Figure 1.1):

p = pa + 𝜌 ⋅ g ⋅ H

where

• p: the static pressure at the considered point [Pa = N/m2]
• pa: atmospheric pressure (ca. 1 [bar] = 105 [Pa])
• 𝜌: specific mass of the liquid [kg/m3]
• g: gravitational acceleration (9.81 [m2/s])
• H: height beneath the liquid surface [m]).

The standard pressure at sea level amounts to 1.013 [bar]. This pressure is the absolute
pressure.

In practice the relative, or effective, pressure peff is of importance. This is the difference
between the absolute pressure pabs and the atmospheric pressure pa:

peff = pabs − pa

Pumps and Compressors, First Edition. Marc Borremans.
© 2019 John Wiley & Sons Ltd. This Work is a co-publication between John Wiley & Sons Ltd and ASME Press.
Companion website: www.wiley.com/go/borremans/pumps
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pa pa

H
ρ

Figure 1.1 Law of Pascal.

One can distinguish the following pressure measurement apparatus:

• A manometer usually measures the effective pressure; this is an overpressure (mostly
with respect to the atmospheric pressure).

• A vacuum meter measures an underpressure (with respect to the atmospheric pres-
sure).

• A barometer measures the absolute pressure of the atmosphere.

Concerning the unities nowadays a consistent notation is held. One notes [bar(g)]
of [barg] for effective pressure (“g” stands for gauge) and [bar(a)] or [bara] for absolute
pressure.

1.2 Flow

Consider a pipe with variable section (Figure 1.2). At section 1 a fluid (gas or liquid) pos-
sesses a velocity c and a specific mass 𝜌. The cross-section there is A1. Use an analogous
notation for section 2.

The mass flow, i.e. the amount of mass that per unit of time flows through the section,
also flows through section 2 (conservation of mass).

The mass flow QM is given by:

QM = 𝜌1 ⋅ c1 ⋅ A1 = 𝜌2 ⋅ c2 ⋅ A2 [kg∕s]

In the case of an incompressible fluid (liquids) 𝜌 is constant. One can use the volu-
metric flow QV instead, i.e. the amount of volume that flows per unit of time through a
section:

QV = c1 ⋅ A1 = c2 ⋅ A2

[
m3

s

]

1

ρ
1

ρ
2

2

Figure 1.2 Flow.
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Figure 1.3 Law of Bernoulli.

z2

ref

z1

1

2

1.3 Law of Bernoulli

Bernoulli expresses the conservation of energy for liquids. A fluid possesses pressure
energy (dynamic pressure) and potential energy (Figure 1.3):

p1 + 𝜌 ⋅ g ⋅ z1 + 𝜌 ⋅
c2

1

2
= p2 + 𝜌 ⋅ g ⋅ z2 + 𝜌 ⋅

c2
2

2
where z is the height coordinate.

1.4 Static and Dynamic Pressure

Consider a horizontal pipe. The law of Bernoulli applied to points 1 and 2 (Figure 1.4):

p1 + 𝜌 ⋅
c2

1

2
= p2 + 𝜌 ⋅

c2
2

2
Point 2 is a stagnation point:

c2 = 0

So:

p2 = p1 + 𝜌 ⋅
c2

1

2

pa

H1

pa

H2

1 2

Figure 1.4 Static and dynamic pressure.
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1 2 Figure 1.5 Venturi.

From which: p2 > p1
In vertical sense there is no movement and one can apply hydrostatics:

p1 = pa + 𝜌 ⋅ g ⋅ H1

p2 = pa + 𝜌 ⋅ g ⋅ H2

From which

p2 = p1 + 𝜌 ⋅ g ⋅ (H2 − H1)

Look now at a tube with a narrowed passage (a venturi) (Figure 1.5):

Qv = c1 ⋅ A1 = c2 ⋅ A2 with∶ A1 > A2

c1 < c2

In the throat the liquid velocity will be greater than elsewhere.
The dynamic pressure in the throat is greater than elsewhere.
Application of Bernoulli leads to:

p1 + 𝜌 ⋅
c2

1

2
= p2 + 𝜌 ⋅

c2
2

2
So that

p1 > p2

One finds that static pressure can be converted into dynamic pressure, and vice versa.
That’s why in many considerations in applied mechanics one often speaks of the total
pressure of a fluid being the sum of static and dynamic pressure. The total pressure then
expresses the “total energy content” of a liquid.

