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Preface

In 2017, Toyota Motor North America recalled 28 600 model year 2018 C-HR vehicles
and 39 900 model year 2012–2015 Prius Plug-In Hybrids because the electronic park-
ing brake was malfunctioning.1 In 2016, Samsung was forced to recall about 2.5 million
Samsung Galaxy Note 7s due to lithium-ion battery malfunctions; analysts at Nomura
estimated ditching the Note 7 resulted in a $9.5 billion loss in sales and the loss of
$5.1 billion in profits.2 On May 27, 2016, an engine caught fire on a Boeing 777-300
as it accelerated for take-off as Korean Air Flight 2708 at Japan’s Haneda Airport.3 The
take-off was aborted, and all 17 crew members and 302 passengers were evacuated. On
July 23, 2011, two high-speed trains collided on a viaduct in the suburbs of Wenzhou,
Zhejiang province, China, resulting in the deaths of 40 people.4 According to the official
investigation, the accident was caused by faulty signal systems that failed to warn the
second train of the stationary first train on the same track. On 22 June, 2009, a subway
train-on-train collision occurred between two southbound Washington Metro trains in
northeast Washington, DC. The collision was caused by a malfunction of a track circuit
component, which had been suffering from parasitic oscillations that left it unable to
reliably report when that stretch of track was occupied by a train.5

All of these incidents could have been prevented if there was health and usage
monitoring, prognostics and forecasting of maintenance. Prognostics and health man-
agement (PHM) is a multifaceted discipline that protects the integrity of components,
products, and systems of systems by avoiding unanticipated problems that can lead to
performance deficiencies and adverse effects on safety. More specifically, prognostics
is the process of predicting a system’s remaining useful life (RUL). By estimating the
progression of a fault given the current degree of degradation, the load history, and

1 Limbach, J. (2017). Toyota recalls C-HR and Prius Plug-In Hybrid vehicles. Consumer Affairs. Available at
https://www.consumeraffairs.com/news/toyota-recalls-c-hr-and-prius-plug-in-hybrid-vehicles-111617
.html (accessed February 18, 2018).
2 Mullen, J. and Thompson, M. (2016). Samsung takes $10 billion hit to end Galaxy Note 7 fiasco.
CNNTech. Available at http://money.cnn.com/2016/10/11/technology/samsung-galaxy-note-7-what-next/
index.html (accessed January 31, 2018).
3 McBride B. (2016). Hundreds evacuate Korean air jet after engine catches fire. ABC News. Available at
http://abcnews.go.com/International/hundreds-evacuate-korean-air-jet-engine-catches-fire/story?
id=39418885 (accessed January 31, 2018).
4 Wenzhou train collision. Available at https://en.wikipedia.org/wiki/Wenzhou_train_collision (accessed
January 31, 2018).
5 June 2009 Washington Metro train collision. Available at https://en.wikipedia.org/wiki/June_2009_
Washington_Metro_train_collision (accessed January 31, 2018).
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the anticipated future operational and environmental conditions, PHM can predict
when a product or system will no longer perform its intended function within the
desired specifications. Health management is the process of decision-making and
implementing actions based on the estimate of the state of health (SOH) derived from
health monitoring and expected future use of the systems.

To address the growing interest in PHM among industry, government, and academia,
Prognostics and Health Management of Electronics was published in 2008. The primary
purpose of the book was to provide a fundamental understanding of PHM, to intro-
duce the PHM approaches – that is, physics-of-failure (PoF), data-driven, and fusion
approaches – and techniques being developed to introduce sensor systems for in situ
health and usage monitoring, and to enable prognostics for electronic components,
products, and systems of systems. The book discussed the determination of the imple-
mentation costs, potential cost avoidance, and the resulting return on investment (ROI)
offered by PHM. Challenges and opportunities were presented for research and devel-
opment in PHM of electronics.

PHM techniques have advanced and matured considerably since 2008. For example,
front-loaded product launches, high-volume supply chains, shorter product life-cycles,
tighter design tolerances, and relentless cost pressures in today’s electronics industry are
challenging the assumption that conventional practices and technologies are adequate
to sustain product quality. In the Internet of Things (IoT) era, the dramatic increase of
sensors, data rates, and communication capabilities continue to drive the complexity of
PHM applications to new levels. As a result, electronic component and product man-
ufacturers are looking for new insights to use the massive volume of data streaming in
from their systems and sensors.

This new book is more than an update of Prognostics and Health Management of
Electronics (2008). There are 19 new chapters, and all the previous chapters have been
revamped to include the current state of the art. A summary of what each chapter covers
is presented below:

Chapter 1, “Introduction to PHM”, provides a basic understanding of PHM and the
techniques being developed to enable prognostics for electronic products and systems
and presents steps for implementing PHM in components, systems, and systems of sys-
tems. Likewise, the general approaches to electronics PHM are presented, which can be
realized by the use of fuses and canary devices, monitoring and reasoning of failure pre-
cursors, and monitoring of environmental and usage loading for PoF-based stress and
damage modeling. Additionally, related to the IoT era, PHM is having a significant influ-
ence on the implementation of reliability assessment, prediction, and risk mitigation,
and is creating new business opportunities.

Chapter 2, “Sensor Systems for PHM”, introduces the fundamentals of sensors for
in-situ health and usage monitoring and their sensing principles. This chapter discusses
the requirements of a sensor system for PHM, the performance needs of the sensor sys-
tem, and the physical and functional attributes, reliability, cost, and availability of the
sensor system. Additionally, this chapter provides a checklist to select proper sensor
systems for a specific PHM application and presents emerging trends in sensor system
technologies.

Chapter 3, “Physics-of-Failure Approach to PHM”, provides insight into the various
commonly observed failure modes and mechanisms in electronic and mechanical
components/systems and presents the case for using physical/phenomenological
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models that might represent established failure mechanisms quite accurately. The
sequence of procedures to follow for an in-depth PoF prognosis is presented, and the
need for canary structures to accelerate failure for quick RUL estimation is highlighted.
Several examples of PoF prognosis in microelectronic devices are presented, and the
complexities involved in using PoF methods for state-of-the-art nanoelectronic devices
are also described. While the PoF approach provides a mathematical construct for
degradation mechanisms, the need to use data-driven Bayesian methods in conjunction
with quantitative RUL prognosis is emphasized.

Chapter 4, “Machine Learning: Fundamentals”, provides the basics of machine
learning, which has been widely used in PHM to determine correlations, establish
patterns, and evaluate data trends leading to failure. This chapter further explains
machine learning algorithms to be implemented in PHM based on whether they are
trained with human supervision (supervised, unsupervised, semi-supervised, and
reinforcement learning); whether they can learn incrementally on the fly (online versus
batch learning); and whether they work by simply comparing new data points to known
data points, or instead detect patterns in the training data and build a predictive model
(instance-based versus model-based learning). Additionally, this chapter provides a
probability theory for better understanding of machine learning and performance
metrics.

Chapter 5, “Machine Learning: Data Pre-processing”, discusses the pre-processing
of data that needs to precede the development of data-driven PHM methods. The
pre-processing tasks discussed include data cleaning, normalization, feature extraction,
feature selection, feature learning, and imbalance data management. More specifically,
this chapter identifies conventional and state-of-the-art data pre-processing algorithms
widely used in PHM and provides the theoretical background of each algorithm.

Chapter 6, “Machine Learning: Anomaly Detection”, provides a basic understanding
of anomaly detection. This chapter identifies machine learning algorithms for anomaly
detection that can be classified into five categories: distance-, statistics-, model-,
clustering-, and unsupervised and semi-supervised learning-based anomaly detection.
This chapter briefly explains how the algorithms are employed in PHM.

Chapter 7, “Machine Learning: Diagnostics and Prognostics”, presents the role of diag-
nostics in PHM. This chapter identifies machine learning algorithms for diagnostics and
discusses the algorithms from a technical point of view. It also presents the usefulness of
feature learning-powered diagnosis using deep learning. Likewise, this chapter presents
the prognostics concept and provides an overview of various prognosis methods, such
as regression- and filter-based methods.

