

Functional
Programming

by John Paul Mueller

Functional Programming For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2019 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/
go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please
visit https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2018965285

ISBN: 978-1-119-52750-3

ISBN 978-1-119-52751-0 (ebk); ISBN ePDF 978-1-119-52749-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Table of Contents iii

Table of Contents
INTRODUCTION . 1

About This Book .1
Foolish Assumptions .3
Icons Used in This Book .3
Beyond the Book .4
Where to Go from Here .5

PART 1: GETTING STARTED WITH FUNCTIONAL
PROGRAMMING . 7

CHAPTER 1: Introducing Functional Programming 9
Defining Functional Programming .10

Understanding its goals .11
Using the pure approach .11
Using the impure approach .12

Considering Other Programming Paradigms .13
Imperative . .13
Procedural .13
Object-oriented .14
Declarative .14

Using Functional Programming to Perform Tasks 15
Discovering Languages That Support Functional Programming 16

Considering the pure languages .16
Considering the impure languages .17

Finding Functional Programming Online .17

CHAPTER 2: Getting and Using Python . 19
Working with Python in This Book .20

Creating better code .20
Debugging functionality .20
Defining why notebooks are useful .21

Obtaining Your Copy of Anaconda .21
Obtaining Analytics Anaconda .21
Installing Anaconda on Linux .22
Installing Anaconda on MacOS .23
Installing Anaconda on Windows .24
Understanding the Anaconda package .26

Downloading the Datasets and Example Code .27
Using Jupyter Notebook .28
Defining the code repository .28
Getting and using datasets .33

iv Functional Programming For Dummies

Creating a Python Application .34
Understanding cells . .35
Adding documentation cells .36
Other cell content .38

Running the Python Application .38
Understanding the Use of Indentation .39
Adding Comments .41

Understanding comments .41
Using comments to leave yourself reminders 43
Using comments to keep code from executing 43

Closing Jupyter Notebook . .44
Getting Help with the Python Language .45

CHAPTER 3: Getting and Using Haskell . 47
Working with Haskell in This Book .48
Obtaining and Installing Haskell .48

Installing Haskell on a Linux system .50
Installing Haskell on a Mac system .50
Installing Haskell on a Windows system .52

Testing the Haskell Installation .54
Compiling a Haskell Application .56
Using Haskell Libraries .59
Getting Help with the Haskell Language .60

PART 2: STARTING FUNCTIONAL
PROGRAMMING TASKS . 63

CHAPTER 4:	 Defining	the	Functional	Difference 65
Comparing Declarations to Procedures .66
Understanding How Data Works . .67

Working with immutable data .68
Considering the role of state .68
Eliminating side effects .69

Seeing a Function in Haskell .69
Using non-curried functions .69
Using curried functions .70

Seeing a Function in Python . .73
Creating and using a Python function .73
Passing by reference versus by value .74

CHAPTER 5: Understanding the Role of Lambda Calculus 77
Considering the Origins of Lambda Calculus .78
Understanding the Rules .80

Working with variables .80
Using application .81
Using abstraction .82

Table of Contents v

Performing Reduction Operations .85
Considering α-conversion .85
Considering β-reduction .86
Considering η-conversion .88

Creating Lambda Functions in Haskell .89
Creating Lambda Functions in Python .89

CHAPTER 6: Working with Lists and Strings . 91
Defining List Uses .92
Creating Lists .93

Using Haskell to create Lists .94
Using Python to create lists .95

Evaluating Lists .96
Using Haskell to evaluate Lists .97
Using Python to evaluate lists .99

Performing Common List Manipulations .100
Understanding the list manipulation functions 101
Using Haskell to manipulate lists .101
Using Python to manipulate lists .102

Understanding the Dictionary and Set Alternatives 103
Using dictionaries .103
Using sets .104

Considering the Use of Strings .105
Understanding the uses for strings .105
Performing string-related tasks in Haskell .106
Performing string-related tasks in Python .106

PART 3: MAKING FUNCTIONAL
PROGRAMMING PRACTICAL . 109

CHAPTER 7: Performing Pattern Matching . 111
Looking for Patterns in Data .112
Understanding Regular Expressions .113

Defining special characters using escapes 114
Defining wildcard characters .115
Working with anchors .115
Delineating subexpressions using grouping constructs 116

Using Pattern Matching in Analysis .117
Working with Pattern Matching in Haskell .118

Performing simple Posix matches .118
Matching a telephone number with Haskell 120

Working with Pattern Matching in Python .121
Performing simple Python matches .121
Doing more than matching .123
Matching a telephone number with Python 124

vi Functional Programming For Dummies

CHAPTER 8: Using Recursive Functions . 125
Performing Tasks More than Once .126

Defining the need for repetition .126
Using recursion instead of looping .127

Understanding Recursion . .128
Considering basic recursion .129
Performing tasks using lists .131
Upgrading to set and dictionary .132
Considering the use of collections .134

Using Recursion on Lists .135
Working with Haskell .135
Working with Python .136

Passing Functions Instead of Variables .137
Understanding when you need a function 138
Passing functions in Haskell .138
Passing functions in Python .139

Defining Common Recursion Errors .140
Forgetting an ending .140
Passing data incorrectly .141
Defining a correct base instruction .141

CHAPTER 9:	 Advancing with	Higher-Order Functions 143
Considering Types of Data Manipulation .144
Performing Slicing and Dicing .146