1.5 Viscosity

This paragraph is valid for liquids as well as for gasses, so we use the generic word “fluid.”
Consider a fluid in an open channel (Figure 1.6). With the help of a plate a horizontal

force F is applied in order to move the fluid. Let’s imagine that the fluid consists of hor-
izontal layers. At the top of the fluid the layer “adheres” by cohesion forces to the plate.

This layer thus moves with the velocity of the plate. At the bottom, however, the layer
does not move at all because there it is bounded by cohesion forces to the bottom of the
channel. It then is clear that every layer will possess its own velocity c, evolving from the
highest velocity at the top to velocity zero at the bottom.

Every layer will exercise a resistance on the adjacent layer (a shearing stress): the layer
at the top will have a braking action on the second layer, the third layer will be braked
by the second one, and so on… One speaks of “viscous friction” between the layers.
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Figure 1.6 Viscosity. F

If one wants to maintain a velocity of a moving fluid then a force F is necessary. Newton
states that in order to keep an object at constant speed no force is necessary (of course
this holds true only if there are no disturbing forces, like here). This force overcomes the
internal friction of the fluid, i.e. the friction that the layers exercise on each other.

For so-called Newtonian liquids and gasses, the next law applies:

F = 𝜂 ⋅ A ⋅
dc
dz

where:
A [m2]: the section of which the force F is applied
c [m/s]: the local velocity of the fluid
z [m]: the position on the vertical axis
𝜂 [Pa ⋅ s]: the dynamic viscosity (old unit, non-SI: 1 Poise = 0.1 [Pa ⋅ s])
The unit Poiseuille is a shortcut for 1 [Pa ⋅ s].
The preceding case of an open channel can easily be extended to the case of a tube

wherein a fluid moves: it suffices to mirror the case of Figure 1.6 around the plate
(Figure 1.7).

Then, too, a force F is necessary to guide a fluid through a pipe, or in other words a
pressure difference over the pipe is needed to compensate for the internal friction of
the fluid.

The order of magnitude of the dynamic viscosity for gasses at room temperature is
10 ⋅ 10−6[Pa⋅s].

In the range of low pressures, this is from 0.1 to 10 [bar], for ideal and real gasses 𝜂 is
independent of the pressure.

F

Figure 1.7 Channel.
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The dynamic viscosity for liquids varies between large ranges, so typical values can-
not be given. With increasing pressure, the dynamic viscosity of most liquids increases
nearly proportionally with the pressure.

For gasses, the viscous effects come about by exchanges of impulse (mass multiplied by
velocity) of the molecules: when a layer of gas is brought into movement the molecules in
that layer will lose kinetic energy because of collisions with other molecules. For liquids,
viscosity is caused by the intramolecular cohesion forces that brake the shift of the layers.
That’s why the viscosity of liquids decreases with increasing temperature there where for
gasses the increasing motion of the molecules promotes the exchange of impulse so that
the viscosity of gasses increases with temperature.

The dynamic viscosity of liquids at moderate pressures decreases exponentially with
temperature. But, for gasses, by approximation:

𝜂 ÷
√

T

The force F varies in every layer. So, we should write:

F = 𝜂 ⋅ A ⋅
𝜕c
𝜕z

where F is the local force and 𝜕c
𝜕z

is the local velocity gradient, or rate of shear
deformation.

Dividing F by A leads to the local shear stress 𝜏 (Figure 1.8 for a laminar flow – see
later).

𝜏 = F
A

= 𝜂 ⋅
𝜕c
𝜕z

See Appendix A for a calculation of the velocity profile and the mean velocity cm.
Not all liquids behave as Newtonian fluids (like water); in the pump industry the fol-

lowing liquids are common:

• Pseudo plastic liquids: the viscosity will decrease with increasing shear stress, e.g.
paint and shampoos.

• The inverse includes dilatant liquids: the viscosity will increase as the shear stress
increases, e.g. honey and quicksand.

c

τ

cmax

Figure 1.8 Velocity and shear stress
profile in laminar flow.
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Figure 1.9 Conversion between different viscosity units.

