




Quantum Inspired Meta-heuristics for Image Analysis





Quantum Inspired Meta-heuristics for
Image Analysis

Sandip Dey
Global Institute of Management and Technology
Krishnanagar, Nadia, West Bengal
India

Siddhartha Bhattacharyya
RCC Institute of Information Technology
Kolkata
India

Ujjwal Maulik
Jadavpur University
Kolkata
India



This edition first published 2019
© 2019 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
except as permitted by law. Advice on how to obtain permission to reuse material from this title is available
at http://www.wiley.com/go/permissions.

The right of Sandip Dey, Siddhartha Bhattacharyya, and Ujjwal Maulik to be identified as the authors of this
work has been asserted in accordance with law.

Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office
The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products
visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that
appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this work and
specifically disclaim all warranties, including without limitation any implied warranties of merchantability or
fitness for a particular purpose. No warranty may be created or extended by sales representatives, written
sales materials or promotional statements for this work. The fact that an organization, website, or product is
referred to in this work as a citation and/or potential source of further information does not mean that the
publisher and authors endorse the information or services the organization, website, or product may provide
or recommendations it may make. This work is sold with the understanding that the publisher is not engaged
in rendering professional services. The advice and strategies contained herein may not be suitable for your
situation. You should consult with a specialist where appropriate. Further, readers should be aware that
websites listed in this work may have changed or disappeared between when this work was written and when
it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial
damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Dey, Sandip, 1977- author. | Bhattacharyya, Siddhartha, 1975- author.
| Maulik, Ujjwal, author.

Title: Quantum Inspired Meta-heuristics for Image Analysis / Dr. Sandip Dey
(Global Institute of Management and Technology Krishnanagar, Nadia, West Bengal, India),
Professor Siddhartha Bhattacharyya (RCC Institute of Information Technology, Kolkata, India),
Professor Ujjwal Maulik (Jadavpur University, Kolkata, India).

Description: Hoboken, NJ : Wiley, 2019. | Includes bibliographical references
and index. |

Identifiers: LCCN 2019001402 (print) | LCCN 2019004054 (ebook) | ISBN
9781119488774 (Adobe PDF) | ISBN 9781119488781 (ePub) | ISBN 9781119488750
(hardcover)

Subjects: LCSH: Image segmentation. | Image analysis. | Metaheuristics. |
Heuristic algorithms.

Classification: LCC TA1638.4 (ebook) | LCC TA1638.4 .D49 2019 (print) | DDC
006.4/2015181–dc23

LC record available at https://lccn.loc.gov/2019001402

Cover Design: Wiley
Cover Image: © issaro prakalung/Shutterstock

Set in 10/12pt WarnockPro by SPi Global, Chennai, India

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions
http://www.wiley.com


Sandip Dey would like to dedicate this book to the loving memory of his father, the late
Dhananjoy Dey, his mother Smt. Gita Dey, his wife Swagata Dey Sarkar, his children
Sunishka and Shriaan, his siblings Kakali, Tanusree, Sanjoy and his nephews Shreyash
and Adrishan.

Siddhartha Bhattacharyya would like to dedicate this book to his father, the late Ajit
Kumar Bhattacharyya, his mother, the late Hashi Bhattacharyya, his beloved wife
Rashni Bhattacharyya, and Padmashree Professor Ajoy Kumar Ray, Honorable
Chairman, RCC Institute of Information Technology, Kolkata, India.

Ujjwal Maulik would like to dedicate this book to his son Utsav, his wife Sanghamitra
and all his students and friends.





vii

Contents

Preface xiii
Acronyms xv

1 Introduction 1
1.1 Image Analysis 3
1.1.1 Image Segmentation 4
1.1.2 Image Thresholding 5
1.2 Prerequisites of Quantum Computing 7
1.2.1 Dirac’s Notation 8
1.2.2 Qubit 8
1.2.3 Quantum Superposition 8
1.2.4 Quantum Gates 9
1.2.4.1 Quantum NOT Gate (Matrix Representation) 9
1.2.4.2 Quantum Z Gate (Matrix Representation) 9
1.2.4.3 Hadamard Gate 10
1.2.4.4 Phase Shift Gate 10
1.2.4.5 Controlled NOT Gate (CNOT) 10
1.2.4.6 SWAP Gate 11
1.2.4.7 Toffoli Gate 11
1.2.4.8 Fredkin Gate 12
1.2.4.9 Quantum Rotation Gate 13
1.2.5 Quantum Register 14
1.2.6 Quantum Entanglement 14
1.2.7 Quantum Solutions of NP-complete Problems 15
1.3 Role of Optimization 16
1.3.1 Single-objective Optimization 16
1.3.2 Multi-objective Optimization 18
1.3.3 Application of Optimization to Image Analysis 18
1.4 Related Literature Survey 19
1.4.1 Quantum-based Approaches 19
1.4.2 Meta-heuristic-based Approaches 21
1.4.3 Multi-objective-based Approaches 22



viii Contents

1.5 Organization of the Book 23
1.5.1 Quantum Inspired Meta-heuristics for Bi-level Image Thresholding 24
1.5.2 Quantum Inspired Meta-heuristics for Gray-scale Multi-level Image

Thresholding 24
1.5.3 Quantum Behaved Meta-heuristics for True Color Multi-level

Thresholding 24
1.5.4 Quantum Inspired Multi-objective Algorithms for Multi-level Image

Thresholding 24
1.6 Conclusion 25
1.7 Summary 25

Exercise Questions 26

2 Review of Image Analysis 29
2.1 Introduction 29
2.2 Definition 29
2.3 Mathematical Formalism 30
2.4 Current Technologies 30
2.4.1 Digital Image Analysis Methodologies 31
2.4.1.1 Image Segmentation 31
2.4.1.2 Feature Extraction/Selection 32
2.4.1.3 Classification 34
2.5 Overview of Different Thresholding Techniques 35
2.5.1 Ramesh’s Algorithm 35
2.5.2 Shanbag’s Algorithm 36
2.5.3 Correlation Coefficient 37
2.5.4 Pun’s Algorithm 38
2.5.5 Wu’s Algorithm 38
2.5.6 Renyi’s Algorithm 39
2.5.7 Yen’s Algorithm 39
2.5.8 Johannsen’s Algorithm 40
2.5.9 Silva’s Algorithm 40
2.5.10 Fuzzy Algorithm 41
2.5.11 Brink’s Algorithm 41
2.5.12 Otsu’s Algorithm 43
2.5.13 Kittler’s Algorithm 43
2.5.14 Li’s Algorithm 44
2.5.15 Kapur’s Algorithm 44
2.5.16 Huang’s Algorithm 45
2.6 Applications of Image Analysis 46
2.7 Conclusion 47
2.8 Summary 48