Keeping datasets controlled .146
Focusing on specific data .147
Slicing and dicing with Haskell .147
Slicing and dicing with Python .150

Mapping Your Data .151
Understanding the purpose of mapping .151
Performing mapping tasks with Haskell .152
Performing mapping tasks with Python .153

Filtering Data .154
Understanding the purpose of filtering .154
Using Haskell to filter data .155
Using Python to filter data .156

Organizing Data .157
Considering the types of organization .157
Sorting data with Haskell .158
Sorting data with Python .159

CHAPTER 10: Dealing with Types . 161
Developing Basic Types .162

Understanding the functional perception of type 162
Considering the type signature .162
Creating types .164

Table of Contents vii

Composing Types .170
Understanding monoids .170
Considering the use of Nothing, Maybe, and Just174
Understanding semigroups .176

Parameterizing Types .176
Dealing with Missing Data .178

Handling nulls .178
Performing data replacement .180
Considering statistical measures .180

Creating and Using Type Classes .181

PART 4: INTERACTING IN VARIOUS WAYS 183

CHAPTER 11: Performing Basic I/O . 185
Understanding the Essentials of I/O .186

Understanding I/O side effects .186
Using monads for I/O .188
Interacting with the user .188
Working with devices .189

Manipulating I/O Data .191
Using the Jupyter Notebook Magic Functions .192
Receiving and Sending I/O with Haskell .195

Using monad sequencing .195
Employing monad functions .195

CHAPTER 12: Handling the Command Line . 197
Getting Input from the Command Line .198

Automating the command line .198
Considering the use of prompts .198
Using the command line effectively .199

Accessing the Command Line in Haskell .200
Using the Haskell environment directly .200
Making sense of the variety of packages .201
Obtaining CmdArgs .202
Getting a simple command line in Haskell 204

Accessing the Command Line in Python .205
Using the Python environment directly .205
Interacting with Argparse .206

CHAPTER 13: Dealing with Files . 207
Understanding How Local Files are Stored .208
Ensuring Access to Files .209
Interacting with Files .209

Creating new files .210
Opening existing files .211

viii Functional Programming For Dummies

Manipulating File Content .212
Considering CRUD .213
Reading data .214
Updating data .215

Completing File-related Tasks .217

CHAPTER 14: Working with Binary Data . 219
Comparing Binary to Textual Data .220
Using Binary Data in Data Analysis .221
Understanding the Binary Data Format .222
Working with Binary Data . .225
Interacting with Binary Data in Haskell .225

Writing binary data using Haskell .226
Reading binary data using Haskell .227

Interacting with Binary Data in Python .228
Writing binary data using Python .228
Reading binary data using Python .229

CHAPTER 15: Dealing with Common Datasets . 231
Understanding the Need for Standard Datasets 232
Finding the Right Dataset .233

Locating general dataset information .233
Using library-specific datasets .234

Loading a Dataset .236
Working with toy datasets .237
Creating custom data .238
Fetching common datasets .239

Manipulating Dataset Entries .241
Determining the dataset content .241
Creating a DataFrame .243
Accessing specific records .244

PART 5: PERFORMING SIMPLE ERROR TRAPPING 247

CHAPTER 16:	Handling	Errors	in Haskell . 249
Defining a Bug in Haskell .250

Considering recursion .250
Understanding laziness .251
Using unsafe functions .252
Considering implementation-specific issues 253

Understanding the Haskell-Related Errors .253
Fixing Haskell Errors Quickly .256

Relying on standard debugging .256
Understanding errors versus exceptions .258

Table of Contents ix

CHAPTER 17:	Handling	Errors	in Python . 259
Defining a Bug in Python .260

Considering the sources of errors .260
Considering version differences .262

Understanding the Python-Related Errors .263
Dealing with late binding closures .263
Using a variable .264
Working with third-party libraries .264

Fixing Python Errors Quickly .265
Understanding the built-in exceptions .265
Obtaining a list of exception arguments .266
Considering functional style exception handling 267

PART 6: THE PART OF TENS . 269

CHAPTER 18:	Ten	Must-Have	Haskell	Libraries . 271
binary .271
Hascore .273
vect .273
vector .274
aeson .274
attoparsec .275
bytestring .275
stringsearch .276
text .276
moo .277

CHAPTER 19:	Ten	(Plus)	Must-Have	Python	Packages 279
Gensim .280
PyAudio .281
PyQtGraph .282
TkInter .283
PrettyTable .283
SQLAlchemy .284
Toolz .284
Cloudera Oryx .285
funcy .285
SciPy .286
XGBoost .287

x Functional Programming For Dummies

CHAPTER 20: Ten Occupation Areas that Use
Functional Programming . 289
Starting with Traditional Development .289
Going with New Development .290
Creating Your Own Development .291
Finding a Forward-Thinking Business .292
Doing Something Really Interesting .292
Developing Deep Learning Applications .293
Writing Low-Level Code .293
Helping Others in the Health Care Arena .294
Working as a Data Scientist .294
Researching the Next Big Thing .295

INDEX . 297

Introduction 1

Introduction

The functional programming paradigm is a framework that expresses a partic-
ular set of assumptions, relies on particular ways of thinking through prob-
lems, and uses particular methodologies to solve those problems. Some

people view this paradigm as being akin to performing mental gymnastics. Other
people see functional programming as the most logical and easiest method for
coding any particular problem ever invented. Where you appear in this rather
broad range of perspectives depends partly on your programming background,
partly on the manner in which you think through problems, and partly on the
problem you’re trying to solve.