Figure 1.10 Heating of heavy oils.
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REDWOOD I at 100°F
curve 1 gasoil 30s
curve 2 marine diesel (medium) 50s
curve 3 medium oil 98s
curve 4 heavy 420 s
curve 5 heavy oil 950 s
curve 6 very heavy oil 1400 s
curve 7 very heavy oil 2300 s
curve 8 very heavy oil 3400 s
curve 9 very heavy oil 8000 s

limit pumpability
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Figure 1.11 Heavy oils and their viscosity.

• A plastic liquid behaves very strangely: applying a certain shear stress leads to a
Newtonian behavior, but with increasing shear stress it becomes pseudoplastic and
then dilatant, e.g. ketchup and lubricating grease.

• Thixotropic liquids will, when the shear stress disappears, show an increasing viscosity
with evolving time, e.g. yogurt, print ink, and sludge. When they are in a pump and
the pump works they become thin. But if the pump stops, they become thick. After a
while the pump is not able to pump them anymore.

In practice it turns out that the expression 𝜂

𝝆
frequently appears in equations.

That’s why one defines the kinematic viscosity ν:

ν ≡
η
𝜌

The units are: [m2/s]
Sometimes one uses an old non-SI unit, the Stokes. 1 [St] = 10−4 [m2/s]. Other

so-called technical units are Redwood I, Redwood II, Saybolt universal, Saybolt FUROL
and Engler degrees.
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Table 1.1 Guide values for fluids.

Medium m/s

Oil In pipelines 1–3
Water In long pipelines

Behind piston pumps
Behind turbopumps
For turbines

0.5–1
1–2
1.5–3
2–7

Gas Low pressure
Middle pressure
High pressure

5–30
5–20
3–6

Compressed air In pipelines 2–4
Vapor 1–10 [bar]

10–40 [bar]
40–125 [bar]

15–20
20–40
30–60

An oil with a viscosity of 3.6 [mm2/s] at 20 ∘C will need twice as much efflux time than
water with a viscosity of 1.8 [mm2/s] at 20 ∘C.

The conversion between the different viscosity units is represented in Figure 1.9.
As pointed out earlier, the viscosity of a liquid decreases with temperature. That may

imply that some liquids have to be heated before transport and to be able to form drops
in an atomizing burner (Figures 1.10 and 1.11).

Guide values for fluids are given in Table 1.1.

1.6 Extension of Bernoulli’s Law

Consider a pipeline with friction loss (Figure 1.12).
The classic law of Bernoulli:

p1 + 𝜌 ⋅
c2

1

2
= p2 + 𝜌 ⋅

c2
2

2

Figure 1.12 Friction loss.

p1 p2
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is not valid anymore because:

p1 + 𝜌 ⋅
c2

1

2
> p2 + 𝜌 ⋅

c2
2

2
Note the pressure loss by friction pf , then:

p1 + 𝜌 ⋅
c2

1

2
= p2 + 𝜌 ⋅

c2
2

2
+ pf

In general this becomes:

p1 + 𝜌 ⋅
c2

1

2
+ 𝜌 ⋅ g ⋅ z1 = p2 + 𝜌 ⋅

c2
2

2
+ 𝜌 ⋅ g ⋅ z2 + pf

Dividing by 𝜌 ⋅ g leads to the law of Bernoulli being seen in the unit meter:
p1

𝜌 ⋅ g
+

c2
1

2 ⋅ g
+ z1 =

p2

𝜌 ⋅ g
+

c2
2

2 ⋅ g
+ z2 + Hf

With the friction loss in meters:

Hf =
pf

𝜌 ⋅ g
[m]

1.7 Laminar and Turbulent Flow

Consider a vessel where a pipeline is connected to (Figure 1.13). On the pipeline a valve
is connected so that the flow can be regulated and thus the velocity of the liquid also.
Color is then added via an opening. When the velocity is not too high the stream is
very regular: the colored parts run in parallel layers. This is a laminar flow. At higher
velocities the color particles form an irregular path and begin to mix with the liquid; the
layers exchange energy with each other. This is a turbulent flow.