Exercise Questions 48

3 Overview of Meta-heuristics 51
3.1 Introduction 51
3.1.1 Impact on Controlling Parameters 52
3.2 Genetic Algorithms 52



Contents ix

3.2.1 Fundamental Principles and Features 53
3.2.2 Pseudo-code of Genetic Algorithms 53
3.2.3 Encoding Strategy and the Creation of Population 54
3.2.4 Evaluation Techniques 54
3.2.5 Genetic Operators 54
3.2.6 Selection Mechanism 54
3.2.7 Crossover 55
3.2.8 Mutation 56
3.3 Particle Swarm Optimization 56
3.3.1 Pseudo-code of Particle Swarm Optimization 57
3.3.2 PSO: Velocity and Position Update 57
3.4 Ant Colony Optimization 58
3.4.1 Stigmergy in Ants: Biological Inspiration 58
3.4.2 Pseudo-code of Ant Colony Optimization 59
3.4.3 Pheromone Trails 59
3.4.4 Updating Pheromone Trails 59
3.5 Differential Evolution 60
3.5.1 Pseudo-code of Differential Evolution 60
3.5.2 Basic Principles of DE 61
3.5.3 Mutation 61
3.5.4 Crossover 61
3.5.5 Selection 62
3.6 Simulated Annealing 62
3.6.1 Pseudo-code of Simulated Annealing 62
3.6.2 Basics of Simulated Annealing 63
3.7 Tabu Search 64
3.7.1 Pseudo-code of Tabu Search 64
3.7.2 Memory Management in Tabu Search 65
3.7.3 Parameters Used in Tabu Search 65
3.8 Conclusion 65
3.9 Summary 65

Exercise Questions 66

4 Quantum Inspired Meta-heuristics for Bi-level Image
Thresholding 69

4.1 Introduction 69
4.2 Quantum Inspired Genetic Algorithm 70
4.2.1 Initialize the Population of Qubit Encoded Chromosomes 71
4.2.2 Perform Quantum Interference 72
4.2.2.1 Generate Random Chaotic Map for Each Qubit State 72
4.2.2.2 Initiate Probabilistic Switching Between Chaotic Maps 73
4.2.3 Find the Threshold Value in Population and Evaluate Fitness 74
4.2.4 Apply Selection Mechanism to Generate a New Population 74
4.2.5 Foundation of Quantum Crossover 74
4.2.6 Foundation of Quantum Mutation 74
4.2.7 Foundation of Quantum Shift 75
4.2.8 Complexity Analysis 75



x Contents

4.3 Quantum Inspired Particle Swarm Optimization 76
4.3.1 Complexity Analysis 77
4.4 Implementation Results 77
4.4.1 Experimental Results (Phase I) 79
4.4.1.1 Implementation Results for QEA 91
4.4.2 Experimental Results (Phase II) 96
4.4.2.1 Experimental Results of Proposed QIGA and Conventional GA 96
4.4.2.2 Results Obtained with QEA 96
4.4.3 Experimental Results (Phase III) 114
4.4.3.1 Results Obtained with Proposed QIGA and Conventional GA 114
4.4.3.2 Results obtained from QEA 117
4.5 Comparative Analysis among the Participating Algorithms 120
4.6 Conclusion 120
4.7 Summary 121

Exercise Questions 121
Coding Examples 123

5 Quantum Inspired Meta-Heuristics for Gray-Scale Multi-Level Image
Thresholding 125

5.1 Introduction 125
5.2 Quantum Inspired Genetic Algorithm 126
5.2.1 Population Generation 126
5.2.2 Quantum Orthogonality 127
5.2.3 Determination of Threshold Values in Population and Measurement

of Fitness 128
5.2.4 Selection 129
5.2.5 Quantum Crossover 129
5.2.6 Quantum Mutation 129
5.2.7 Complexity Analysis 129
5.3 Quantum Inspired Particle Swarm Optimization 130
5.3.1 Complexity Analysis 131
5.4 Quantum Inspired Differential Evolution 131
5.4.1 Complexity Analysis 132
5.5 Quantum Inspired Ant Colony Optimization 133
5.5.1 Complexity Analysis 133
5.6 Quantum Inspired Simulated Annealing 134
5.6.1 Complexity Analysis 136
5.7 Quantum Inspired Tabu Search 136
5.7.1 Complexity Analysis 136
5.8 Implementation Results 137
5.8.1 Consensus Results of the Quantum Algorithms 142
5.9 Comparison of QIPSO with Other Existing Algorithms 145
5.10 Conclusion 165
5.11 Summary 166

Exercise Questions 167
Coding Examples 190



Contents xi

6 Quantum Behaved Meta-Heuristics for True Color Multi-Level Image
Thresholding 195

6.1 Introduction 195
6.2 Background 196
6.3 Quantum Inspired Ant Colony Optimization 196
6.3.1 Complexity Analysis 197
6.4 Quantum Inspired Differential Evolution 197
6.4.1 Complexity Analysis 200
6.5 Quantum Inspired Particle Swarm Optimization 200
6.5.1 Complexity Analysis 200
6.6 Quantum Inspired Genetic Algorithm 201
6.6.1 Complexity Analysis 203
6.7 Quantum Inspired Simulated Annealing 203
6.7.1 Complexity Analysis 204
6.8 Quantum Inspired Tabu Search 204
6.8.1 Complexity Analysis 206
6.9 Implementation Results 207
6.9.1 Experimental Results (Phase I) 209
6.9.1.1 The Stability of the Comparable Algorithms 210
6.9.2 The Performance Evaluation of the Comparable Algorithms of Phase I 225
6.9.3 Experimental Results (Phase II) 235
6.9.4 The Performance Evaluation of the Participating Algorithms of Phase II 235
6.10 Conclusion 294
6.11 Summary 294

Exercise Questions 295
Coding Examples 296

7 Quantum Inspired Multi-objective Algorithms for Multi-level Image
Thresholding 301

7.1 Introduction 301
7.2 Multi-objective Optimization 302
7.3 Experimental Methodology for Gray-Scale Multi-Level Image

Thresholding 303
7.3.1 Quantum Inspired Non-dominated Sorting-Based Multi-objective Genetic

Algorithm 303
7.3.2 Complexity Analysis 305
7.3.3 Quantum Inspired Simulated Annealing for Multi-objective Algorithms 305
7.3.3.1 Complexity Analysis 307
7.3.4 Quantum Inspired Multi-objective Particle Swarm Optimization 308
7.3.4.1 Complexity Analysis 309
7.3.5 Quantum Inspired Multi-objective Ant Colony Optimization 309
7.3.5.1 Complexity Analysis 310
7.4 Implementation Results 311
7.4.1 Experimental Results 311
7.4.1.1 The Results of Multi-Level Thresholding for QINSGA-II, NSGA-II, and

SMS-EMOA 312
7.4.1.2 The Stability of the Comparable Methods 312



xii Contents

7.4.1.3 Performance Evaluation 315
7.5 Conclusion 327
7.6 Summary 327

Exercise Questions 328
Coding Examples 329

8 Conclusion 333

Bibliography 337
Index 355



xiii

Preface

In the present information era, the processing and retrieval of useful image informa-
tion and multimedia-based data, for the purpose of faithful and realistic analysis, are
supposed to be of the highest importance. One significant image processing chore is
to separate objects or other important information in digital images through thresh-
olding of the image under consideration. Efficient techniques are required in order to
develop an appropriate analysis of noisy and noise-free image data to obtain suitable
object-specific information.

The soft computing approaches have certain tools and techniques among various other
approaches, which integrate intelligent thinking and principles. Fuzzy logic, Neural net-
works, Fuzzy sets, and Evolutionary Computation are used as the computing frame-
work, which successfully combines these intelligent principles.