Chapter 8, “Uncertainty Representation, Quantification, and Management in Prog-
nostics”, analyzes the significance, interpretation, quantification, and management
of uncertainty in prognostics, with an emphasis on predicting the RUL of engineer-
ing systems and components. In order to facilitate meaningful prognostics-based
decision-making, it is important to analyze how the sources of uncertainty affect
prognostics and thereby compute the overall uncertainty in the RUL prediction.
However, several state-of-the-art industrial techniques do not consider a systematic
approach to the treatment of uncertainty. This chapter explains the importance of
uncertainty representation, quantification and management in prognostics, focus-
ing both on testing-based life prediction and condition-based prognostics. It has
been demonstrated that uncertainty quantification in RUL predictions needs to be
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approached as an uncertainty propagation problem that can be solved using a variety
of statistical methods. Several uncertainty propagation methods are explained in
detail, and numerical examples are presented. Finally, practical challenges pertaining
to uncertainty quantification and management in prognostics are discussed.

Chapter 9, “PHM Cost and Return on Investment”, discusses the development of busi-
ness cases to support the inclusion of PHM within systems. This chapter develops and
demonstrates a ROI analysis for using PHM in a system. To support the ROI calcula-
tion, an overview of the investment costs and the cost returns (cost avoidances) that are
possible from PHM is presented. Methods of quantifying the various costs are provided,
and an ROI analysis for an avionics subsystem is developed as a case study.

Chapter 10, “Valuation and Optimization of PHM-Enabled Maintenance Decisions”,
discusses costs in the context of maintenance value and optimal decision-making.
Value can be realized at several levels depending on the system and its stakeholders.
System-level value means taking action to keep an individual system safe or to min-
imize the individual system’s life-cycle cost. Alternatively, value can be realized at
the “enterprise level” where the optimal action(s) are based on the RULs from all the
members of the enterprise (e.g. a population of systems). This chapter concludes with a
case study that uses the forecasted RUL of a system to obtain actionable value through
valuation and optimization of predictive maintenance (PdM) decisions.

Chapter 11, “Health and Remaining Useful Life Estimation of Electronic Circuits”, dis-
cusses a kernel-based method for estimating the degradation in health of an electronic
circuit due to the presence of a parametric fault. The chapter also includes a statisti-
cal filter-based method to predict circuit failures, where the overall circuit degradation
model is designed to include PoF-based models for the degrading component.

Chapter 12, “PHM-based Qualification of Electronics”, discusses the electronic
products qualification methodologies used in industry. The chapter describes the
stages of product qualification from the design phase to final certification. The key
considerations for qualification, such as product market segment/customer use
conditions, supply chain, and environmental regulations, are explained. The chapter
provides an overview of the product qualification approaches: standards-based qualifi-
cation, knowledge-based qualification, and PHM-based qualification. Standards-based
qualification is based on a predefined set of reliability requirements that leverage the
historical database of use conditions and reliability data. Knowledge-based qualification
uses key technology attributes and failure-mode-specific reliability models to provide
a qualification approach tailored to the specific use condition. Prognostics-based
qualification uses the product use life data to develop data-driven diagnostic and fusion
prognostics techniques to monitor SOH and provide advance warning of failure.

Chapter 13, “PHM of Li-ion Batteries”, presents an overview of the PHM techniques
used for states estimation and RUL prediction of Li-ion batteries. The growing appli-
cation of Li-ion batteries as energy storage systems has led to concern for their relia-
bility and safety. Li-ion batteries represent complex electrochemical–mechanical sys-
tems; hence, modeling them using physics-based techniques can be computationally
intensive. This chapter mainly focuses on data-driven battery modeling methods for
online estimation and prediction applications. Three case studies on battery state of
charge (SOC) and SOH estimation and RUL prediction are discussed in this chapter
with detailed model development and validation steps.
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Chapter 14, “PHM of Light-Emitting Diodes”, provides an overview of prognostic
methods and models that have been applied to both light-emitting diode (LED) devices
and LED systems. These methods include statistical regression, static Bayesian net-
works, Kalman filtering, particle filtering, artificial neural networks, and physics-based
methods. The general concepts and key features of these methods, the pros and cons of
applying these methods, as well as case studies of LED application, are presented. There
is also a return-on-investment (ROI) discussion of using a PHM maintenance approach
in LED lighting systems, compared with the unscheduled maintenance approach.

Chapter 15, “PHM of Healthcare”, presents the integration of medical devices with
PHM technology to tackle reliability, safety, and life-cycle costs. As the pioneering
work in this new multidisciplinary area, this chapter establishes the foundational
principles for innovation in PHM of implantable medical devices, and paves the way
for a PHM-based healthcare industry. Reviewed topics include the current context of
medical device safety, reliability, and life-cycle cost considerations; PHM techniques
and potential life-cycle benefits applicable to medical devices; and PHM needs in
unmanned systems for commercial healthcare and home care for the elderly.

Chapter 16, “PHM of Subsea Cables”, introduces the reader to the area of subsea power
cables, outlining their critical role in supporting the global offshore renewable energy
sector. The design and verification standards of these products are summarized, and
the challenges in their health management are presented via a failure mode mechanism
and effect analysis from 15 years of historical industrial data. A state-of-the-art review
into monitoring technologies for subsea power cables reveals that over 70% of failure
modes are not monitored. To address this challenge, a fusion-based PHM approach is
described that incorporates the advanced features of both the data-driven approach and
the PoF-based approach in order to estimate the RUL of the cable. The model supports
RUL prediction, localization of vulnerable cable zones, comparison of cable products
for a given route, as well as route optimization. This study demonstrates the significant
value of PHM methods for critical infrastructure.

Chapter 17, “Connected Vehicle Diagnostics and Prognostics”, describes a general
framework, known as an automatic field data analyzer, and related algorithms that
analyze large volumes of field data, and promptly identify root causes of faults by
systematically making use of signal processing, machine learning, and statistical
analysis approaches. Eventually the fault analysis results are provided to product
development engineers with actionable design enhancement suggestions. The vehicle
battery failure analysis of two years of data from 24 vehicles is performed to demon-
strate the effectiveness of the proposed framework. This work is particularly critical to
the vehicle manufacturing industry for enhancing product quality and reliability, where
new vehicle subsystems are rapidly introduced with increasing complexity.

Chapter 18, “The Role of PHM at Commercial Airlines”, provides an overview of how
PHM evolved from scheduled maintenance practices to becoming an integral part of
planned maintenance at commercial airlines. As sensor and data acquisition technolo-
gies advanced and more aircraft were equipped with these technologies, the benefits
of PHM expanded beyond that of improved aircraft availability, reduced maintenance
costs, and increased operational safety. Various stakeholders began to compete for data
rights and ownership, slowing the progress of PHM implementation and integration.
This chapter discusses the evolution of maintenance strategies, the goals of the various
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stakeholders, the implementation of PHM, and the applications of PHM at commercial
airlines from its beginnings to today.

Chapter 19, “PHM Software for Electronics”, introduces PHM software developed by
the Center for Advanced Life Cycle Engineering (CALCE). The simulation-assisted reli-
ability assessment (SARA) software was developed to conduct virtual qualification and
testing of electronic products. Likewise, data-driven PHM software executes a series of
data analysis and machine learning algorithms that can be used to initially understand
the data and, if desired, build models to detect any deviation from required, expected,
or desired performance of the object system, to determine the location of the fault (fault
isolation), identify the type of fault (fault identification), and predict RUL. This chapter
primarily discusses the aforementioned CALCE software.

Chapter 20, “eMaintenance”, introduces a history of eMaintenance, defined as a sys-
tem or framework that enhances the efficiency and effectiveness of the maintenance
process by applying information and communication technologies for the provision of
analytics to assist PHM and also by providing capabilities for monitoring, diagnostics,
prognostics, and prescription. Further, this chapter presents technological approaches
to eMaintenance and introduces applications of eMaintenance, which are a set of deci-
sion support services designed to achieve business excellence in industry.

Chapter 21, “Predictive Maintenance in the IoT Era”, provides an introduction to
IoT-driven PdM methodology. An overview of IoT and its applicability via connected
machines to a successful PdM program is presented. This chapter highlights the chal-
lenges in traditional maintenance techniques and explores the opportunities for PdM.
Instead of letting a component run to failure or replacing a healthy component because
it is due based on the preventative maintenance interval, PdM can help organizations
make repairs only at the optimum time when it is truly needed. This chapter delves
into a few key IoT-based PdM cases, and provides an overview of different machine
learning methodologies that leverage streaming of real-time data from machines in
order to assess in-service machine health and future system failures. The chapter then
covers some best practices for implementing a PdM program, with insights into the
challenges and some potential strategies to mitigate the same.