Functional Programming For Dummies doesn’t try to tell you that the functional
programming paradigm will solve every problem, but it does help you understand
that functional programming can solve a great many problems with fewer errors,
less code, and a reduction in development time. Most important, it helps you
understand the difference in the thought process that using the functional pro-
gramming paradigm involves. Of course, the key is knowing when functional pro-
gramming is the best option, and that’s what you take away from this book. Not
only do you see how to perform functional programming with both pure (Haskell)
and impure (Python) languages, but you also gain insights into when functional
programming is the best solution.

About This Book
Functional Programming For Dummies begins by describing what a paradigm is and
how the functional programming paradigm differs. Many developers today don’t
really understand that different paradigms can truly change the manner in which
you view a problem domain, thereby making some problem domains consider-
ably easier to deal with. As part of considering the functional programming par-
adigm, you install two languages: Haskell (a pure functional language) and
Python (an impure functional language). Of course, part of this process is to see
how pure and impure languages differ and determine the advantages and disad-
vantages of each.

2 Functional Programming For Dummies

Part of working in the functional programming environment is to understand and
use lambda calculus, which is part of the basis on which functional programming
it built. Imagine that you’re in a room with some of the luminaries of computer
science and they’re trying to decide how best to solve problems in computer
 science at a time when the term computer science doesn’t even exist. For that mat-
ter, no one has even defined what it means to compute. Even though functional
programming might seem new to many people, it’s based on real science created
by the best minds the world has ever seen to address particularly difficult prob-
lems. This science uses lambda calculus as a basis, so an explanation of this par-
ticularly difficult topic is essential.

After you understand the basis of the functional programming paradigm and have
installed tools that you can use to see it work, it’s time to create some example
code. This book starts with some relatively simple examples that you might find
in other books that use other programming paradigms so that you compare them
and see how functional programming actually differs. You then move on to other
sorts of programming problems that begin to emphasize the benefits of functional
programming in a stronger way. To make absorbing the concepts of functional
programming even easier, this book uses the following conventions:

 » Text that you’re meant to type just as it appears in the book is bold. The
exception is when you’re working through a step list: Because each step is
bold, the text to type is not bold.

 » Because functional programming will likely seem strange to many of you, I’ve
made a special effort to define terms, even some of those that you might
already know, because they may have a different meaning in the functional
realm. You see the terms in italics, followed by their definition.

 » When you see words in italics as part of a typing sequence, you need to
replace that value with something that works for you. For example, if you
see “Type Your Name and press Enter,” you need to replace Your Name with
your actual name.

 » Web addresses and programming code appear in monofont. If you’re
reading a digital version of this book on a device connected to the Internet,
note that you can click the web address to visit that website, like this:
www.dummies.com.

 » When you need to type command sequences, you see them separated by
a special arrow, like this: File ➪ New File. In this case, you go to the File menu
first and then select the New File entry on that menu. The result is that you
see a new file created.

http://www.dummies.com

Introduction 3

Foolish Assumptions
You might find it difficult to believe that I’ve assumed anything about you — after
all, I haven’t even met you yet! Although most assumptions are indeed foolish,
I made these assumptions to provide a starting point for the book.

You need to be familiar with the platform that you want to use because the book
doesn’t provide any guidance in this regard. To give you maximum information
about the functional programming paradigm, this book doesn’t discuss any
platform-specific issues. You need to know how to install applications, use
 applications, and generally work with your chosen platform before you begin
working with this book. Chapter 2 does show how to install Python, and Chapter 3
shows how to install Haskell. Part 2 of the book gives you the essential introduc-
tion to functional programming, and you really need to read it thoroughly to
obtain the maximum benefit from this book.

This book also assumes that you can find things on the Internet. Sprinkled
throughout are numerous references to online material that will enhance your
learning experience. However, these added sources are useful only if you actually
find and use them.

Icons Used in This Book
As you read this book, you see icons in the margins that indicate material of inter-
est (or not, as the case may be). This section briefly describes each icon in this
book.

Tips are nice because they help you save time or perform some task without a lot
of extra work. The tips in this book are time-saving techniques or pointers to
resources that you should try in order to get the maximum benefit from Python,
Haskell, or the functional programming paradigm.

I don’t want to sound like an angry parent or some kind of maniac, but you should
avoid doing anything marked with a Warning icon. Otherwise, you could find that
your program serves only to confuse users, who will then refuse to work with it.

Whenever you see this icon, think advanced tip or technique. You might find these
tidbits of useful information just too boring for words, or they could contain the
solution that you need to get a program running. Skip these bits of information
whenever you like.

4 Functional Programming For Dummies

If you don’t get anything else out of a particular chapter or section, remember the
material marked by this icon. This text usually contains an essential process or a
bit of information that you must know to write Python, Haskell, or functional
programming applications successfully.