This book attempts to address the problem of image thresholding using classical algo-
rithms. Attempts have also been made to take out the intrinsic limitations in the present
soft computing methods as initiated by theoretical investigations. New versions of quan-
tum inspired meta-heuristics algorithms have also been introduced, taking into cog-
nizance the time and space complexity of present approaches.

The introductory chapter of the book presents a brief summary on image analysis,
quantum computing, and optimization. The chapter highlights quantum solutions
of NP-complete problems in brief. This introductory chapter also presents a related
literature survey using different approaches, such as quantum-based approaches,
meta-heuristic-based approaches and multi-objective-based approaches. The chapter
also discusses the scope and organization of the book.

Chapter 2 focuses on the review of image analysis. This chapter discusses the mathe-
matical formalism of image segmentation technique. It also highlights different digital
image analysis approaches. It also throws light on popular image thresholding tech-
niques in the binary, multi-level and gray-scale domains. A short summary of the appli-
cations of image analysis is also presented. Finally, the chapter ends with a relevant
conclusion; a chapter summary and a set of exercise questions are provided.

Chapter 3 focuses on the overview of some popular meta-heuristics. The fundamen-
tals of each of them are briefly discussed in this chapter. Pseudo-code of the correspond-
ing meta-heuristic is also presented after each section. The summary of the chapter and
a set of exercise questions are provided at the end of this chapter.

Chapter 4 addresses the intrinsic limitations of classical algorithms to deal with
image data for binary thresholding. The chapter develops two different quantum-based
standard conventional algorithms for binary image thresholding. The basic quantum



xiv Preface

computing principles have been recognized to develop the proposed approaches. The
features of quantum computing have been properly linked with the framework of
popular classical algorithms for the formation of the proposed algorithms. Experiments
have been conducted with different combinations of the parameter settings. The
proposed algorithms are compared with several other algorithms. The implementation
results are presented for the proposed algorithms and other comparable algorithms.

In line with the objectives of Chapter 4, several novel versions of quantum inspired
classical algorithms are proposed in Chapter 5. This chapter concentrates on the func-
tional modification of the quantum inspired meta-heuristic algorithms as an attempt to
extend them to multi-level and gray-scale domain. Application of the proposed algo-
rithms is demonstrated on a set of synthetic/real-life gray-scale images. As a sequel to
these algorithms, experiments were conducted with several other algorithms for com-
parative purposes. The experiments were conducted with different parameter values.
Implementation results are reported for all the participating algorithms.

Parallel extensions to these quantum inspired classical algorithms are presented in
Chapter 6. This approach introduces thresholding of color image information. The paral-
lel operation of the proposed framework reduces the time complexity of the color image
thresholding. Application of the proposed versions of quantum inspired algorithms is
exhibited using thresholding of multi-level and color images. As a result of the com-
parative study, the proposed algorithms are compared with other popular algorithms.
Implementation results with several parameter adjustments are reported.

Chapter 7 introduces several quantum inspired multi-objective algorithms using dif-
ferent approaches. First, an NSGA-II-based quantum inspired algorithm is proposed
in a multi-objective framework. Later, several quantum inspired classical algorithms
are developed in a multi-objective flavor for bi-level, multi-level and gray-scale image
thresholding.

Different parameters settings are used for the clarification of proposed algorithms.
Application of these algorithms is demonstrated on several real-life grayscale images. A
number of other popular algorithms are used for comparative purposes. The test results
are reported for all of the participating algorithms.

Finally, the concluding chapter ends the book. This chapter presents an outlook of
future directions of research in this area.

Sodepur
2 November 2018

Sandip Dey
Siddhartha Bhattacharyya

Ujjwal Maulik
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1

Introduction

A quantum computer, as the name suggests, fundamentally works on several quantum
physical characteristics. It is also considered as the field of study, primarily focused on
evolving computer technology using the features of quantum theory, which expounds
the nature of energy and substance and its behavior on the quantum level, i.e., at the
atomic and subatomic level. Developing a quantum computer would mark an advance in
computing competency far superior to any current computers. Thus, the use of quantum
computers could be an immense improvement on current computers because they have
enormous processing capability, even exponentially, compared to classical computers.
The supremacy of processing is gained through the capacity of handling multiple states
at once, and performing tasks exploiting all the promising permutations in chorus. The
term quantum computing is fundamentally a synergistic combination of thoughts from
quantum physics, classical information theory, and computer science.

Soft computing (SC), introduced by Lotfi A. Zadeh [282], manages the soft meaning of
thoughts. SC, comprising a variety of thoughts and practices, is fundamentally used to
solve the difficulties stumbled upon in real-life problems. This can be used to exploit
the uncertainty problem almost with zero difficulty. This can also handle real-world
state of affairs and afford lower solution costs [29]. The advantageous features of SC
can best be described as leniency of approximation, vagueness, robustness, and partial
truth [103, 215]. This is a comparatively novel computing paradigm which involves a
synergistic amalgamation of essentially several additional computing paradigms, which
may include fuzzy logic, evolutionary computation, neural networks, machine learning,
support vector machines, and also probabilistic reasoning. SC can combine the afore-
mentioned computing paradigms to offer a framework for designing many information
processing applications that can function in the real world. This synergism was called
computational intelligence by Bezdek [24]. These SC components are different from
each other in more than one way. These can be used to operate either autonomously
or conjointly, depending on the application domain.

Evolutionary computation (EC) is a search and optimization procedure which uses
biological evolution inspired by Darwinian principles [14, 83, 136]. It is stochastic and
delivers robust search and optimization methods. It starts with a pool of trial solutions
in its search space, which is called the population. Numerous in-built operators are gen-
erally applied to each individual of the population, which may cause population diversity
and also leads to better solutions. A metric, called the fitness function (objective func-
tion), is employed to determine the suitability of an individual in the population at any

Quantum Inspired Meta-heuristics for Image Analysis, First Edition.
Sandip Dey, Siddhartha Bhattacharyya, and Ujjwal Maulik.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.



2 1 Introduction

particular generation. As soon as the fitness of the existing individuals in the popula-
tion is computed, the operators are successively applied to produce a new population
for the successive generations. Distinct examples of EC may include the Differential
Evolution [242], Genetic Algorithms [127, 210], Particle Swarm Optimization [144],
and Ant Colony Optimization [196], to name but a few. Simulated annealing [147] is
another popular example of meta-heuristic and optimization techniques in this regard.
This technique exploits the features of statistical mechanics concerning the behavior of
atoms at very low temperature to find minimal cost solutions of any given optimization
problem. EC techniques are also useful when dealing with several conflicting objectives,
called the multi-objective evolutionary techniques. These search procedures provide a
set of solutions, called optimal solutions. Some typical examples of these techniques
may include the multi-objective differential evolutionary algorithm (MODE) [275], the
multi-objective genetic algorithm (MOGA) [172, 183], and multi-objective simulated
annealing (MOSA) [237], to name but a few.