The difference between laminar and turbulent flow is made by the number of Reynolds
(Re), defined by:

Re ≡

cm ⋅ D
ν

where:
cm: the mean velocity of the liquid [m/s]
D: the diameter of the pipeline [m]
ν: the kinematic viscosity [m2/s]

valve
color

Figure 1.13 Types of flow.
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Figure 1.14 Turbulent flow: velocity
profile.

Re = 5000

Re = 50 000

boundary layer

It is easy to check that the number of Reynolds is, indeed, dimensionless.
When for a certain flow in a round tube Reynolds is lower than 2300 the flow is lami-

nar; otherwise, it is turbulent.
In a laminar flow the friction losses pf are proportional to the liquid velocity c, but in

a turbulent flow they are quadratically proportional to this velocity.
The question arises if in practice one deals with laminar or turbulent flows. Take the

case of water at 10 ∘C, flowing through a pipe with a diameter of 0.1 [m]. In order for
the flow to be laminar the velocity may not be higher than:

cm = 2300 ⋅ 1, 3 ⋅ 10−6

0, 1
= 0.03 [m∕s]

This velocity is very low. Practically one deals mostly with a turbulent flow. Only with
very viscous oils or substances is the flow laminar. But, in a turbulent flow, the friction
losses increase very quickly with the velocity. This last one will be limited as much as
possible. For water in pipelines: ca. 1.5 [m/s].

In a turbulent flow the velocity profile is quite different from that of a laminar flow
(Figure 1.14). Apart from a boundary layer, where the flow is laminar because of shear
stresses, the velocity is constant. This is because the particles of the liquid are mixed and
in this way exchange impulse with each other: so no difference in velocity can exist; if it
did, it would be destroyed by the interaction of the particles.

Sometimes the liquid is so viscous that it has to be heated before transportation or
pulverization in a nozzle from a burner.

1.8 Laminar Flow

1.8.1 Hydraulic Resistance

For a laminar or turbulent flow the following expression is valid:

pf = 𝜆 ⋅
L
D

⋅
𝜌 ⋅ c2

m

2
It is possible to prove that for a laminar flow (see Appendix A):

𝜆 = 64
Re
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For a noncircular section, still for a laminar flow, one introduces a correction factor:

𝜆 = 𝜁 ⋅
64
Re

Example 1.1 Concentric eccentric profile
The value of 𝜁 can be found in tables or diagrams (Figure 1.15).

Example 1.2 Rectangular profile

a
b

a/b 1 2 3 4 6 8 ∞

𝜁 0.98 0.97 1.07 1.14 1.23 1.29 1.5

Example 1.3 Ellipse

a

b

a/b 1 2 4 8 16

𝜁 1 1.05 1.14 1.20 1.22

Example 1.4 Isosceles triangle

θ

𝜽 10∘ 30∘ 60∘ 90∘ 120∘

𝜁 1.79 0.82 0.83 0.82 0.80

1.8.2 Hydraulic Diameter

Consider a noncylindrical pipeline (Figure 1.16) of length L. In general that can also be
an open channel. The cross-section where the fluid flows through is labelled Aw, the wet
perimeter Pw. The aim is now to find an equivalent cylindrical tube for such cases. The
diameter of that pipeline is called the hydraulic diameter DH .

In order to let the noncylindrical pipeline behave like a circular line of diameter D and
length L the viscous shear stresses in the fluid should lead to the same pressure drop pf .

Isolate in both cases a piece of liquid mass between section 1 and 2.
On this mass the following forces are acting:

• The liquid on the left exercises a force p ⋅ A, with:

A =
𝜋 ⋅ D2

H

4
• The liquid on the right exercises a force (p − pf ) ⋅ A
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Figure 1.15 Concentric eccentric profile: (a) rectangular profile; (b) ellipse; (c) isosceles triangle.

Figure 1.16 Hydraulic diameter.
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• At the cylinder wall shear stresses are exercised according to:

𝜏 = 𝜂 ⋅
(

dc
dz

)
DH

2

The total shear force is then:

𝜏 ⋅ (𝜋 ⋅ DH) ⋅ L

where 𝜋 ⋅ DH is the surface on which the shear stress is active.
If the liquid mass in the pipeline or open channel moves with a constant mean velocity,

the sum of all forces is zero, according to Newton’s law:
𝜋 ⋅ D2

H

4
⋅ pf − 𝜏 ⋅ (𝜋 ⋅ DH) ⋅ L

From where:

pf =
4 ⋅ 𝜏 ⋅ L

DH

Isolate now the liquid mass that flows between sections 1 and 2 of the noncylindrical
channel.