Beyond the Book
This book isn’t the end of your functional programming experience — it’s really
just the beginning. I provide online content to make this book more flexible and
better able to meet your needs. That way, as I receive email from you, I can do
things like address questions and tell you how updates to Python, its associated
packages, Haskell, it’s associated libraries, or changes to functional programming
techniques that affect book content. In fact, you gain access to all these cool
additions:

 » Cheat sheet: You remember using crib notes in school to make a better mark
on a test, don’t you? You do? Well, a cheat sheet is sort of like that. It provides
you with some special notes about tasks that you can do with Python or Haskell
that not every other developer knows. In addition, you find some quick notes
about functional programming paradigm differences. You can find the cheat
sheet for this book by going to www.dummies.com and searching this book’s
title. Scroll down the page until you find a link to the Cheat Sheet.

 » Updates: Sometimes changes happen. For example, I might not have seen an
upcoming change when I looked into my crystal ball during the writing of this
book. In the past, that simply meant the book would become outdated and
less useful, but you can now find updates to the book by searching this book’s
title at www.dummies.com.

In addition to these updates, check out the blog posts with answers to
reader questions and demonstrations of useful book-related techniques at
http://blog.johnmuellerbooks.com/.

 » Companion files: Hey! Who really wants to type all the code in the book?
Most readers would prefer to spend their time actually working through coding
examples, rather than typing. Fortunately for you, the source code is available
for download, so all you need to do is read the book to learn functional program-
ming techniques. Each of the book examples even tells you precisely which
example project to use. You can find these files at www.dummies.com. Click More
about This Book and, on the page that appears, scroll down the page to the set
of tabs. Click the Downloads tab to find the downloadable example files.

http://www.dummies.com
http://www.dummies.com/
http://blog.johnmuellerbooks.com/
http://www.dummies.com

Introduction 5

Where to Go from Here
It’s time to start your functional programming paradigm adventure! If you’re a
complete functional programming novice, you should start with Chapter 1 and
progress through the book at a pace that allows you to absorb as much of the
material as possible.

If you’re a novice who’s in an absolute rush to get going with functional program-
ming techniques as quickly as possible, you can skip to Chapter 2, followed by
Chapter 3, with the understanding that you may find some topics a bit confusing
later. You must install both Python and Haskell to have any hope of getting some-
thing useful out of this book, so unless you have both languages installed, skip-
ping these two chapters will likely mean considerable problems later.

Readers who have some exposure to functional programming and already have
both Python and Haskell installed can skip to Part 2 of the book. Even with some
functional programming experience, Chapter 5 is a must-read chapter because it
provides the basis for all other discussions in the book. The best idea is to at least
skim all of Part 2.

If you’re absolutely certain that you understand both functional programming
paradigm basics and how lambda calculus fits into the picture, you can skip to
Part 3 with the understanding that you may not see the relevance of some exam-
ples. The examples build on each other so that you gain a full appreciation of what
makes the functional programming paradigm different, so try not to skip any of
the examples, even if they seem somewhat simplistic.

1Getting Started
with Functional
Programming

IN THIS PART . . .

Discover the functional programming paradigm.

Understand how functional programming differs.

Obtain and install Python.

Obtain and install Haskell.

CHAPTER 1 Introducing Functional Programming 9

Chapter 1
Introducing Functional
Programming

This book isn’t about a specific programming language; it’s about a pro-
gramming paradigm. A paradigm is a framework that expresses a particular
set of assumptions, relies on particular ways of thinking through problems,

and uses particular methodologies to solve those problems. Consequently, this
programming book is different because it doesn’t tell you which language to use;
instead, it focuses on the problems you need to solve. The first part of this chapter
discusses how the functional programming paradigm accomplishes this task, and
the second part points out how functional programming differs from other para-
digms you may have used.

The math orientation of functional programming means that you might not create
an application using it; you might instead solve straightforward math problems or
devise what if scenarios to test. Because functional programming is unique in its
approach to solving problems, you might wonder how it actually accomplishes its
goals. The third section of this chapter provides a brief overview of how you use
the functional programming paradigm to perform various kinds of tasks (includ-
ing traditional development), and the fourth section tells how some languages
follow a pure path to this goal and others follow an impure path. That’s not to say
that those following the pure path are any more perfect than those following the
impure path; they’re simply different.

IN THIS CHAPTER

 » Exploring functional programming

 » Programming in the functional way

 » Finding a language that suits
your needs

 » Locating functional programming
resources

10 PART 1 Getting Started with Functional Programming

Finally, this chapter also discusses a few online resources that you see mentioned
in other areas of the book. The functional programming paradigm is popular for
solving certain kinds of problems. These resources help you discover the specifics
of how people are using functional programming and why they feel that it’s such
an important method of working through problems. More important, you’ll dis-
cover that many of the people who rely on the functional programming paradigm
aren’t actually developers. So, if you aren’t a developer, you may find that you’re
already in good company by choosing this paradigm to meet your needs.

Defining Functional Programming
Functional programming has somewhat different goals and approaches than
other paradigms use. Goals define what the functional programming paradigm is
trying to do in forging the approaches used by languages that support it. However,
the goals don’t specify a particular implementation; doing that is within the pur-
view of the individual languages.

The main difference between the functional programming paradigm and other
paradigms is that functional programs use math functions rather than statements
to express ideas. This difference means that rather than write a precise set of
steps to solve a problem, you use math functions, and you don’t worry about how
the language performs the task. In some respects, this makes languages that
support the functional programming paradigm similar to applications such as
MATLAB. Of course, with MATLAB, you get a user interface, which reduces the
learning curve. However, you pay for the convenience of the user interface with a
loss of power and flexibility, which functional languages do offer. Using this
approach to defining a problem relies on the declarative programming style, which
you see used with other paradigms and languages, such as Structured Query
Language (SQL) for database management.