Chapter 22, “Analysis of PHM Patents for Electronics”, reviews and analyzes
PHM-related US patents to explore the trends, challenges, and opportunities for PHM
of electronics in a variety of industries. Because most review papers currently available
on the subject are academic papers published in journals, this review and analysis of
patents fills the gap by providing different viewpoints between academia and industry
on the subject.

Chapter 23, “A PHM Roadmap for Electronics-Rich Systems”, presents the challenges
and opportunities for research and development in PHM of electronics. Included are
recommendations on the essential next steps for continued advancement of PHM tech-
nologies, and a PHM technology roadmap is presented.

Appendix A, “Commercially Available Sensor Systems for PHM”, provides descrip-
tions and specifications for sensor systems that are currently commercially available
for PHM.

Appendix B, “Journals and Conference Proceedings Related to PHM”, offers a list
of journals and conference proceedings where PHM-related articles are published.
The list covers methods and applications in civil and mechanical structures, avionics,
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mechanical and electronic products, prognostic algorithms and models, sensors, sensor
application, health monitoring, prognostics-based maintenance, and logistics.

Appendix C, “Glossary of Terms and Definitions”, provides a glossary of the most rel-
evant terms and definitions, in particular those used in this volume.

This book is indispensable for engineers and data scientists in design, testing, oper-
ation, manufacturing, and maintenance. It covers all areas of electronics, and provides
guidance to:
• assess methods for damage estimation of components and systems due to field loading

conditions;
• assess the cost and benefits of prognostic implementations;
• develop novel methods for in-situ monitoring of products and systems in actual

life-cycle conditions;
• enable condition-based (predictive) maintenance;
• increase system availability through an extension of maintenance cycles and/or timely

repair actions;
• obtain knowledge of load history for design, qualification, and root cause analysis;
• reduce the occurrence of no-fault-found diagnostics;
• subtract life-cycle costs of equipment from a reduction in inspection costs, downtime,

and inventory;
• understand statistical techniques and machine learning methods used for diagnostics

and prognostics;
• understand the synergy between IoT, machine learning, and risk assessment; and
• provide guidance and direction for further research and development.

Furthermore, due to the large amount of published work on PHM, any assessment
inevitably leaves out some organizations and topics that we either were not aware of or
did not consider relevant in the context of this book. Lastly, we would like to express our
profound gratitude to the over 150 companies and organizations that support CALCE,
and gave valuable, constructive and thoughtful reviews of this book.
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Introduction to PHM
Michael G. Pecht and Myeongsu Kang

University of Maryland, Center for Advanced Life Cycle Engineering, College Park, MD, USA

As a result of intense global competition, companies are considering novel approaches to
enhance the operational efficiency of their products. For some products, high in-service
reliability can be a means to ensure customer satisfaction. For other products, increased
warranties, or at least reduced warranty costs, and a reduction in liability due to prod-
uct failures, are incentives for manufacturers to improve field reliability and operational
availability.1

Electronics are integral to the functionality of most systems today, and their reliabil-
ity is often critical for system reliability [1]. Interest has been growing in monitoring
the ongoing health of electronics products, whether they be components, systems, or
systems-of-systems, to provide advance warning of failure and assist in administration
and logistics. Here, health is defined as the extent of degradation or deviation from an
expected normal condition. Prognostics is the prediction of the future state of health
based on current and historical health conditions [2]. This chapter provides a basic
understanding of prognostics and health monitoring of products and the techniques
being developed to enable prognostics for electronic products.

1.1 Reliability and Prognostics

Reliability is the ability of a product to perform as intended (i.e. without failure and
within specified performance limits) for a specified time, in its life-cycle environ-
ment [3]. Traditional reliability prediction methods for electronic products include
Mil-HDBK-217 [4], 217-PLUS, Telcordia [5], PRISM [6], and FIDES [7]. These methods
rely on the collection of failure data and generally assume the components of the
system have failure rates (most often assumed to be constant) that can be modified by
independent “modifiers” to account for various quality, operating, and environmental
conditions. There are numerous well-documented concerns with this type of modeling
approach [8–11]. The general consensus is that these handbooks should never be

1 Operational availability is defined as the degree (expressed as a decimal between 0 and 1, or the
percentage equivalent) to which a piece of equipment or system can be expected to work properly when
required. Operational availability is often calculated by dividing uptime by the sum of uptime and downtime.
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used, because they are inaccurate for predicting actual field failures and provide highly
misleading predictions, which can result in poor designs and logistics decisions [9, 12].
In particular, a recent National Academy of Science study recommended that the use
of Mil-HDBK-217 and its progeny be considered as discredited for being invalid and
inaccurate: they should be replaced with physics-of-failure (PoF) methods and with
estimates based on validated models [13].

The traditional handbook method for the reliability prediction of electronics started
with Mil-HDBK-217A, published in 1965. In this handbook, there was only a single
point failure rate for all monolithic integrated circuits (ICs), regardless of the stresses,
the materials, or the architecture. Mil-HDBK-217B was published in 1973, with the
RCA/Boeing models simplified by the US Air Force to follow a statistical exponential
(constant failure rate) distribution. Since then, all the updates were mostly “band-aids”
for a modeling approach that was proven to be flawed [14]. In 1987–1990, the Center for
Advanced Life Cycle Engineering (CALCE) at the University of Maryland was awarded
a contract to update Mil-HDBK-217. It was concluded that this handbook should be
canceled and the use of this type of modeling approach discouraged.

In 1998, the Institute of Electrical and Electronics Engineers (IEEE) 1413 standard,
IEEE Standard Methodology for Reliability Prediction and Assessment for Electronic Sys-
tems and Equipment, was approved to provide guidance on the appropriate elements of a
reliability prediction [15]. A companion guidebook, IEEE 1413.1, IEEE Guide for Select-
ing and Using Reliability Predictions Based on IEEE 1413, provided information and an
assessment of the common methods of reliability prediction for a given application [16].
It is shown that the Mil-HDBK-217 is flawed. There is also discussion of the advantage
of reliability prediction methods that use stress and damage PoF techniques.

The PoF approach and design-for-reliability (DfR) methods have been developed by
CALCE [17] with the support of industry, government, and other universities. PoF is
an approach that utilizes knowledge of a product’s life-cycle loading and failure mech-
anisms to perform reliability modeling, design, and assessment. The approach is based
on the identification of potential failure modes, failure mechanisms, and failure sites for
the product as a function of its life-cycle loading conditions. The stress at each failure
site is obtained as a function of both the loading conditions and the product geometry
and material properties. Damage models are then used to determine fault generation
and propagation.

PoF is one approach to prognostics, but not the only approach. Prognostics and sys-
tems health management (PHM) is a multifaceted discipline for the assessment of prod-
uct degradation and reliability. The purpose is to protect the integrity of the product
and avoid unanticipated operational problems leading to mission performance deficien-
cies, degradation, and adverse effects on mission safety. More specifically, prognostics
is the process of predicting a system’s remaining useful life (RUL) by estimating the pro-
gression of a fault given the current degree of degradation, the load history, and the
anticipated future operational and environmental conditions. Health management is the
process of decision-making and implementing actions based on the estimate of the state
of health derived from health monitoring and expected future use of the product.

In general, PHM consists of sensing, anomaly detection, diagnostics, prognos-
tics, and decision support, as shown in Figure 1.1. Sensing is to collect a history of
time-dependent operation of a product, the degradation of materials, and/or the
environmental loads on the components of a product or the total product.
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Figure 1.1 Framework for prognostics and health management.

The primary purpose of anomaly detection is to identify strange or unusual or unex-
pected (anomalous) behavior of the product by identifying deviations from nominally
healthy behavior. The results from anomaly detection can provide advanced warnings
of failure, often referred to as failure precursors. Note that anomalies do not necessar-
ily indicate a failure because changes in operating and environmental conditions can
influence sensor data to show anomalous behavior. However, even this type of anomaly
information is valuable to product health management, because it can indicate an unex-
pected use.