Fuzzy logic tenders more elegant alternatives to conventional (Boolean) logic. Fuzzy
logic is able to handle the notion of partial truth competently [139, 141, 215, 282, 283]. A
neural network is a computing framework comprising huge numbers of simple, exceed-
ingly unified processing elements called artificial neurons, which add up to an elemen-
tal computing primitive [82, 102, 150]. Machine learning is a kind of intelligent pro-
gram which works on example data. It learns from previous experiences and is used to
enhance the performances by optimizing a given criterion [5, 156, 178]. Support vec-
tor machines (SVM) are known to be the collection of supervised learning techniques.
SVMs are very useful in regression and classification analysis [38, 50]. SVMs are fit to
handle a number of real-life applications, including text and image classification, or
biosequences analysis, to name but a few [38, 50]. Nowadays SVMs are often used as
the standard and effective tool for data mining and machine learning activities. Proba-
bilistic reasoning can be defined as the computational method which uses certain logic
and probability theory to handle uncertain circumstances [201, 202].

Many researchers utilize the basic features of quantum computing in various evolu-
tionary algorithmic frameworks in the soft computing discipline. The underlying prin-
ciples of quantum computing are injected into different meta-heuristic structures to
develop different quantum inspired techniques. In the context of image analysis, the fea-
tures are extracted both from pictographic and non-numeric data and are used in these
algorithms in different ways [27]. This chapter provides an insight into the various facets
of the quantum computing, image segmentation, image thresholding, and optimization.
This chapter is arranged into a number of relevant sections. Section 1.1 presents an
overview of the underlying concepts of image analysis. A brief overview of image seg-
mentation and image thresholding is discussed in this section. Section 1.2 throws light
on the basics of quantum computing in detail. Section 1.3 discusses the necessity of
optimization in the real world. This section presents different types of optimization pro-
cedures with their application in the real world. Apart from the above issues, this chapter
also presents a short description of the literature survey on related topics. Different types
of approaches in this regard are in detail presented in Section 1.4. The organization of
the book is presented in Section 1.5. The chapter concludes in Section 1.6. It also shows
the direction of research that can be used as future reference. A brief summary of the
chapter is given in Section 1.7. In Section 1.8, a set of questions related to the theme of
the chapter is presented.



1.1 Image Analysis 3

1.1 Image Analysis

Image analysis has a vital role in extracting relevant and meaningful information
from images. There are few automatic or semi-automatic techniques, called com-
puter/machine vision, pattern recognition, image description, image understanding to
name but a few, used for this purpose. Image segmentation can be thought of as the
most fundamental and significant step in several image analysis techniques. A good
example of image analysis may involve the organized activities of the human eye with
the brain. Computer-based image analysis can be thought of as the best alternative
which may reduce human effort in order to make this process faster, more efficient,
and automatic. Image analysis has numerous applications in a variety of fields such
as medicine, biology, robotics, remote sensing, and manufacturing. It also makes a
significant contribution in different industrial activities such as process control, quality
control, etc. For example, in the food industry, image analysis plays a significant role to
ensure the uniform shape, size and texture of the final food products.

In medical image analysis, clinical images of different views are captured to diagnose
and detect diseases in relation to body organs, and study standard physiological proce-
dures for future references. These investigations can be accomplished through images
attained from various imaging technologies, such as magnetic resonance imaging (MRI),
radiology, ultrasound, etc. For example, image analysis methodology is of the utmost
importance in cancer detection and diagnosis [44], thus it helps the physician to ensure
accurate treatment for their patient. In the context of cancer treatment, several fea-
tures like shape, size, and homogeneity of a tumor are taken into consideration when
classifying and diagnosing cancer images. Different image analysis algorithms can be
introduced that can help radiologists to classify tumor images.

The steps involved in image analysis are presented in Figure 1.1 [112]. Each step is
discussed in the following in brief.

1. Image acquisition: This is the first step of every vision system. Image acquisition
means acquiring a digital image. After obtaining the image successfully, several pro-
cessing approaches can be used on the image in order to fulfill the different vision

Figure 1.1 Steps in image analysis.
Image Analysis Phase

Image Acquisition

Image Pre-processing

Image Segmentation

Feature Extraction

Pattern Classification
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tasks required nowadays. However, if the image cannot be acquired competently, the
anticipated tasks may perhaps not be completed successfully by any means.

2. Image pre-processing: This step involves improving the image to be suitable for
analysis. In this phase, the quality of image is improved by introducing different
techniques, such as contrast enhancement, noise contraction, and sharpening of
image. The output image can be sent to perform the next step.

3. Image segmentation: In this step, the image is partitioned into several regions and the
regions of interest are taken out from the input image.

4. Feature extraction: This step converts the input image to a number of features on the
basis of the traits of the segmented image. Resulting from the discovery of certain
facts some data are obtained as the output of this step.

5. Pattern classification: This is the final step of image analysis. The extracted features
obtained in the last phase are used to classify the given image.

Various techniques can be applied to execute the steps in image analysis depending
on the intended application. So, the selected technique for performing each step is of
the utmost importance to achieve the desired results from the proposed algorithm.

1.1.1 Image Segmentation

Segmentation separates the patterns into a number of uniform, non-overlapping and
homogeneous regions or segments (classes), in which the members of any particular
segment are similar to each other and the members in the different segments possess
dissimilarity among themselves [9, 22, 87, 133, 166, 194, 203, 252, 258]. The patterns car-
rying the similar features are known to be clusters/segments. Segmentation is equally
effective for localizing and identifying object-specific features both from nonnumeric
and pictorial datasets. The challenges lie in the attempt to emulate human perception
and intelligence to extract underlying objects accurately. The foremost objective of the
segmentation process is to detect the pertinent and meaningful data by taking out the
redundant part embedded within. The foundation of a segmentation technique is basi-
cally contingent on the assortment of the representation of data elements, the prox-
imity measurement between them and also their grouping. Thus, certain metrics are
commonly used for measuring the similarity or difference between the patterns. So far,
segmentation has been successfully applied in diverse fields, which may include dif-
ferent engineering disciplines like electrical engineering, mechanical engineering, and
others. Apart from that, it has also been widely used in various other fields, such as
remote sensing, machine learning, robotic vision, pattern recognition, artificial intelli-
gence, economics, medical sciences, and many others.

Formally, the term “Image segmentation” is defined as follows:

1)  =
p⋃

i=1
Ri (1.1)

2) Rm ∩ Rn = 𝜙,m ≠ n (1.2)

where it is assumed that an image,  is segmented into p number of regions, namely,
R1,R2,… ,Rp [153, 162, 193]. A comprehensive exploration of diverse segmentation
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methods is available in the literature [27, 97, 231]. Of late, color image segmentation
has become a trusted addition in many areas of application [112, 152, 229, 248, 264].
A color pixel is typically manifested as a mixture of different color constituents. The
synthesis of different color constituents in color images usually enhances an enormous
amount of intrinsic computational complexities in respect of color image processing.
As a result, it becomes more challenging to take them up in real-life situations. Some
typical examples of color image segmentation may include robotics, object recognition,
and data compression to name but a few [27]. A pixel in a color image is recognized
in multidimensional color space, which basically enhances the processing complexity
in real-life applications. Compared to image segmentation in monochrome image, a
higher number of parameters is required to be tuned for optimality in color image
segmentation [27].