On this mass the following forces are acting:

• The force p ⋅ Aw
• The force (p − pf ) ⋅ Aw
• The shear force 𝜏 ⋅ Pw ⋅ L

where she shear stresses are active on the wet surface.
If the liquid mass is moving at a constant mean speed then the sum of all these forces

is zero:

Aw ⋅ pf − 𝜏 ⋅ Pw ⋅ L = 0

From where the pressure drop:

pf =
𝜏 ⋅ Pw ⋅ L

Aw

Identification of the two expressions for pf :

DH =
4 ⋅ Aw

Pw

where the number of Reynolds is calculated with the hydraulic diameter as character
dimension:

Re =
c ⋅ DH

𝜈

Example 1.5 Square tube

DH =
4 ⋅ Aw

Pw
= 4 ⋅ a2

4 ⋅ a
= a
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Example 1.6 Rectangular tube

DH =
4 ⋅ Aw

Pw
= 4 ⋅ a ⋅ b

2 ⋅ (a + b)
= 2 ⋅ a ⋅ b

a + b

Example 1.7 Concentric passage

DH =
4 ⋅ Aw

Pw
=

4 ⋅ 𝜋 ⋅ (r2
out − r2

in)
2 ⋅ 𝜋 ⋅ (rour + rin)

= 2 ⋅ (rout − rin)

1.9 Turbulent Flow

For straight pipes the pressure (friction) loss pf is given by the formulae of
Darcy–Weisbach:

pf = λ ⋅ L
D

⋅
(
𝜌 ⋅

cm
2

2

)

Herein:

• cm: mean velocity in pipe [m/s]
• D: diameter pipe [m]
• L: length of pipe [m]
• λ: hydraulic resistance factor (dependent on many factors, such as fluid, dimensions,

etc.), dimensionless

To determine the value of λ one dispenses with tables, graphs, and empirical formulas.

Example 1.8 For smooth pipes and 3 ⋅ 103
<Re< 106

Formula of Blasius: λ = 0.316 ⋅ Re−0.25

In case the pipe is rough inside, apart from the internal friction in the fluid, friction
may occur against the wall of the pipe. This leads to additional losses (see later literature).

Example 1.9 For water
Formula of Lang: λ = 0.02 + 0,0018√

c⋅D
(often the approximation: λ = 0.03 is made)
On the other hand, pressure losses occur in all sorts of “obstacles” like bends, elbows,

widenings or restrictions.
For these cases one uses the general formula:

pf = 𝜉 ⋅
(
𝜌 ⋅

cm
2

2

)

The values of 𝜉 also are extracted from tables, graphs, and empirical formulas. Turbu-
lent flows are characterized by the independence of Re.
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Table 1.2 Perpendicular bend.

D∕r 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

𝜑 0.13 0.18 0.25 0.4 0.64 1 1.55 2.17

Example 1.10 Perpendicular bend (Table 1.2)

D

r

Example 1.11 Slide shut-off valve

𝜉 = 0.8

Example 1.12 Plug valve

𝜉 = 2

Example 1.13 Suction strainer

ξ = 2
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Example 1.14 Diffusor
When one looks at the value of 𝜉 in the case of widenings (diffusors), it is clear that it
increases very fast with the top angle of the cone (2 ⋅ 𝜑). For that reason, with regard to
minimizing the friction losses, one will limit this top angle to 10∘.

1

2

3

4

5

0
1.2 1.4 1.6 1.8 2

φ = 4°
φ = 6°
φ = 8°
φ = 10

°
φ =

 1
2°

D2 /D1

D1 D2

φ

ξ

Example 1.15 Converging passage

0.06

1.0 1.2 1.4

D1

D1/D2

D2

1.6 1.8 2.0

10°

4°

3°

0.04

0.02

0

0.08

ξ

α

α = 2°
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Figure 1.17 Conversion factor 𝛿.