Diagnostics enables the extraction of fault-related information, such as failure modes,
failure mechanisms, quantity of damage, and so forth, from sensor data caused by
anomalies in the health of the product. This is a key piece of information that feeds into
maintenance planning and logistics.

Prognostics refers to predicting a product’s RUL within appropriate confidence inter-
vals, which often requires additional information not traditionally provided by sensors,
such as maintenance history, past and future operating profiles, and environmental fac-
tors. Based on predictions, the goal is to inform decision-makers of potential cost avoid-
ance activities, and to ensure safe operation. That is, the aspects of PHM are to effect
appropriate decision-making; to prevent catastrophic system failures; to increase sys-
tem availability by reducing downtime; to expend maintenance cycles; to execute timely
repair actions; to lower life-cycle costs by reductions in inspection and repair; and to
improve system qualification, design, and logistical support.

1.2 PHM for Electronics

Most products contain some amount of electronic content, generally needed for
functionality and performance. With the increase in the Internet of Things (IoT) it is
being seen that the electronics content is in fact rapidly increasing. If one can assess the
extent of deviation or degradation from an expected normal operating condition for
electronics, this information can be used to meet several powerful goals, which include
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(i) providing advanced warning of failures; (ii) minimizing unscheduled maintenance,
extending maintenance cycles, and maintaining effectiveness through timely repair
actions; (iii) reducing the life-cycle cost of equipment by decreasing inspection costs,
downtime, and inventory; and (iv) improving qualification and assisting in the design
and logistical support of fielded and future systems [2]. In other words, since electronics
are playing an increasingly significant role in providing operational capabilities for
today’s products, prognostic techniques have become highly desirable.

Some of the first efforts in diagnostic health monitoring of electronics involved the
use of built-in test (BIT), defined as an onboard hardware–software diagnostic means
to identify and locate faults. A BIT can consist of error detection and correction cir-
cuits, totally self-checking circuits, and self-verification circuits [2]. There are two types
of BIT concepts employed in electronic systems: interruptive built-in test (I-BIT) and
continuous built-in test (C-BIT). The concept behind I-BIT is that normal equipment
operation is suspended during BIT operation, whereas for C-BIT the equipment is mon-
itored continuously and automatically without affecting normal operation.

Several studies [18, 19] conducted on the use of BIT for fault identification and diag-
nostics showed that BIT can be prone to false alarms and can result in unnecessary costly
replacement, requalification, delayed shipping, and loss of system availability. BIT con-
cepts are still being developed to reduce the occurrence of spurious failure indications.
However, there is also reason to believe that many of the failures did occur, but were
intermittent in nature [20]. Furthermore, BIT has generally not been designed to pro-
vide prognostics or RUL due to accumulated damage or progression of faults. Rather, it
has served primarily as a diagnostic tool.

PHM has also emerged as one of the key enablers for achieving efficient system-level
maintenance and lowering life-cycle costs in military systems. In November 2002, the
US Deputy Under Secretary of Defense for Logistics and Material Readiness released a
policy called condition-based maintenance plus (CBM+). CBM+ represents an effort to
shift unscheduled corrective equipment maintenance of new and legacy systems to pre-
ventive and predictive approaches that schedule maintenance based upon the evidence
of need. A 2005 survey of 11 CBM programs highlighted “electronics prognostics” as one
of the most needed maintenance-related features or applications without regard for cost
[21], a view also shared by the avionics industry [22]. Department of Defense 5000.2 pol-
icy document on defense acquisition stated that “program managers shall optimize oper-
ational readiness through affordable, integrated, embedded diagnostics and prognostics,
embedded training and testing, serialized item management, automatic identification
technology, and iterative technology refreshment” [20]. Thus, a prognostics capability
has become a requirement for any system sold to the US Department of Defense.

PHM has also emerged as a high-priority issue in space applications. NASA’s Ames
Research Center (ARC) in California is conducting research in the field of integrated
systems health management (ISHM). ARC is involved in design of health management
systems, selection and optimization of sensors, in-situ monitoring, data analysis,
prognostics, and diagnostics. The prognostics center for excellence at ARC develops
algorithms to predict the remaining life of NASA’s systems and subsystems. ARC’s
prognostics projects over the years have included power semiconductor devices
(investigation of the effects of aging on power semiconductor components, identifi-
cation of failure precursors to build a PoF model, and development of algorithms for
end-of-life prediction), batteries (algorithms for batteries prognosis), flight actuators
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(PoF modeling and development of algorithms for estimation of remaining life), solid
rocket motor failure prediction, and aircraft wiring health management.

In addition to in-service reliability assessment and maintenance, health monitoring
can also be used effectively to support product take-back and end-of-life decisions.
Product take-back indicates the responsibility of manufacturers for their products over
the entire life-cycle, including disposal. The motivation driving product take-back is
the concept of extended producer responsibility (EPR) for post-consumer electronic
waste [23]. The objective of EPR is to make manufacturers and distributors financially
responsible for their products when they are no longer needed.

End-of-life product recovery strategies include repair, refurbishment, remanufactur-
ing, re-use of components, material recycling, and disposal. One of the challenges in
end-of-life decision-making is to determine whether product lines can be extended,
whether components can be re-used, and what subset should be disposed of in order to
minimize system costs and reliability concerns [24]. Several interdependent issues must
be considered concurrently to properly determine the optimum component re-use
ratio, including assembly/disassembly costs and any defects introduced by the process,
product degradation incurred in the original life-cycle, and the waste stream associated
with the life-cycle. Among these factors, the estimate of the degradation of the product
in its original life-cycle could be the most uncertain input to end-of-life decisions, but
could be carried out using health monitoring, with knowledge of the entire history of
the product.

Scheidt and Zong [25] proposed the development of special electrical ports, referred
to as green ports, to retrieve product usage data that could assist in the recycling and
re-use of electronic products. Klausner et al. [26, 27] proposed the use of an integrated
electronic data log (EDL) for recording parameters indicative of product degradation.
The EDL was implemented on electric motors to increase the re-use of motors. In
another study, domestic appliances were monitored for collecting usage data by means
of electronic units fitted on the appliances [28]. This work introduced the life-cycle data
acquisition unit, which can be used for data collection and for diagnostics and servicing.
Middendorf et al. [29] suggested developing life information modules to record the
cycle conditions of products for reliability assessment, product refurbishing, and re-use.

Designers often establish the usable life of products and warranties based on extrap-
olating accelerated test results to assumed usage rates and life-cycle conditions. These
assumptions may be based on worst-case scenarios of various parameters composing
the end-user environment. In principle, if the assumed conditions and actual use con-
ditions are the same, the product should be reliable for the designed lifetime, as shown
in Figure 1.2a. However, this is rarely true, and usage and environmental conditions
could vary significantly from those assumed (see Figure 1.2b). To address the actual
life-cycle conditions, products can be equipped with life consumption monitors (LCMs)
for in-situ assessment of remaining life. Thus, even if the product is used at a higher
usage rate and in harsh conditions, it can still avoid unscheduled maintenance and catas-
trophic failure, maintain safety, and ultimately save cost. Or if the product is used in a
more benign manner, its life can be extended (see Figure 1.2c).

One of the vital inputs in making end-of-life decisions is the estimate of degradation
and the remaining life of the product. Figure 1.2c illustrates a scenario in which a work-
ing product is returned at the end of its designed life. Using the health monitors installed
within the product, the reusable life can be assessed, without having to disassemble the
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Figure 1.2 Application of health monitoring for product re-use. (a) Usage as per design, (b) More
severe usage than intended design, and (c) Less severe usage than intended design.

product. Ultimately, depending on other factors including cost of the product, demand
for spares, and yield in assembly and disassembly, the manufacturer can choose to re-use
or dispose.

1.3 PHM Approaches

To enable PHM, the PoF-, canary-, data-driven-, and fusion-based approaches have been
studied. In this section, each of these approaches is explained. Further, various applica-
tions using these approaches are presented.