In contrast to other paradigms, the functional programming paradigm doesn’t
maintain state. The use of state enables you to track values between function calls.
Other paradigms use state to produce variant results based on environment, such
as determining the number of existing objects and doing something different
when the number of objects is zero. As a result, calling a functional program func-
tion always produces the same result given a particular set of inputs, thereby
making functional programs more predictable than those that support state.

Because functional programs don’t maintain state, the data they work with is also
immutable, which means that you can’t change it. To change a variable’s value,
you must create a new variable. Again, this makes functional programs more

CHAPTER 1 Introducing Functional Programming 11

predictable than other approaches and could make functional programs easier to
run on multiple processors. The following sections provide additional information
on how the functional programming paradigm differs.

Understanding its goals
Imperative programming, the kind of programming that most developers have done
until now, is akin to an assembly line, where data moves through a series of steps
in a specific order to produce a particular result. The process is fixed and rigid, and
the person implementing the process must build a new assembly line every time
an application requires a new result. Object-oriented programming (OOP) simply
modularizes and hides the steps, but the underlying paradigm is the same. Even
with modularization, OOP often doesn’t allow rearrangement of the object code in
unanticipated ways because of the underlying interdependencies of the code.

Functional programming gets rid of the interdependencies by replacing proce-
dures with pure functions, which requires the use of immutable state. Conse-
quently, the assembly line no longer exists; an application can manipulate data
using the same methodologies used in pure math. The seeming restriction of
immutable state provides the means to allow anyone who understands the math
of a situation to also create an application to perform the math.

Using pure functions creates a flexible environment in which code order depends
on the underlying math. That math models a real-world environment, and as our
understanding of that environment changes and evolves, the math model and
functional code can change with it — without the usual problems of brittleness
that cause imperative code to fail. Modifying functional code is faster and less
error prone because the person implementing the change must understand only
the math and doesn’t need to know how the underlying code works. In addition,
learning how to create functional code can be faster as long as the person under-
stands the math model and its relationship to the real world.

Functional programming also embraces a number of unique coding approaches,
such as the capability to pass a function to another function as input. This capa-
bility enables you to change application behavior in a predictable manner that
isn’t possible using other programming paradigms. As the book progresses, you
encounter other such benefits of using functional programming.

Using the pure approach
Programming languages that use the pure approach to the functional program-
ming paradigm rely on lambda calculus principles, for the most part. In addition,
a pure-approach language allows the use of functional programming techniques

12 PART 1 Getting Started with Functional Programming

only, so that the result is always a functional program. The pure-approach
language used in this book is Haskell because it provides the purest implementation,
according to articles such as the one found on Quora at https://www.quora.com/
What-are-the-most-popular-and-powerful-functional-programming-
languages. Haskell is also a relatively popular language, according to the TIOBE
index (https://www.tiobe.com/tiobe-index/). Other pure-approach languages
include Lisp, Racket, Erlang, and OCaml.

As with many elements of programming, opinions run strongly regarding whether
a particular programming language qualifies for pure status. For example, many
people would consider JavaScript a pure language, even though it’s untyped. Oth-
ers feel that domain-specific declarative languages such as SQL and Lex/Yacc
qualify for pure status even though they aren’t general programming languages.
Simply having functional programming elements doesn’t qualify a language as
adhering to the pure approach.

Using the impure approach
Many developers have come to see the benefits of functional programming. How-
ever, they also don’t want to give up the benefits of their existing language, so
they use a language that mixes functional features with one of the other program-
ming paradigms (as described in the “Considering Other Programming Para-
digms” section that follows). For example, you can find functional programming
features in languages such as C++, C#, and Java. When working with an impure
language, you need to exercise care because your code won’t work in a purely
functional manner, and the features that you might think will work in one way
actually work in another. For example, you can’t pass a function to another func-
tion in some languages.

At least one language, Python, is designed from the outset to support multiple
programming paradigms (see https://blog.newrelic.com/2015/04/01/
python-programming-styles/ for details). In fact, some online courses make a
point of teaching this particular aspect of Python as a special benefit (see https://
www.coursehero.com/file/p1hkiub/Python-supports-multiple-programming-
paradigms-including-object-oriented/). The use of multiple programming
paradigms makes Python quite flexible but also leads to complaints and apologists
(see http://archive.oreilly.com/pub/post/pythons_weak_functional_progra.
html as an example). The reasons that this book relies on Python to demonstrate
the impure approach to functional programming is that it’s both popular and
flexible, plus it’s easy to learn.

https://www.quora.com/What-are-the-most-popular-and-powerful-functional-programming-languages
https://www.quora.com/What-are-the-most-popular-and-powerful-functional-programming-languages
https://www.quora.com/What-are-the-most-popular-and-powerful-functional-programming-languages
https://www.tiobe.com/tiobe-index/
https://blog.newrelic.com/2015/04/01/python-programming-styles/
https://blog.newrelic.com/2015/04/01/python-programming-styles/
https://www.coursehero.com/file/p1hkiub/Python-supports-multiple-programming-paradigms-including-object-oriented/
https://www.coursehero.com/file/p1hkiub/Python-supports-multiple-programming-paradigms-including-object-oriented/
https://www.coursehero.com/file/p1hkiub/Python-supports-multiple-programming-paradigms-including-object-oriented/
http://archive.oreilly.com/pub/post/pythons_weak_functional_progra.html
http://archive.oreilly.com/pub/post/pythons_weak_functional_progra.html