1.1.2 Image Thresholding

Thresholding is well recognized and probably the most effective tool in the context of
image processing (image segmentation) and pattern recognition. From an implementa-
tion point of view, it can be considered as the simplest technique among others, which
generally provides the most accurate results. Thresholding is basically used in segregat-
ing the background and foreground information of the image. This technique is very
effective in ascertaining the dissimilar homogeneous components (gray value, color) of
the image [97]. Thresholding is equally effective for the images possessing nonhomoge-
neous components.(textured images).

The threshold can be found by using two approaches, namely, parametric and
nonparametric [3, 261, 277]. In the first approach, the distribution of dissimilar gray
levels of an object class guides the location of the thresholds. For example, Wang and
Haralick [268] used a parametric approach where they divided the pixels of an image
into two categories, namely, edge and non-edge pixels. Thereafter, in consonance with
the local neighborhoods, the edge pixels are re-classified into two groups, referred to as
relatively dark and relatively bright pixels. Afterwards, two histograms are individually
and successively drawn from the pixels of each group. The highest peaks are selected
from these histograms as the thresholds. Another popular parametric approach is pop-
ularly known as moment preserving thresholding, in which the image is segmented on
the basis of the condition that the original and thresholded image must have the identi-
cal moments [261]. In the latter approach, the concept of optimality is used to find the
threshold values, where the threshold divides the gray-level regions of an image on the
basis of certain discerning criteria, such as the entropy, cross-entropy, within or between
class variance, so on. Typical examples of nonparametric approaches may include Otsu’s
method [192], Pun’s method [206], Kapur’s method [140], to name but a few. Otsu’s
method [192] is clustering-based, where the optimal threshold values are selected by
maximizing the between-class variance with a comprehensive search mechanism. Pun’s
method [206] and Kapur’s method [140] are two entropy-based methods, where the gray
levels are classified into different classes, and the threshold value is obtained by maxi-
mizing the entropy of the histograms of the members of that class. As the consequence
of the extensive research over the last few years, a plethora of robust thresholding meth-
ods of the parametric or nonparametric type are now available in the literature [220].
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Sezgin et al. [231] have presented a comprehensive survey of various thresholding
methods.

Any thresholding method is usually of two types: bi-level thresholding and multi-level
thresholding. In bi-level thresholding, the image is basically divided into two compo-
nents, foreground (object) and background, containing different gray-level distribution.
Hence, pixels of an image are grouped into two classes in this thresholding method. The
pixels with gray levels above a certain threshold are kept in one group, and the other
group is formed with the rest of the pixels of that image. The bi-level image threshold-
ing can be computationally extended to its multi-level version, where pixels of an image
are segregated into several classes with specific ranges defined by several thresholds.

In both classical and intelligent approaches, the purpose of thresholding also includes
reducing the image information complexity by transforming it into monochrome ver-
sions, thereby allowing a faithful analysis of the image scene [112, 132, 204, 225, 229].
Thresholding is basically applied to discriminate objects from the background image
in an efficient manner. In addition, it can also be used to separate objects from images
which comprise of different gray-levels [230, 284]. On the basis of the number of thresh-
old values selected, the thresholding method can be categorized as follows.

1. Bi-level thresholding: In this category, the pixel intensity values of the image are
grouped into two classes. This kind of thresholding method accepts the gray
level/color image as the input and converts it to its corresponding binary image
output. The conversion is accomplished on the basis of a predefined pixel intensity
value, called the threshold. Based on some criteria, one threshold value as the pixel
is chosen from the image, which in turn divides the pixels of the image into two
groups. These groups are referred to as object (O) (sometimes called foreground)
and background (B). Generally, the pixel intensity values in group (O) are greater
than the threshold while the group (B) contains smaller pixels than the threshold or
vice versa [220]. To conclude, each element in (O) and (B) is set to be 1 (white) and
0 (black), respectively [278]. Theoretically, for an image (I) and its corresponding
threshold value ( ), the subsequent features must be satisfied [25, 41, 251, 261, 278]:

1)  ∈ {0, 1, 2,… , L − 1} (1.3)

2) O = {| > 𝜃} and B = {| ≤ 𝜃} (1.4)

2. Multi-level thresholding: When the number of classes of pixels exceeds two, it
is called multi-level image thresholding. In this kind of thresholding, multiple
number of threshold values as pixels are selected. In this category, the number
of groups yielded is one more than the number of threshold selected for image
thresholding. As a higher level of thresholding may necessitate more calculations,
the time complexity of algorithms increases proportionally with the increase of level
of thresholding in multi-level thresholding [10, 39, 119, 120, 279]. This could cause
significant difficulties especially when higher level threshold values are required
to be evaluated. Hence, multi-level image thresholding possesses more complexity
compared to the other one. There exists dissimilar algorithms for bi-level image
thresholding in the literature, which can be extended to their respective multi-level
versions, if required [120, 185]. Although image thresholding, as stated above,
results in a monochrome image, of late, researchers have resorted to multi-level
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thresholding [161] to generate multi-point thresholding for the faithful segmentation
of gray-level images.

Both of these image thresholding versions can be identified by acclimatizing para-
metric or nonparametric approaches [161, 186]. So far, different algorithms have been
designed to fulfill different purposes. Some distinctive applications of thresholding com-
prise document image analysis [2], image segmentation [274], or nondestructive quality
inspection of materials [230].

Several classical methods [112, 231, 258] have been introduced to attain an apposite
thresholding criterion for gray-level images. A score of approaches have been devel-
oped to address the problem of image thresholding [231]. A few distinguished methods
among them are as follows:

1. Shape-based methods: In this category, the peaks, valleys, and curvatures of the
smoothed histogram are analyzed [213].

2. Clustering-based methods: Here, the gray-level samples are clustered in two sections
as background and foreground [192].

3. Entropy-based methods: In entropy-based methods, the entropy of the foreground
and background regions are used to determine thresholds [158]

4. Object attribute-based methods: These methods aim to discover a similarity measure
between the gray-level and its binary version. This similarity measure may include
edge coincidence, fuzzy shape resemblance, etc.

5. Spatial methods: These kinds of methods usually use higher-order probability distri-
bution and/or correlation between pixels [35].

6. Local methods: This method acclimatizes the threshold value on every individual
pixel to the local image features.

Among the different soft computing approaches in this direction, either a determin-
istic analysis of the intensity distribution of images or heuristic search and optimiza-
tion techniques are most extensively used [36, 90, 186, 211]. A survey of classical and
non-classical techniques for image thresholding and segmentation is available in [27].
But the inherent problem of these optimization techniques lies in their huge time com-
plexities.

1.2 Prerequisites of Quantum Computing

A quantum computer (QC), as the name implies, fundamentally works on quite a few
quantum physical features. In contrast to classical computers, a QC has a faster pro-
cessing capability (even exponentially), hence, these can be thought of as an immense
alternative to today’s classical computers. The field of quantum computing [173] has
developed to provide a computing speed-up of the classical algorithms by inducing
physical phenomena such as, superposition, entanglement, etc. It entails these thoughts
to develop a computing paradigm much faster in comparison to the conventional com-
puting. The upsurge in the processing speed is acquired by dint of exploiting the inherent
parallelism perceived in the qubits, the building blocks of a quantum computer [57].
Hence, the term quantum computing can be primarily considered as a synergistic amal-
gamation of concepts from quantum physics, computer science, and classical informa-
tion theory.
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Deutsch and Jozsa [58] and, later, Shor [235] exhibited some concrete problems
where they proved that such speed-up is possible. The basics of a few QC properties
are addressed in the following subsections.