1.3.1 PoF-Based Approach

The general PHM methodology is shown in Figure 1.3. The first step involves a virtual
life assessment, where design data, expected life-cycle conditions, failure modes, mech-
anisms, and effects analysis (FMMEA) [30], and PoF models are the inputs to obtain a
reliability (virtual life) assessment. Note that PoF models are sometimes not available
in new designs where an up-front design for reliability was not implemented because
they tend to be failure mechanism-specific. Based on the virtual life assessment, it is
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Figure 1.3 CALCE PHM methodology.

possible to prioritize the critical failure modes and mechanisms. Further, the existing
sensor data, BIT results, maintenance and inspection records, and warranty data can be
used for the identification of possible failure conditions. Based on this information, the
monitoring parameters and sensor locations for PHM can be determined.

Based on the collected operational and environmental data, the product’s health status
can be assessed. Damage estimates can also be calculated from the PoF models to obtain
the remaining life. Then PHM information can be used for maintenance forecasting and
decisions that minimize life-cycle costs or maximize availability. The main advantage
of a PoF-based prognostics approach is the ability to incorporate an engineering-based
understanding of the product into PHM by using knowledge of the materials and geome-
tries of a system, as well as the load conditions (e.g. thermal, mechanical, electrical,
chemical) over the life-cycle.

1.3.1.1 Failure Modes, Mechanisms, and Effects Analysis (FMMEA)
A PoF approach uses knowledge of how things degrade and fail. This knowledge is based
on physical laws linked with a mathematical model [31]. An understanding of the pro-
cess by which physical, electrical, chemical, and mechanical stresses act on materials
to induce failure is required. As shown in Figure 1.4, FMMEA is the one of the first
steps for PoF-based prognostics, with the goal of identifying the critical failure mecha-
nisms and failure sites for a given product. Then, the following subsequent steps involve
(i) monitoring the life-cycle loads that may lead to performance or physical degrada-
tion and the associated system responses; (ii) feature extraction from variables that
change in response to deterioration associated with the failure mechanisms identified
via FMMEA; (iii) damage assessment and RUL calculation using PoF models of the fail-
ure mechanisms; and (iv) uncertainty estimation and time-to-failure (TTF) prediction
as a distribution.

FMMEA provides a list of potential failure modes, mechanisms, and the correspond-
ing models of system (see Table 1.1). FMMEA assigns scores to each potential failure
mode and ranks them to identify the critical failure modes according to the occurrence,
severity, and detectability.
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Table 1.1 Examples of failure mechanisms, loads, and failure models in electronics via FMMEA, where
T , H, V , M, J, and S indicate temperature, humidity, voltage, moisture, current density, and stress,
respectively, and Δ and ∇ mean cyclic range and gradient.

Failure sites Failure mechanisms Loads Failure models

Die attach, wirebond,
solder leads, bond
pads, traces, vias,
interfaces

Fatigue ΔT , Tmean, dT/dt,
dwell time, ΔH , ΔV

Nonlinear power
law
(Coffin–Manson)

Metallization Corrosion M, ΔV , T Eyring (Howard)
Metallization Electromigration T , J Eyring (Black)
Between metallization Conductive

filament formation
M, ∇V Power law (Rudra)

Stress-driven diffusion
voiding

Metal traces S, T Eyring (Okabayashi)

Time-dependent
dielectric breakdown

Dielectric layers V , T Arrhenius
(Fowler–Nordheim)

1.3.1.2 Life-Cycle Load Monitoring
The life-cycle profile of a product consists of manufacturing, storage, handling, and
operating and non-operating conditions. The life-cycle loads (see Table 1.2), both indi-
vidually or in various combinations, may lead to performance or physical degradation of
the product and reduce its service life [33]. The extent and rate of product degradation
depend upon the magnitude and duration of exposure (usage rate, frequency, and
severity) to such loads. If one can measure these loads in situ, the load profiles can be
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Table 1.2 Examples of life-cycle loads.

Load Load conditions

Thermal Steady-state temperature, temperature ranges, temperature
cycles, temperature gradients, ramp rates, heat dissipation

Mechanical Pressure magnitude, pressure gradient, vibration, shock load,
acoustic level, strain, stress

Chemical Aggressive versus inert environment, humidity level,
contamination, ozone, pollution, fuel spills

Physical Radiation, electromagnetic interference, altitude
Electrical Current, voltage, power, resistance
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Figure 1.5 CALCE life consumption monitoring methodology.

used in conjunction with damage models to assess the degradation due to cumulative
load exposures.

The assessment of the impact of life-cycle usage and environmental loads on electronic
structures and components was studied by Ramakrishnan and Pecht [33]. This study
introduced the LCM methodology (Figure 1.5), which combined in-situ measured loads
with physics-based stress and damage models to assess remaining product life.
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Mathew et al. [34] applied the LCM methodology to conduct a prognostic remain-
ing life assessment of circuit cards inside a space shuttle solid rocket booster (SRB).
Vibration-time history, recorded on the SRB from the prelaunch stage to splashdown,
was used in conjunction with physics-based models to assess damage. Using the entire
life-cycle loading profile of the SRBs, the remaining life of the components and struc-
tures on the circuit cards were predicted. It was determined that an electrical failure
was not expected within another 40 missions. However, vibration and shock analysis
exposed an unexpected failure due to a broken aluminum bracket mounted on the cir-
cuit card. Damage accumulation analysis determined that the aluminum brackets had
lost significant life due to shock loading.

Shetty et al. [35] applied the LCM methodology to conduct a prognostic remaining-life
assessment of the end-effector electronics unit (EEEU) inside the robotic arm of the
space shuttle remote manipulator system (SRMS). A life-cycle loading profile of thermal
and vibrational loads was developed for the EEEU boards. Damage assessment was
conducted using physics-based mechanical and thermomechanical damage models.
A prognostic estimate using a combination of damage models, inspection, and acceler-
ated testing showed that there was little degradation in the electronics, and they could
be expected to last another 20 years.

Gu et al. [36] developed a methodology for monitoring, recording, and analyzing the
life-cycle vibration loads for remaining-life prognostics of electronics. The responses of
printed circuit boards (PCBs) to vibration loading in terms of bending curvature were
monitored using strain gauges. The interconnect strain values were then calculated from
the measured PCB response and used in a vibration failure fatigue model for damage
assessment. Damage estimates were accumulated using Miner’s rule after every mission
and then used to predict the life consumed and remaining life. The methodology was
demonstrated for remaining-life prognostics of a PCB assembly. The results were also
verified by checking the resistance data.

In case studies [33, 37], an electronic component board assembly was placed under the
hood of an automobile and subjected to normal driving conditions. Temperature and
vibrations were measured in situ in the application environment. Using the monitored
environmental data, stress and damage models were developed and used to estimate
consumed life. Figure 1.6 shows estimates obtained using similarity analysis and the
actual measured life. Only LCM accounted for this unforeseen event because the oper-
ating environment was being monitored in situ.

Vichare and Pecht [2] outlined generic strategies for in-situ load monitoring, includ-
ing selecting appropriate parameters to monitor, and designing an effective monitoring
plan. Methods were presented for processing the raw sensor data during in-situ moni-
toring to reduce the memory requirements and power consumption of the monitoring
device. Approaches were also presented for embedding intelligent front-end data pro-
cessing capabilities in monitoring systems to enable data reduction and simplification
(without sacrificing relevant load information) prior to input in damage models for
health assessment and prognostics.

1.3.1.3 Data Reduction and Load Feature Extraction
To reduce on-board storage space, power consumption, and uninterrupted data col-
lection over longer durations, Vichare et al. [38] suggested embedding data reduction
and load parameter extraction algorithms into sensor modules. As shown in Figure 1.7,
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Figure 1.7 Load feature extraction.

a time-load signal can be monitored in situ using sensors and further processed to
extract cyclic range (Δs), cyclic mean load (smean), rate of change of load (ds/dt),
and dwell time (tD) using embedded load extraction algorithms. The extracted load
parameters can be stored in appropriately binned histograms to achieve further data
reduction. After the binned data are downloaded, they can be used to estimate the
distributions of the load parameters. This type of output can be input to fatigue damage
accumulation models for remaining life prediction. Embedding the data reduction and
load parameter extraction algorithms into the sensor modules can lead to a reduction in
on-board storage space, lower power consumption, and uninterrupted data collection
over longer durations.
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Efforts to monitor life-cycle load data on avionics modules can be found in time-
stress measurement device (TSMD) studies. Over the years TSMD designs have been
upgraded using advanced sensors, and miniaturized TSMDs are being developed with
advances in microprocessor and nonvolatile memory technologies [39].