CHAPTER 1 Introducing Functional Programming 13

Considering Other
Programming Paradigms

You might think that only a few programming paradigms exist besides the func-
tional programming paradigm explored in this book, but the world of develop-
ment is literally packed with them. That’s because no two people truly think
completely alike. Each paradigm represents a different approach to the puzzle of
conveying a solution to problems by using a particular methodology while making
assumptions about things like developer expertise and execution environment. In
fact, you can find entire sites that discuss the issue, such as the one at http://
cs.lmu.edu/~ray/notes/paradigms/. Oddly enough, some languages (such as
Python) mix and match compatible paradigms to create an entirely new way to
perform tasks based on what has happened in the past.

The following sections discuss just four of these other paradigms. These para-
digms are neither better nor worse than any other paradigm, but they represent
common schools of thought. Many languages in the world today use just these
four paradigms, so your chances of encountering them are quite high.

Imperative
Imperative programming takes a step-by-step approach to performing a task.
The developer provides commands that describe precisely how to perform the task
from beginning to end. During the process of executing the commands, the code
also modifies application state, which includes the application data. The code runs
from beginning to end. An imperative application closely mimics the computer
hardware, which executes machine code. Machine code is the lowest set of instruc-
tions that you can create and is mimicked in early languages, such as assembler.

Procedural
Procedural programming implements imperative programming, but adds func-
tionality such as code blocks and procedures for breaking up the code. The com-
piler or interpreter still ends up producing machine code that runs step by step,
but the use of procedures makes it easier for a developer to follow the code and
understand how it works. Many procedural languages provide a disassembly mode
in which you can see the correspondence between the higher-level language and
the underlying assembler. Examples of languages that implement the procedural
paradigm are C and Pascal.

http://cs.lmu.edu/~ray/notes/paradigms/
http://cs.lmu.edu/~ray/notes/paradigms/

14 PART 1 Getting Started with Functional Programming

Early languages, such as Basic, used the imperative model because developers
creating the languages worked closely with the computer hardware. However,
Basic users often faced a problem called spaghetti code, which made large applica-
tions appear to be one monolithic piece. Unless you were the application’s devel-
oper, following the application’s logic was often hard. Consequently, languages
that follow the procedural paradigm are a step up from languages that follow the
imperative paradigm alone.

Object-oriented
The procedural paradigm does make reading code easier. However, the relation-
ship between the code and the underlying hardware still makes it hard to relate
what the code is doing to the real world. The object-oriented paradigm uses the
concept of objects to hide the code, but more important, to make modeling the real
world easier. A developer creates code objects that mimic the real-world objects
they emulate. These objects include properties, methods, and events to allow the
object to behave in a particular manner. Examples of languages that implement
the object-oriented paradigm are C++ and Java.

Languages that implement the object-oriented paradigms also implement both
the procedural and imperative paradigms. The fact that objects hide the use
of these other paradigms doesn’t mean that a developer hasn’t written code to
create the object using these older paradigms. Consequently, the object-oriented
paradigm still relies on code that modifies application state, but could also allow
for modifying variable data.

Declarative
Functional programming actually implements the declarative programming par-
adigm, but the two paradigms are separate. Other paradigms, such as logic pro-
gramming, implemented by the Prolog language, also support the declarative
programming paradigm. The short view of declarative programming is that it
does the following:

 » Describes what the code should do, rather than how to do it

 » Defines functions that are referentially transparent (without side effects)

 » Provides a clear correspondence to mathematical logic

CHAPTER 1 Introducing Functional Programming 15

Using Functional Programming
to Perform Tasks

It’s essential to remember that functional programming is a paradigm, which
means that it doesn’t have an implementation. The basis of functional program-
ming is lambda calculus (https://brilliant.org/wiki/lambda-calculus/),
which is actually a math abstraction. Consequently, when you want to perform
tasks by using the functional programming paradigm, you’re really looking for a
programming language that implements functional programming in a manner that
meets your needs. (The next section, “Discovering Languages that Support Func-
tional Programming,” describes the available languages in more detail.) In fact, you
may even be performing functional programming tasks in your current language
without realizing it. Every time you create and use a lambda function, you’re likely
using functional programming techniques (in an impure way, at least).

In addition to using lambda functions, languages that implement the functional
programming paradigm have some other features in common. Here is a quick
overview of these features:

 » First-class and higher-order functions: First-class and higher-order func-
tions both allow you to provide a function as an input, as you would when
using a higher-order function in calculus.

 » Pure functions: A pure function has no side effects. When working with a
pure function, you can

• Remove the function if no other functions rely on its output

• Obtain the same results every time you call the function with a given set
of inputs

• Reverse the order of calls to different functions without any change to
application functionality

• Process the function calls in parallel without any consequence

• Evaluate the function calls in any order, assuming that the entire language
doesn’t allow side effects

 » Recursion: Functional language implementations rely on recursion to
implement looping. In general, recursion works differently in functional
languages because no change in application state occurs.