1.2.1 Dirac’s Notation

The state of a quantum system is basically described in a complex divergent Hilbert
space, symbolized by the notation . The utility of the “bra-ket” notation is very note-
worthy in quantum mechanics. Paul Dirac introduced this standard notation in 1939,
and hence, this notation is at times popularly known as Dirac’s Notation. The “ket” vec-
tor is symbolized as |𝜓⟩ and, its Hermitian conjugate (conjugate transpose), referred to
as “bra”, is denoted by ⟨𝜙|. The “bracket” is formed by uniting these two vectors, and is
represented by ⟨𝜙|𝜓⟩[30, 77, 121].

Formally, a quantum system can be described as follows:

|𝜓⟩ = ∑
j

cj|𝜙j⟩ (1.5)

where, |𝜓⟩ is a wave function in . |𝜓⟩ acts as a linear superposition encompassing the
basic states 𝜙j. cj are the complex numbers which satisfies the following equation, as
given by∑

j
c2

j = 1 (1.6)

1.2.2 Qubit

The quantum bit, or in short, qubit can be described as the basic constituent of infor-
mation in quantum computing. Basically, a qubit state can be represented as a unit
vector, defined in 2D complex vector space. Theoretically, a quantum bit can possess
an inestimable number of basic states as required which help to provide exponentially
augmented information in QC. The basic quantum states are labeled as {|0⟩, |1⟩}, where,

|0⟩ = [
1
0

]
and |1⟩ = [

0
1

]
(1.7)

Occasionally, |0⟩ and |1⟩ are referred to as “ground state” and “excited state”, respectively.

1.2.3 Quantum Superposition

The quantum superposition principle, which expresses the idea that a system can exist
simultaneously in two or more mutually exclusive states, is at the heart of the mys-
tery of quantum mechanics. Considering the two state vectors in QC, the superposition
between the states is represented by the equation |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ where, (𝛼, 𝛽) ∈ ℂ
and |𝛼|2 + |𝛽|2 = 1. The superposed quantum states are forced to be collapsed into a
single state for quantum measurement. The probability of transforming it into the state|1⟩ is |𝛼|2 and that of |0⟩ is |𝛽|2, respectively [30, 77, 173, 266].
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1.2.4 Quantum Gates

The quantum gates (sometimes called quantum logic gates) are usually hardware tools
which operate on preferred qubits using a fixed unitary operation over a predetermined
period of time. Thus, quantum gates are reversible, which means, for n number of
inputs, there must be n number of outputs. Some typical examples of quantum gates
are NOT gate, C-NOT (Controlled-NOT) gate, controlled phase-shift gate, Hadamard
gate, Toffoli gate, and Fredkin gate. Theoretically, for the unitary operator, U , the
following equations must hold:

U+ = U−1 and UU+ = U+U = I (1.8)

For the Hermitian operator, H

U = eiHt (1.9)

Quantum gates can be categorized into three categories:

1. One-qubit quantum gates.
2. Two-qubit quantum gates.
3. Three-qubit quantum gates.

A brief summary of popular quantum gates, of each category, is presented below.

1.2.4.1 Quantum NOT Gate (Matrix Representation)
In general, the matrix representation of a quantum gate can be given as∑

j
|inputj⟩⟨outputj|

In this gate, for input |0⟩, output will be ⟨1|, and for input |1⟩, output will be ⟨0|. The
quantum NOT gate can be represented as

= |0⟩⟨1| + |1⟩⟨0| = [
1
0

] [
0 1

]
+
[

0
1

] [
1 0

]
=
[

0 1
0 0

]
+
[

0 0
1 0

]
=
[

0 1
1 0

]

1.2.4.2 Quantum Z Gate (Matrix Representation)
In this gate, for input |0⟩, output will be ⟨0|, and for input |1⟩, output will leads to ⟨−1|.
The quantum Z gate can be represented as

= |0⟩⟨0| + |1⟩⟨−1| = [
1
0

] [
1 0

]
+
[

0
1

] [
0 −1

]
=
[

1 0
0 0

]
+
[

0 0
0 −1

]
=
[

1 0
0 −1

]
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1.2.4.3 Hadamard Gate
The most popular quantum gate is known as the Hadamard gate (H). This gate works on
a single qubit, and performs the unitary transformation, called the Hadamard transform.
It can be defined as follows.

Gate notation Matrix representation

Hadamard gate |y H (− 1)y |y + |1− y H = 1
√2

1 1

1 − 1

The matrix given here forms the computational basis {|0⟩|1⟩}. The schematic represen-
tation of the H gate works on a qubit in state |y⟩, where y = 0, 1.

1.2.4.4 Phase Shift Gate
Like the Hadamard gate, the Phase shift gate works on a single qubit, and it is also rep-
resented as 2 × 2 matrices. The gate notation and the matrix representation of this logic
gate are given below.

Gate notation

Phase shift gate ϕ R(θ) =
1

0 eiθ

0

Matrix representation

1.2.4.5 Controlled NOT Gate (CNOT)
Unlike the Hadamard gate, the CNOT gate possesses two input qubits, called the
control and target qubit. The first line is known as the Control qubit, while the second
line signifies the target qubit. The CNOT gate works on the basis of the following
condition.

1. Case 1: If control qubit = 0, the target qubit is required to be left alone.
2. Case 2: If control qubit = 1, then the target qubit is required to be flipped.

Gate notation Matrix representation

Controlled-NOT
gate

x x

y x y

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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The schematic representation of the CNOT gate is given here. The truth table of this
gate is presented below.

Input Output|x⟩ |y⟩ |x⟩ |x⟩⊗ |y⟩
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

1.2.4.6 SWAP Gate
The swap gate is used to swap the states of a pair of qubits. This gate is usually made by
using three CNOT gates. This gate works as follows.

First, in this gate input is represented as |x, y⟩. This first CNOT gate has the output
of |x, x⊗ y⟩, which acts as the input of the second CNOT gate to produce |x⊗ (x⊗ y),
x⊗ y⟩ = |y, x⊗ y⟩. Finally, this is fed in as the input of third CNOT gate, which produces|y, y⊗ (x⊗ y)⟩ = |y, x⟩.

Gate notation Matrix  representation

Swap gate
x y

y x

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

The schematic representation of the Swap gate is presented here. The truth table of the
Swap gate is presented below.

Input Output|x⟩ |y⟩ |y⟩ |x⟩
0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 1

1.2.4.7 Toffoli Gate
The Toffoli gate, alias the controlled-controlled-NOT, is a popular universal reversible
gate (logic gate). The Toffoli gate can be used to construct any reversible circuit. This gate
is composed of 3 input bits and 3 output bits. In this logic gate, any one of the following
can occur.
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1. Case 1: If each of first two bits = 1, the third bit is inverted.
2. Case 2: Otherwise, all bits remains unchanged.

Gate notation Matrix representation

Toffoli gate

x x

y y

z z = z xy

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

The gate notation and matrix representation of the Toffoli gate are presented here. The
truth table of this gate is given below.