Searls et al. [40] undertook in-situ temperature measurements in both notebook and
desktop computers used in different parts of the world. In terms of the commercial
applications of this approach, IBM has installed temperature sensors on hard drives [41]
to mitigate risks due to severe temperature conditions, such as thermal tilt of the disk
stack and actuator arm, off-track writing, data corruptions on adjacent cylinders, and
outgassing of lubricants on the spindle motor. A sensor is controlled using a dedicated
algorithm to generate errors and control fan speeds.

Strategies for efficient in-situ health monitoring of notebook computers were pro-
vided by Vichare et al. [42]. In this study, the authors monitored and statistically ana-
lyzed the temperatures inside a notebook computer, including those experienced during
usage, storage, and transportation, and discussed the need to collect such data both
to improve the thermal design of the product and to monitor prognostic health. The
temperature data were processed using an ordered overall range (OOR) to convert an
irregular time–temperature history into peaks and valleys and to remove noise due to
small cycles and sensor variations. A three-parameter rainflow algorithm was then used
to process the OOR results to extract full and half cycles with cyclic range, mean, and
ramp rates. The effects of power cycles, usage history, central processing unit (CPU)
computing resources usage, and external thermal environment on peak transient ther-
mal loads were characterized.

1.3.1.4 Data Assessment and Remaining Life Calculation
In 2001, the European Union funded a four-year project, “Environmental Life-Cycle
Information Management and Acquisition” (ELIMA), which aimed to develop ways to
manage the life-cycles of products [43]. The objective of this work was to predict the
remaining life of parts removed from products, based on dynamic data, such as oper-
ation time, temperature, and power consumption. As a case study, the member com-
panies monitored the application conditions of a game console and a household refrig-
erator. The work concluded that, in general, it was essential to consider the environ-
ments associated with all life intervals of the equipment. These included not only the
operational and maintenance environments but also the preoperational environments,
when stresses may be imposed on the parts during manufacturing, assembly, inspec-
tion, testing, shipping, and installation. Such stresses are often overlooked but can have
a significant impact on the eventual reliability of equipment.

Skormin et al. [44] developed a data-mining model for failure prognostics of avionics
units. The model provided a means of clustering data on parameters measured during
operation, such as vibration, temperature, power supply, functional overload, and air
pressure. These parameters are monitored in situ on the flight using TSMDs. Unlike
the physics-based assessments made by Ramakrishnan and Pecht [33], the data-mining
model relies on statistical data of exposures to environmental factors and operational
conditions.

Tuchband and Pecht [45] presented the use of prognostics for military line replace-
able units (LRUs) based on their life-cycle loads. The study was part of an effort funded
by the Office of the Secretary of Defense to develop an interactive supply chain system
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for the US military. The objective was to integrate prognostics, wireless communication,
and databases through a web portal to enable cost-effective maintenance and replace-
ment of electronics. The study showed that prognostics-based maintenance schedul-
ing could be implemented into military electronic systems. The approach involves an
integration of embedded sensors on the LRU, wireless communication for data trans-
mission, a PoF-based algorithm for data simplification and damage estimation, and a
method for uploading this information to the Internet. Finally, the use of prognostics for
electronic military systems enabled failure avoidance, high availability, and reduction of
life-cycle costs.

1.3.1.5 Uncertainty Implementation and Assessment
Although PoF models are used to compute the RUL, the introduction of uncertainties
into the calculation is necessary to assess their impact on the remaining life distribution
to make risk-informed decisions. That is, remaining life prediction can be represented
by a failure probability by considering uncertainties in prediction.

Gu et al. [46] implemented the uncertainty analysis of prognostics for electronics
under vibration loading. Gu identified the uncertainty sources and categorized them
into four different types: measurement uncertainty, parameter uncertainty, failure cri-
teria uncertainty, and future usage uncertainty (see Figure 1.8). Gu et al. [46] utilized
a sensitivity analysis to identify the dominant input variables that influence the model
output. With information of input parameter variable distributions, a Monte Carlo sim-
ulation was used to provide a distribution of accumulated damage. The remaining life
was then predicted with confidence intervals and confidence limits (CLs). A case study
was also presented for an electronic board under vibration loading and a step-by-step
demonstration of the uncertainty analysis implementation. The results showed that the
experimentally measured failure time was within the bounds of the uncertainty analysis
prediction.
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Figure 1.8 Uncertainty implementation for prognostics.
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1.3.2 Canaries

As previously stated, PoF is one approach to the implementation of prognostics that
utilizes knowledge of a product’s life-cycle loading conditions, geometry, material
properties, and failure mechanisms to estimate its RUL. However, due to the inherent
uncertainties in operating environment factors (e.g. temperature, humidity, vibration,
corrosive substances), the lifetime of an electronic product in field conditions might be
substantially different from the lifetime measured under the controlled and specified
conditions in laboratories.

The use of canary devices is one approach to taking the uncertainties in the operat-
ing environment of electronics into account. An IC or PCB in an electronic device can
be equipped with a component that experiences the expected and unexpected loads
encountered during the operating life of the equipment, but fails earlier than the tar-
get system. Such a component is called a canary. More specifically, a PoF-based canary
approach takes into account geometry, material properties, and failure mechanisms, in
addition to the real operating environments in which the target component operates, to
provide an advance warning of failure of the target components.

Fuses and circuit breakers are examples of elements used in electronic products to
sense excessive current drain and to disconnect power. Fuses within circuits safeguard
parts against excessive voltage transients or excessive power dissipation, and protect
power supplies from short-circuiting. For example, thermostats can be used to sense
critical temperature limiting conditions and to shut down the product (or part of a sys-
tem), until the temperature returns to normal. In some products, self-checking circuitry
can be incorporated to sense abnormal conditions and to make adjustments to restore
normal conditions or to activate switching means to compensate for a malfunction [47].

Mishra and Pecht [48] studied the applicability of semiconductor-level health moni-
tors by using pre-calibrated cells (circuits) manufactured (concurrently with the device
circuitry) and located on the same semiconductor chip. The prognostics cell approach,
known as Sentinel SemiconductorTM technology, was commercialized to provide an early
warning sentinel for upcoming device failures [49]. The prognostic cells were available
for 0.35 μm, 0.25 μm, and 0.18 μm complementary metal-oxide-semiconductor (CMOS)
processes; the power consumption was approximately 600 μW. The cell size was typically
800 μm2 at the 0.25 μm process size. The loads that contribute to degradation of the cir-
cuit include voltage, current, temperature, humidity, and radiation. Currently, smaller
prognostic cells are available for more state-of-the-art semiconductors, for failure mech-
anisms including electrostatic discharge (ESD), hot carrier, metal migration, dielectric
breakdown, and radiation effects.

The time-to-failure of prognostic canaries can be precalibrated with respect to the
time-to-failure of the product (the chip circuitry). There are two major designs to
accomplish the early warning feature. The first is where the canary architecture is sub-
stantially the same as the chip circuitry, but the loading is accelerated with respect to the
chip circuitry. The second is where the loads are the same as those applied to the actual
circuitry, but the canary architecture is designed to fail sooner than the chip circuitry,
by causing more stress on the canary. There can also be a combination of the two.

If the architecture and the operational loads (stresses) are the same, the damage
rate is expected to be the same for both circuits. Scaling (accelerated failure) can be
achieved by controlled increase of the stresses (e.g. current density) inside the canaries.
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For example, with the same amount of current (load) passing through both circuits,
if the cross-sectional area of the current-carrying paths in the canary is decreased,
a higher current density (stress condition) will be achieved. Higher current density
leads to higher internal (joule) heating, causing greater stress on the canaries. When a
current of higher density passes through the canaries, they are expected (based on PoF
models) to fail faster than the actual circuit [48].