 » Referential transparency: The value of a variable (a bit of a misnomer
because you can’t change the value) never changes in a functional language
implementation because functional languages lack an assignment operator.

https://brilliant.org/wiki/lambda-calculus/

16 PART 1 Getting Started with Functional Programming

You often find a number of other considerations for performing tasks in functional
programming language implementations, but these issues aren’t consistent across
languages. For example, some languages use strict (eager) evaluation, while other
languages use non-strict (lazy) evaluation. Under strict evaluation, the language
fully checks the function before evaluating it. Even when a term within the function
isn’t used, a failing term will cause the function as a whole to fail. However, under
non-strict evaluation, the function fails only if the failing term is used to create an
output. The Miranda, Clean, and Haskell languages all implement non-strict
evaluation.

Various functional language implementations also use different type systems, so
the manner in which the underlying computer detects the type of a value changes
from language to language. In addition, each language supports its own set of data
structures. These kinds of issues aren’t well defined as part of the functional pro-
gramming paradigm, yet they’re important to creating an application, so you
must rely on the language you use to define them for you. Assuming a particular
implementation in any given language is a bad idea because it isn’t well defined
as part of the paradigm.

Discovering Languages That Support
Functional Programming

To actually use the functional programming paradigm, you need a language that
implements it. As with every other paradigm discussed in this chapter, languages
often fall short of implementing every idea that the paradigm provides, or they
implement these ideas in unusual ways. Consequently, knowing the paradigm’s
rules and seeing how the language you select implements them helps you to
understand the pros and cons of a particular language better. Also, understanding
the paradigm makes comparing one language to another easier. The functional
programming paradigm supports two kinds of language implementation, pure
and impure, as described in the following sections.

Considering the pure languages
A pure functional programming language is one that implements only the func-
tional programming paradigm. This might seem a bit limited, but when you read
through the requirements in the “Using Functional Programming to Perform
Tasks” section, earlier in the chapter, you discover that functional programming
is mutually exclusive to programming paradigms that have anything to do with
the imperative paradigm (which applies to most languages available today).

CHAPTER 1 Introducing Functional Programming 17

Trying to discover which language best implements the functional programming
paradigm is nearly impossible because everyone has an opinion on the topic. You
can find a list of 21 functional programming language implementations with their
pros and cons at https://www.slant.co/topics/485/~best-languages-for-
learning-functional-programming.

Considering the impure languages
Python is likely the epitome of the impure language because it supports so many
coding styles. That said, the flexibility that Python provides is one reason that
people like using it so much: You can code in whatever style you need at the
moment. The definition of an impure language is one that doesn’t follow the rules
for the functional programming paradigm fully (or at least not fully enough to call
it pure). For example, allowing any modification of application state would
instantly disqualify a language from consideration.

One of the more common and less understood reasons for disqualifying a lan-
guage as being a pure implementation of the functional programming paradigm is
the lack of pure-function support. A pure function defines a specific relationship
between inputs and outputs that has no side effects. Every call to a pure function
with specific inputs always garners precisely the same output, making pure func-
tions extremely reliable. However, some applications actually rely on side effects
to work properly, which makes the pure approach somewhat rigid in some cases.
Chapters 4 and 5 provide specifics on the question of pure functions. You can
also discover more in the article at http://www.onlamp.com/2007/07/12/
introduction-to-haskell-pure-functions.html.

Finding Functional Programming Online
Functional programming has become extremely popular because it solves so many
problems. As covered in this chapter, it also comes with a few limitations, such as
an inability to use mutable data; however, for most people, the pros outweigh the
cons in situations that allow you to define a problem using pure math. (The lack
of mutable data support also has pros, as you discover later, such as an ability to
perform multiprocessing with greater ease.) With all this said, it’s great to have
resources when discovering a programming paradigm. This book is your first
resource, but a single book can’t discuss everything.

https://www.slant.co/topics/485/~best-languages-for-learning-functional-programming
https://www.slant.co/topics/485/~best-languages-for-learning-functional-programming
http://www.onlamp.com/2007/07/12/introduction-to-haskell-pure-functions.html
http://www.onlamp.com/2007/07/12/introduction-to-haskell-pure-functions.html

18 PART 1 Getting Started with Functional Programming

Online sites, such as Kevin Sookochef (https://sookocheff.com/post/fp/a-
functional-learning-plan/) and Wildly Inaccurate (https://wildlyinaccurate.
com/functional-programming-resources/), offer a great many helpful resources.
Hacker News (https://news.ycombinator.com/item?id=16670572) and Quora
(https://www.quora.com/What-are-good-resources-for-teaching-children-
functional-programming) can also be great resources. The referenced Quora site
is especially important because it provides information that’s useful in getting
children started with functional programming. One essential aspect of using online
sites is to ensure that they’re timely. The resource shouldn’t be more than two
years old; otherwise, you’ll be getting old news.

Sometimes you can find useful videos online. Of course, you can find a plethora
of videos of varying quality on YouTube (https://www.youtube.com/
results?search_query=Functional+Programming), but don’t discount sites,
such as tinymce (https://go.tinymce.com/blog/talks-love-functional-
programming/). Because functional programming is a paradigm and most of these
videos focus on a specific language, you need to choose the videos you watch with
care or you’ll get a skewed view of what the paradigm can provide (as contrasted
with the language).