For a laminar flow the resistance factor 𝜉 can be found by first calculating 𝜉 for a
turbulent flow and correcting with a conversion factor 𝛿:

𝜉lam = 𝛿 ⋅ 𝜉turb

where 𝛿 can be found from the diagram in Figure 1.17.

1.10 Moody’s Diagram

Moody’s diagram is valid for circular tubes in laminar flow and for all tubes with
hydraulic diameter DH in turbulent flow (Figure 1.18).

The surface condition of the inner side of the pipe is given by its relative roughness
𝜖 = k

D
, where D is the diameter of the tube and 𝜖 the roughness of the inner surface. The

absolute roughness is not identical to the technical or natural roughness but is an equiv-
alent, artificial roughness that is defined as sand roughness. It is given by sand grains with
diameter k on smooth tubes that reproduce the natural roughness of sand (Figure 1.19).

In general: 𝜆 = 𝜑(Re, 𝜀) (Table 1.3).
The friction factor 𝜆 increases in old pipes because of corrosion and sediments.

According to the engineer who did the experiments the resistance must be multiplied
with an aging factor( see Table 1.4).

Example 1.16 Consider a pumping installation with a water flow QV = 360 [m3/h].
The geodetic suction head is 2.8 [m] and the geodetic pressure head 22 [m]. The suc-
tion pipe is 6 [m] long and is provided with a suction strainer with check valve (𝜉 = 4)
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Figure 1.18 Moody diagram. (Source: Courtesy of Engineering Toolbox).

and a bend with radius 0.5 [m]. The press pipe is 150 [m] long and made up of five per-
pendicular bends (radius 0.5 [m]), five check valves (𝜉 = 1), and two sliding shut-off
valves.

Determine the pressure that the pump should deliver (Figure 1.20).
At first, we determine the diameter D of the pipelines. We start by assuming a maxi-

mum water velocity of 1.5 [m/s]:

QV = 𝜋 ⋅ D2

4
from what∶ D = 0.29 [m]

We choose D= 30 [cm]. Backwards calculation of the diameter with this velocity leads
to c = 1.415 [m/s].

From the various losses the ϕ values are calculated separately:
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Figure 1.19 Absolute roughness k.

Table 1.3 Absolute roughness.

Sort State k (mm)

Drawn tubes in glass, lead,
copper, brass

0.0015

PVC, polyethylene 0.05
Drawn steel tube New 0.05

Moderate rusted 0.4
Heavy rusted 3

Welded steel tubes New 0.05
Moderate rusted 0.3
Heavy rusted 4

Galvanized tubes 0.15
Cast iron New 0.25

Moderate rusted 1
Heavy rusted 4

Concrete tubes Smooth 0.3
Rough 3

Wood Scraped 0.18
Not scraped 0.9

Table 1.4 Aging factor.

Year 2 5 10 20 30 40 50
Factor 1.1 1.2 1.35 1.75 2.10 2.60 3

The straight pipeline:

𝜉1 = λ ⋅ L
D

with λ ≅ 0.03

𝜉1 = 0.03 ⋅
156
0.3

= 1.6

The “obstacles”
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Figure 1.20 Example.

• Six bends with radius r = 0.5 [m], from which:
D
r
= 0.3

0.5
= 0.6

According to the table: 𝜉2 = 6 ⋅ 0.18 = 1.08
• Two sliding vane valves:

𝜉3 = 2 ⋅ 0.8 = 1.6
• Suction strainer with check valve:

𝜉4 = 4
• Five check valves:

𝜉5 = 5
The total pressure loss pf caused by friction amounts to:

pf = (15.6 + 1.08 + 1.6 + 4 + 5) ⋅ 103 ⋅ 1.4152

2
= 27 310 [Pa]

Furthermore, a pressure pgeo is needed to overcome the geodetic height:
pgeo = 𝜌 ⋅ g ⋅ Hgeo = 10 00 ⋅ 9.81 ⋅ 24.8 = 243 288 [Pa]

Finally, a dynamic pressure pdyn is needed to give the water kinetic energy:

pdyn = 𝜌 ⋅
c2

2
= 1001 [Pa]

So, the pump must deliver a pressure p of:
p = pf + pgeo + pdyn = 271 599 [Pa] = 2.72 [bar]

We find out that the dynamic pressure is so small it can be neglected.