Input Output
x y z x′ y′ z′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

1.2.4.8 Fredkin Gate
Like the Toffoli gate, the Fredkin gate is also a universal gate, appropriate for reversible
computing. This logic gate can be effectively used to construct any arithmetic or logical
operation. The Fredkin gate, alias the controlled-SWAP gate, is basically a circuit, which
has 3 input bits and 3 output bits. It transmits the first bit unaffected and swaps the last
pair of bits if and only if the first bit is set to be 1.
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Gate notation Matrix representation

Fredkin gate

x

Fredkin gate

P = x

y Q = xy xz

z R = xz xy

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

The gate notation and matrix representation of the Fredkin gate are presented here. The
truth table of this gate is shown below.

Input Output
x y z P Q R
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

1.2.4.9 Quantum Rotation Gate
The quantum rotation gate is a popular quantum gate, generally employed to update any
qubit by applying a rotation angle. A distinctive paradigm of this gate used to update any
qubit (suppose, kth qubit) (𝛼k , 𝛽k), can be described as[

𝛼′k

𝛽′k

]
=

[
cos(𝜃k) − sin(𝜃k)

sin(𝜃k) cos(𝜃k)

][
𝛼k

𝛽k

]
(1.10)

where, 𝜃k represents the rotation angle of each qubit. The value of 𝜃k is chosen according
to the given problem.
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1.2.5 Quantum Register

An anthology of qubits is generally referred to as a quantum register. The size of this
register is measured by the size of qubits exercised. The qubit to number conversion
can be shown using a typical example given by

|1⟩⊗ |0⟩⊗ · · ·⊗ |0⟩⊗ |1⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

n qubits

≡ |10 ⋅ ⋅01
⏟⏟⏟

n bits

⟩ ≡ |EDN⟩
where EDN stands for equivalent decimal number and ⊗ signifies tensor product.
Tensor product: One can construct a new vector space using two given vector spaces.
Suppose Y and Z are such two vector spaces. The third vector space is mathematically
defined as Y ⊗ Z, called the tensor product of Y and Z.
Definition: As revealed by quantum mechanics, each and every system  is described
by dint of a Hilbert space H . Suppose the system  comprises two subsystems, called Sa
and Sb. Symbolically,  can be represented as  = Sa ∪ Sb. According to the quantum
theory, the Hilbert spaces of  , Sa and Sb are correlated by a tensor product, as given by
H = H1 ⊗H2.
Illustration 4: Suppose a quantum register is used to store information as a binary
stream. For instance, the decimal number 7 can be represented by a quantum register in
state |1⟩⊗ |1⟩⊗ |1⟩. Let us describe it in more compact notation. Suppose b = |b0⟩⊗|b1⟩⊗… |bn−2⟩⊗ |bn−1⟩, where bj ∈ {0, 1}. It signifies a quantum register having the
value of b = 20b0 + 21b1 + 22b0 +…+ 2n−2bn−2 + 2n−1bn−1. In this representation, there
may be 2n states of this form, which represents n-length binary strings or numbers from
0 to 2(n−1). They form a “computational basis,” b ∈ {0, 1}n, where b composed of n-length
binary string indicates that |bj| is a part of the “computational basis.”

A group of n qubits taken together is known as a quantum register of size n. Accord-
ingly, the decimal 1 and 5 can be stored in a quantum register of size 3 as follows:

|0⟩⊗ |0⟩⊗ |1⟩ ≡ |001⟩ ≡ |1⟩|1⟩⊗ |0⟩⊗ |1⟩ ≡ |101⟩ ≡ |5⟩
These two numbers can be stored in chorus as

1√
2
(|0⟩ + |1⟩)⊗ |0⟩⊗ |1⟩ ≡ 1√

2
(|001⟩ + |101⟩) = 1√

2
(|1⟩ + |5⟩)

where, 1√
2
(|0⟩ + |1⟩) is called the superposed form of quantum states.

1.2.6 Quantum Entanglement

Quantum entanglement is basically a quantum mechanical phenomenon where the
quantum states comprising at least two objects can be described in relation to one
another, even though the distinct objects might be spatially isolated. This causes
correlations among perceptible physical features in the quantum systems. The quantum
entanglement ensures that any alteration made in one object will definitely affect the
other one. In real life, there may subsist untold love between a boy and a girl, yet
they feel unseen romance, affections and mystical connections for each other. Such
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connections also happen in the subatomic world, which is known as entanglement
between quantum states.

Let there be a bipartite system  = Sa ∪ Sb, where, Sa and Sb are two subsystems of
the system  . A pure state of  is basically a vector 𝜙 ∈ H , where H is known as Hilbert
space. The state 𝜙 is called simple, separable, non-entangled or even factorable if 𝜙 can
be expressed as𝜙 = c⊗ d for some c ∈ Ha and d ∈ Hb. Otherwise, the state is called the
entangled state. For the non-entangled state, 𝜙, Sa and Sb are in states c and d, respec-
tively. It should be noted that if𝜙 is entangled, it is not separable. In quantum computing,
a pure state comprising two qubits is said to be in the entangled form if the state cannot
be represented (not separable) as a tensor product of the participating states of these
qubits as |𝜗1⟩⊗ |𝜗2⟩.

Quantum entanglement is the utmost notable feature of quantum mechanics. It is
the basis of several applications of quantum mechanics, such as quantum teleportation,
quantum computation, quantum cryptography, and quantum information so on [190].
The use of innumerable entangled qubits in QC, can accelerate computational capability
as compared to its classical version.

Note: We consider two entangled states as follows.

1. Case 1: Suppose, in a system, the first qubit is given as |0⟩ and the second qubit is
given as 1√

2
(|0⟩ + |1⟩). Then the state of this system (two-qubit) can be written as the

tensor product of these two qubits as follows:
1√
2
|0⟩⊗ (|0⟩ + |1⟩) = 1√

2
(|00⟩ + |01⟩)

2. Case 2: The entangled states such as 1√
2
(|00⟩ + |11⟩) or 1√

2
(|01⟩ + |10⟩) cannot be

represented as the product of the two-qubits states.

1.2.7 Quantum Solutions of NP-complete Problems

Researchers are sometimes capable of constructing algorithms that can convey a solu-
tion for some particular given problem. These kinds of problems are solvable by a num-
ber of computational steps delimited by a polynomial mi where m is the input size and
i is a constant. This kind of problem, where a polynomial-time algorithm exists, is cat-
egorized as class P problems. It is known that class P problems are solvable with high
efficacy. There is one more category where a given arrangement is validated to confirm
whether it is a solution to the given problem in polynomial time or not. Such methods
exist which can find a solution of this kind. These kinds of problems demand an exhaus-
tive search by configuring all possible arrangements until there is a result of the given
problems under a polynomial time. Such problems fall into the class NP. So it is clear
that P ⊆ NP. NP-complete problems are figured with the subclass of NP. Basically, this
subclass surrounds both the NP and NP-hard problems. For a NP-hard problem, there
exists an NP-complete problem which can be reduced to an NP-hard problem in poly-
nomial time. Quantum mechanics can store and influence a huge amount of data and
processes information using the minimum number of quantum particles due to its rigid
architecture. Its hardware is capable of dealing with all possible combinations of solu-
tions simultaneously. It has a fabulous performance in certain kinds of problems like
performing the factorial of an integer number as shown in Shor’s algorithm [235]. For
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class P problems, QC has a very high efficacy compared to its classical counterparts,
while for other NP-complete problems, it may not live up to its publicity. In [58], the
authors have explained that some classically hard problems may be solved efficiently in
quantum computing. Later, Grover’s algorithm [117] has attracted interest in developing
a more efficient search algorithm.