Goodman et al. [50] used a prognostic canary to monitor time-dependent dielec-
tric breakdown (TDDB) of the metal-oxide-semiconductor field-effect transistor (MOS-
FET) on the ICs. Acceleration of the breakdown of an oxide was achieved by applying
a voltage higher than the supply voltage to increase the electric field across the oxide.
When the prognostics canary failed, a certain fraction of the circuit lifetime was con-
sumed. The fraction of consumed circuit life was dependent on the amount of overvolt-
age applied, and could be estimated from the known PoF failure distribution models.

The extension of this approach to board-level failures was proposed by Anderson
and Wilcoxon [51], who created canary components (located on the same PCB) that
include the same mechanisms that lead to failure in actual components. Two prospec-
tive failure mechanisms were identified: (i) low cycle fatigue of solder joints, assessed by
monitoring solder joints on and within the canary package, and (ii) corrosion monitor-
ing, using circuits that are susceptible to corrosion. The environmental degradation of
these canaries was assessed using accelerated testing, and degradation levels were cal-
ibrated and correlated to actual failure levels of the main system. The corrosion test
device included electrical circuitry susceptible to various corrosion-induced mecha-
nisms. Impedance spectroscopy was proposed for identifying changes in the circuits by
measuring the magnitude and phase angle of impedance as a function of frequency. The
change in impedance characteristics can be correlated to indicate specific degradation
mechanisms.

Mathew et al. [52] presented an approach of using a surface mount resistor with
reduced solder attachment as a canary device for predicting failure of a ball grid array
(BGA) package. More specifically, the authors used 2015 and 1210 resistors with x%
solder pad area, respectively, to predict the solder fatigue failure of 192 I/O ChipArray®ball grid arrays (CABGAs), and explored the impact of the size of the resistor and the
solder pad area. They found that the 2512 resistor with 20% pad area provided a longer
prognostic distance than the 1210 resistor with 20% pad area. Further, the prognostic
distance obtained from the 2512 resistor with 50% solder pad area is shorter than
the 2512 resistor with 20% pad area. Accordingly, they concluded that the prognostic
distance for the 192 I/O CABGA could vary by the size of the resistor and the solder pad
area. In 2015, Mathew et al. [53] developed a generic methodology to implement canary
devices, which is effective for tackling practical issues including the determination
of the number of canary devices required and the confidence in the prediction for a
certain number of canaries. Likewise, the authors presented a failure prediction scheme
to estimate system failure based on the failure of the canary device in the field.

Chauhan et al. [54] introduced a PoF-based canary approach for early identification
of solder interconnect failures, where the developed canary device was composed of
a resistance path formed by a near-zero-ohm ceramic chip resistor soldered to pads
designed to produce failure earlier than the target resistors (i.e. standard pad resistors).
Further, the authors controlled the TTF of the canary device by adjusting the printed
wiring board pad dimensions, hence, the solder interconnect area. Likewise, the authors
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employed the Engelmaier model to provide TTF estimates for the canary and target
structures, which is a PoF-based model for solder interconnect life estimation under
thermal cycling.

There remain unanswered questions with the use of canaries for PHM. For example,
if a canary monitoring a circuit is replaced, what is the impact when the product is
re-energized? What protective architectures are appropriate for post-repair operations?
What maintenance guidance must be documented and followed when fail-safe protec-
tive architectures have or have not been included? The canary approach is also difficult
to implement in legacy systems because it may require requalification of the entire sys-
tem with the canary module. Also, the integration of fuses and canaries with the host
electronic system could be an issue with respect to real estate on semiconductors and
boards. Finally, the company must ensure that the additional cost of implementing PHM
can be recovered through increased operational and maintenance efficiencies.

1.3.3 Data-Driven Approach

Data-driven approaches use data analytics and machine learning to determine anoma-
lies and make predictions about the reliability of electronic devices, systems, and
products based on internal and/or external covariates (also called endogenous and
exogenous covariates). Internal covariates (e.g. temperature, vibration) are measured
by sensors on the asset and are only present when the asset is operating. External
covariates (e.g. weather data) are present whether or not the asset is operating [55]. The
data-driven approach analyzes asset performance data based on a training database of
internal and/or external covariates.

1.3.3.1 Monitoring and Reasoning of Failure Precursors
A failure precursor is a data event or trend that signifies impending failure. A precur-
sor indication is usually a change in a measurable variable that can be associated with
subsequent failure. For example, a shift in the output voltage of a power supply might
suggest impending failure due to a damaged feedback regulator and opto-isolator cir-
cuitry. Failures can then be predicted by using causal relationships between measured
variables that can be correlated with subsequent failure and for PoF.

A first step in failure precursor PHM is to select the life-cycle parameters to be mon-
itored. Parameters can be identified based on factors that are crucial for safety, that are
likely to cause catastrophic failures, that are essential for mission completeness, or that
can result in long downtimes. Selection can also be based on knowledge of the critical
parameters established by experience, field failure data on similar products, and qual-
ification testing. More systematic methods, such as FMMEA [30], can also be used to
determine parameters that need to be monitored. Pecht et al. [56] proposed several mea-
surable parameters that can be used as failure precursors for electronic products, includ-
ing switching power supplies, cables and connectors, CMOS ICs, and voltage-controlled
high-frequency oscillators (see Table 1.3).

In general, to implement a precursor reasoning-based PHM system, it is necessary
to identify the precursor variables for monitoring and then develop a reasoning algo-
rithm to correlate the change in the precursor variable with the impending failure. This
characterization is typically performed by measuring the precursor variable under an
expected or accelerated usage profile. Depending on the characterization, a model is
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Table 1.3 Potential failure precursors for electronics [56].

Electronic subsystem Failure precursor

Switching power supply • Direct-current (DC) output
(voltage and current levels)

• Ripple
• Pulse width duty cycle
• Efficiency
• Feedback (voltage and current levels)
• Leakage current
• Radio frequency (RF) noise

Cables and connectors • Impedance changes
• Physical damage
• High-energy dielectric breakdown

CMOS IC • Supply leakage current
• Supply current variation
• Operating signature
• Current noise
• Logic-level variations

Voltage-controlled oscillator • Output frequency
• Power loss
• Efficiency
• Phase distortion
• Noise

Field effect transistor • Gate leakage current/resistance
• Drain-source leakage

current/resistance
Ceramic chip capacitor • Leakage current/resistance

• Dissipation factor
• RF noise

General-purpose diode • Reverse leakage current
• Forward voltage drops
• Thermal resistance
• Power dissipation
• RF noise

Electrolytic capacitor • Leakage current/resistance
• Dissipation factor
• RF noise

RF power amplifier • Voltage standing wave ratio (VSWR)
• Power dissipation
• Leakage current

developed – typically a parametric curve-fit, neural network, Bayesian network, or a
time-series trending of a precursor signal. This approach assumes that there are one or
more expected usage profiles that are predictable and can be simulated, often in a labo-
ratory setup. In some products the usage profiles are predictable, but this is not always
the case.

For a fielded product with highly varying usage profiles, an unexpected change in the
usage profile could result in a different (noncharacterized) change in the precursor sig-
nal. If the precursor reasoning model is not characterized to factor in the uncertainty in
life-cycle usage and environmental profiles, it may provide false alarms. Additionally, it
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may not always be possible to characterize the precursor signals under all possible usage
scenarios (assuming they are known and can be simulated). Thus, the characterization
and model development process can often be time-consuming and costly, and may not
always work.

There are many examples of the monitoring and trending of failure precursor to assess
health and product reliability. Some key studies are presented below.

Smith and Campbell [57] developed a quiescent current monitor (QCM) that can
detect elevated Iddq current in real time during operation.2 The QCM performed leak-
age current measurements on every transition of the system clock to get maximum
coverage of the IC in real time. Pecuh et al. [58] and Xue and Walker [59] proposed
a low-power built-in current monitor for CMOS devices. In the Pecuh et al. study, the
current monitor was developed and tested on a series of inverters for simulating open
and short faults. Both fault types were successfully detected and operational speeds of
up to 100 MHz were achieved with negligible effect on the performance of the circuit
under test. The current sensor developed by Xue and Walker enabled Iddq monitoring
at a resolution level of 10 pA. The system translated the current level into a digital signal
with scan chain readout. This concept was verified by fabrication on a test chip.