One resource that you can count on being biased are tutorials. For example, the
tutorial at https://www.hackerearth.com/practice/python/functional-
programming/functional-programming-1/tutorial/ is all about Python, which,
as noted in previous sections of this chapter, is an impure implementation. Likewise,
even solid tutorial makers, such as Tutorials Point (https://www.tutorialspoint.
com/functional_programming/functional_programming_introduction.htm),
have a hard time with this topic because you can’t demonstrate a principle without a
language. A tutorial can’t teach you about a paradigm — at least, not easily, and not
much beyond an abstraction. Consequently, when viewing a tutorial, even a tutorial
that purports to provide an unbiased view of functional programming (such as
the one at https://codeburst.io/a-beginner-friendly-intro-to-functional-
programming-4f69aa109569), count on some level of bias because the examples will
likely appear using a subset of the available languages.

https://sookocheff.com/post/fp/a-functional-learning-plan/
https://sookocheff.com/post/fp/a-functional-learning-plan/
https://wildlyinaccurate.com/functional-programming-resources/
https://wildlyinaccurate.com/functional-programming-resources/
https://news.ycombinator.com/item?id=16670572
https://www.quora.com/What-are-good-resources-for-teaching-children-functional-programming
https://www.quora.com/What-are-good-resources-for-teaching-children-functional-programming
https://www.youtube.com/results?search_query=Functional+Programming
https://www.youtube.com/results?search_query=Functional+Programming
https://go.tinymce.com/blog/talks-love-functional-programming/
https://go.tinymce.com/blog/talks-love-functional-programming/
https://www.hackerearth.com/practice/python/functional-programming/functional-programming-1/tutorial/
https://www.hackerearth.com/practice/python/functional-programming/functional-programming-1/tutorial/
https://www.tutorialspoint.com/functional_programming/functional_programming_introduction.htm
https://www.tutorialspoint.com/functional_programming/functional_programming_introduction.htm
https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-4f69aa109569
https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-4f69aa109569

CHAPTER 2 Getting and Using Python 19

Chapter 2
Getting and Using
Python

As mentioned in Chapter 1, Python is a flexible language that supports mul-
tiple coding styles, including an implementation of the functional pro-
gramming paradigm. However, Python’s implementation is impure

because it does support the other coding styles. Consequently, you choose between
flexibility and the features that functional programming can provide when you
choose Python. Many developers choose flexibility (and therefore Python), but
there is no right or wrong choice — just the choice that works best for you. This
chapter helps you set up, configure, and become familiar with Python so that you
can use it in the book chapters that follow.

This book uses Anaconda 5.1, which supports Python 3.6.4. If you use a different
distribution, some of the procedural steps in the book will likely fail to work as
expected, the screenshots will likely differ, and some of the example code may not
run. To get the maximum benefit from this book, you need to use Anaconda 5.1,
configured as described in the remainder of this chapter. The example application
and other chapter features help you test your installation to ensure that it works
as needed, so following the chapter from beginning to end is the best idea for a
good programming experience.

IN THIS CHAPTER

 » Obtaining and using Python

 » Downloading and installing the
datasets and example code

 » Running an application

 » Writing Python code

20 PART 1 Getting Started with Functional Programming

Working with Python in This Book
You could download and install Python 3.6.4 to work with the examples in this
book. Doing so would still allow you to gain an understanding of how functional
programming works in the Python environment. However, using the pure Python
installation will also increase the amount of work you must perform to have a
good coding experience and even potentially reduce the amount you learn because
your focus will be on making the environment work, rather than seeing how
Python implements the functional programming paradigm. Consequently, this
book relies on the Jupyter Notebook Integrated Development Environment (IDE)
(or user interface or editor, as you might prefer) of the Anaconda tool collection to
perform tasks for the reasons described in the following sections.

Creating better code
A good IDE contains a certain amount of intelligence. For example, the IDE can sug-
gest alternatives when you type the incorrect keyword, or it can tell you that a cer-
tain line of code simply won’t work as written. The more intelligence that an IDE
contains, the less hard you have to work to write better code. Writing better code is
essential because no one wants to spend hours looking for errors, called bugs.

IDEs vary greatly in the level and kind of intelligence they provide, which is why so
many IDEs exist. You may find the level of help obtained from one IDE to be insuf-
ficient to your needs, but another IDE hovers over you like a mother hen. Every
developer has different needs and, therefore, different IDE requirements. The point
is to obtain an IDE that helps you write clean, efficient code quickly and easily.

Debugging functionality
Finding bugs (errors) in your code involves a process called debugging. Even the
most expert developer in the world spends time debugging. Writing perfect code
on the first pass is nearly impossible. When you do, it’s cause for celebration
because it won’t happen often. Consequently, the debugging capabilities of your
IDE are critical. Unfortunately, the debugging capabilities of the native Python
tools are almost nonexistent. If you spend any time at all debugging, you quickly
find the native tools annoying because of what they don’t tell you about your code.

The best IDEs double as training tools. Given enough features, an IDE can help you
explore code written by true experts. Tracing through applications is a time-
honored method of learning new skills and honing the skills you already possess.
A seemingly small advance in knowledge can often become a huge savings in time
later. When looking for an IDE, don’t just look at debugging features as a means
to remove errors — see them also as a means to learn new things about Python.