GMA Industries [60–62] proposed embedding molecular test equipment (MTE)
within ICs to enable them to test themselves continuously during normal operation
and to provide a visual indication that they have failed. The MTE could be fabricated
and embedded within the individual IC in the chip substrate. The molecular-sized
sensor “sea of needles” could be used to measure voltage, current, and other electrical
parameters, as well as sense changes in the chemical structure of ICs that are indicative
of pending or actual circuit failure. This research focuses on the development of special-
ized doping techniques for carbon nanotubes to form the basic structure comprising
the sensors. The integration of these sensors within conventional IC circuit devices,
as well as the use of molecular wires for the interconnection of sensor networks, is a
crucial factor in this research. However, no product or prototype has been developed
to date.

Kanniche and Mamat-Ibrahim [63] developed an algorithm for health monitoring of
voltage source inverters with pulse width modulation. The algorithm was designed to
detect and identify transistor open-circuit faults and intermittent misfiring faults occur-
ring in electronic drives. The mathematical foundations of the algorithm were based on
discrete wavelet transform (DWT) and fuzzy logic (FL). Current waveforms were mon-
itored and continuously analyzed using DWT to identify faults that may occur due to
constant stress, voltage swings, rapid speed variations, frequent stop/start-ups, and con-
stant overloads. After fault detection, “if-then” fuzzy rules were used for very large scale
integrated (VLSI) fault diagnosis to pinpoint the fault device. The algorithm was demon-
strated to detect certain intermittent faults under laboratory experimental conditions.

2 The power supply current (Idd) can be defined by two elements: the Iddq-quiescent current and the
Iddt-transient or dynamic current. Iddq is the leakage current drawn by the CMOS circuit when it is in a
stable (quiescent) state, and Iddt is the supply current produced by circuits under test during a transition
period after the input has been applied. It has been reported that Iddq has the potential for detecting defects
such as bridging, opens, and parasitic transistor defects. Operational and environmental stresses, such as
temperature, voltage, and radiation, can quickly degrade previously undetected faults and increase the
leakage current (Iddq). There is extensive literature on Iddq testing, but little has been done on using Iddq
for in-situ PHM. Monitoring Iddq has been more popular than monitoring Iddt [57–59].
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Table 1.4 Monitoring parameters based on reliability concerns in hard drives.

Reliability issues Parameters monitored

• Head assembly
– Crack on head
– Head contamination or resonance
– Bad connection to electronics module

• Motors/bearings
– Motor failure
– Worn bearing
– Excessive run-out
– No spin

• Electronic module
– Circuit/chip failure
– Interconnection/solder joint failure
– Bad connection to drive or bus

• Media
– Scratch/defects
– Retries
– Bad servo
– ECC corrections

• Head flying height: A downward trend in flying
height will often precede a head crash.

• Error checking and correction (ECC) use and
error counts: The number of errors encountered
by the drive, even if corrected internally, often
signals problems developing with the drive.

• Spin-up time: Changes in spin-up time can
reflect problems with the spindle motor.

• Temperature: Increases in drive temperature
often signal spindle motor problems.

• Data throughput: Reduction in the transfer rate
of data can signal various internal problems.

Self-monitoring analysis and reporting technology (SMART), currently employed in
select computing equipment for hard disk drives (HDDs), is another example of precur-
sor monitoring [64]. HDD operating parameters, including the flying height of the head,
error counts, variations in spin time, temperature, and data transfer rates, are monitored
to provide advance warning of failures (see Table 1.4). This is achieved through an inter-
face between the computer’s start-up program (basic input/output system, BIOS) and
the HDD.

Systems for early fault detection and failure prediction are being developed using
variables such as current, voltage, and temperature continuously monitored at various
locations inside the system. Along with sensor information, soft performance parame-
ters such as loads, throughputs, queue lengths, and bit error rates are tracked. Prior to
PHM implementation, characterization is conducted by monitoring the signals of dif-
ferent variables to establish a multivariate state estimation technique (MSET) model of
the “healthy” systems. Once the healthy model is established using these data, it is used
to predict the signal of a particular variable based on learned correlations among all
variables [65]. Based on the expected variability in the value of a particular variable dur-
ing application, a sequential probability ratio test (SPRT) is constructed. During actual
monitoring, SPRT is used to detect deviations of the actual signal from the expected
signal based on distributions (and not on a single threshold value) [66, 67]. This sig-
nal is generated in real time based on learned correlations during characterization (see
Figure 1.9). A new signal of residuals is generated, which is the arithmetic difference of
the actual and expected time-series signal values. These differences are used as input to
the SPRT model, which continuously analyzes the deviations and provides an alarm if
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Figure 1.9 Sun Microsystems’ approach to PHM.

the deviations are of concern [65]. The monitored data are analyzed to provide alarms
based on leading indicators of failure and enable use of monitored signals for fault diag-
nosis, root cause analysis, and analysis of faults due to software aging [68].

Brown et al. [69] demonstrated that the RUL of a commercial global positioning
system (GPS) can be predicted by using a precursor-to-failure approach. The failure
modes for GPS included precision failure due to an increase in position error, and
solution failure due to increased outage probability. These failure progressions were
monitored in situ by recording system-level features reported using the National
Marine Electronics Association (NMEA) Protocol 0183. The GPS was characterized
to collect the principal feature value for a range of operating conditions. Based on
experimental results, parametric models were developed to correlate the offset in the
principal feature value with solution failure. During the experiment, the BIT provided
no indication of an impending solution failure [69].

1.3.3.2 Data Analytics and Machine Learning
Data-driven approaches for PHM are used for both the diagnosis and prognosis stages,
often based on statistical and machine learning techniques, as illustrated in Figure 1.10.

In Figure 1.10, data acquisition is to collect the data necessary for PHM, including
operational and environmental data that can be obtained from sensors by selecting
and appropriately locating sensors that provide the capability to collect a history of
time-dependent degradation of materials or environmental stresses on a target product.
In general, the first step of data-driven approach to PHM is data pre-processing, includ-
ing missing value management, data cleansing (e.g. noise removal, outlier removal),
normalization or scaling, imbalanced data management, and so forth.

The next step will be feature discovery to find a good set of features that can be used
for anomaly detection, diagnosis, and prognosis. More specifically, feature discovery
involves feature construction via time, frequency, and time–frequency analyses, dimen-
sionality reduction based on either feature extraction or feature selection, and feature
learning using deep neural networks to automatically discover the representations
needed for feature detection and classification, typically related to diagnostic tasks in
PHM. Note that feature extraction is to reduce the dimensionality of the given feature
vector by using linear or nonlinear transformations, whereas feature selection is to
select an optimal subset of the given feature vector for PHM tasks.

Representative feature extraction techniques include principal component analysis
(PCA) [70], kernel PCA [71], linear discriminant analysis (LDA) [72], kernel LDA
[73], generalized discriminant analysis [74], independent component analysis [75],
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Figure 1.10 A general procedure of a data-driven approach to prognostics.

t-distributed stochastic neighbor embedding [76], and so forth. For feature selection,
the following methods are representative: filter methods, wrapper methods, and
embedded methods. Filter feature selection methods apply a statistical measure to
assign a score to each feature. The features are ranked by the score and either selected
to be kept or removed from a given dataset. The methods are often univariate and
consider the feature independently, or with regard to the dependent variable. Some
examples of some filter methods include the Chi-square test [77], information gain
[78], and correlation coefficient scores [79]. Wrapper methods consider the selection
of a set of features as a search problem, where different combinations are prepared,
evaluated and compared with other combinations. A predictive model (e.g. k-nearest
neighbor, support vector machines, and neural networks) is used to evaluate a com-
bination of features and assign a score based on model accuracy. The search process
may be methodical, such as a best-first search, it may be stochastic such as a random
hill-climbing algorithm, or it may use heuristics, like forward and backward passes to
add and remove features. An example of a wrapper method is the recursive feature
elimination algorithm [80]. Embedded methods learn which features best contribute
to the accuracy of the model while the model is being created. The most common type
of embedded feature selection methods are regularization methods. Regularization
methods are also called penalization methods, and introduce additional constraints
into the optimization of a predictive algorithm (such as a regression algorithm) that
bias the model toward lower complexity (fewer coefficients). Examples of regularization
algorithms are the least absolute shrinkage and selection operation (LASSO) [81],
elastic net [82], and ridge regression [83].