1.3 Role of Optimization

Optimization is referred to as a selection mechanism, used to attain the best combi-
nation of feasible solutions from an ample number of acceptable solutions of a specific
problem. This selection process is guided by several predefined single/multiple criteria.
This is accomplished through a systematic approach by selecting the appropriate values
of integer or real variables within an allowable set. The foremost objective of optimiza-
tion is to get the best possible solutions of any specific problem based on the objective
functions for a defined domain. The possible solutions of any certain problem are ini-
tially found by exploring its search space, and then they are optimized within a nominal
time frame. In principle, the optimization process handles those problems which require
one or more of its objectives to be minimized or maximized, where the objectives are
basically functions of several integer or real variables. The optimization technique can
be categorized as follows.

1. Single-objective optimization
2. Multi-objective optimization

A brief overview of these two kinds of optimization technique is described in the sub-
sequent subsections.

1.3.1 Single-objective Optimization

A single-objective optimization (SOO) problem deals with one objective function. The
foremost goal of SOO is to search for the “best” possible solution corresponding to
the maximization or minimization of a single objective function that combines all dis-
similar objectives into one. This kind of optimization can be effective as a tool which
gives decision-makers insight into the type of problem. It is usually unable to deliver
the alternative solution sets that trade dissimilar objectives against one another. In this
optimization technique, the attention is usually directed towards determining a solution
which accomplishes global optima. Formally, the optimization technique is defined as
follows.

Let g ∶ U → ℜ be a given function, which maps a set U to the set of real numbers,
ℜ. The goal of single-objective optimization is to determine an optimum element
y0 ∈ U such that, g(y0) ≤ g(y),∀y ∈ S occurs in performing minimization, while
g(y0) ≥ g(y),∀y ∈ U occurs in accomplishing maximization

Here, U ∈ ℜn comprises an assortment of entities, like equalities, inequalities or con-
straints and ℜn denotes the Euclidean space. Here, U signifies a subset of the Euclidean
space Rn which is an assortment of entities such as equalities, inequalities or constraints.
Each member of U ought to satisfy these said entities. The domain of the above function
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is known as the search space, and the members of U are referred to as feasible or candi-
date solutions. The function g is termed the objective function or cost function. Among
all feasible solutions, a particular solution which optimizes (minimizes or maximizes)
the given objective function is known as an optimal solution.

Different SOO techniques can be classified into the following categories [19, 185, 186].

• Enumerative techniques: Enumeration methods are very useful in solving combina-
torial optimization problems. These methods encompass assessing every points of
the finite, or even discretized infinite search space to attain the optimal solution [19].
Dynamic programming is a popular example of this category of search method. Enu-
meration methods can be broadly categorized into the following categories.
(1) Explicit complete enumeration: In this category, all potential alternatives are com-

pletely enumerated and a comparison is made among them to get the best possible
solution. It is basically impossible as well as very expensive to solve complex prob-
lems.

(2) Implicit complete enumeration: Portions of the solution space that are certainly
sub-optimal are left out in this category. This decreases complexity because only
the most promising solutions are taken into consideration. In this kind of enumer-
ation, different methods, such as Branch & Bound, dynamic optimization, etc. are
generally used.

(3) Incomplete enumeration: In this category, certain heuristics are applied to select
alternatives by only observing portions of the solution space. This does not
promise an optimal solution, instead, it delivers estimated solutions.

• Calculus-based techniques: The calculus-based methods, also referred to as numer-
ical methods, mean the solution of any optimization problem is found on the basis
of a set of necessary and sufficient criteria [19]. This kind of method can be further
divided into two different groups, namely, direct and indirect methods. The direct
search method is a kind of optimization method used to solve such optimization prob-
lems, which does not necessitate any information relating to the gradient of the fitness
(objective) function. The traditional optimization methods generally use information
about the higher derivatives or gradient for searching an optimal point, whereas a
direct search method explores the search space to look for a set of points in all direc-
tions of the current point, and selects one of them, which possesses the best objec-
tive value compared to the others. The non-continuous or non-differentiable type of
objective function can be used to solve problems in the direct search method. Typical
applications of this category may include Mesh Adaptive Direct Search (MADS) [11],
the Nelder-Mead algorithm (NM) [101, 154], Multidirectional Search (MDS) [259], to
name but a few. The indirect search algorithms are based on the derivatives or gradi-
ents of the given objective function. The solution of the set of equations is obtained by
equating the gradient of the objective function to zero. The calculus-based methods
may be very effective in solving the trivial class of unimodal problems [19].

• Random techniques: Compared to enumerative methods, random search methods
basically use the additional information related to the search space that in turn guides
them to possible areas of the search space [24, 112]. This method can be further sub-
divided into two different categories, namely, single-point search and multiple-point
search. In the first category, the aim is to search for a single point, whereas several
points are needed to be searched at a time for the multiple-point search method. Some
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popular examples of single-point search methods involve Simulated annealing [147],
Tabu search [109], etc. Some population-based evolutionary algorithms, such as Par-
ticle Swarm Optimization [144], Genetic Algorithms [127], differential Evolution [76],
and Ant Colony Optimization [242], are popular examples of the latter category. The
guided random search methods are very effective in such problems where the search
space is vast, multi-modal, and not continuous. Instead of providing the exact solu-
tion, the random search methods deliver a near-optimal solution across an extensive
range of problems.

1.3.2 Multi-objective Optimization

Multi-objective optimization (MOO), also known as the multi-attribute or
multi-criteria optimization technique [54] that simultaneously optimizes several
objectives as one in respect of a set of specific constraints. As opposed to the SOO,
the MOO deals with various conflicting objectives and provides no single solution
(optimal). The collaboration among diverse objectives presents compromised solutions,
which are principally referred to as the trade-off, non-inferior, non-dominated, or even
Pareto-optimal solutions.

There are numerous real-life decision-making problems which have several objectives,
such as minimizing risks, maximizing reliability or minimizing deviations from antici-
pated levels, minimizing cost, etc. In MOO, it is not always possible to find a solution in
the search space, which produces the best fitness values with regards to each objective.
In the given search space, there may be a group of solutions having better fitness with
respect to a set of objectives and worse value for the rest as compared to other solutions.
From the perspective of MOO, the term “domination” between a pair of solutions can
be described as follows [54, 177]:

Suppose a MOO problem finds a set of n solutions, say, {y1, y2,… , yn ∈ Y} for m
objectives, say, {O1,O2,… ,Om ∈ O}, Y and O are known as the solution space and
objective space, respectively. A solution (say, yi) dominates others (say, yj), where 1 ≤

i, j ≤ n and i ≠ j, if the following conditions are satisfied:

1. The solution yi is not inferior to yj ∀ Ok , 1 ≤ k ≤ m.
2. The solution yi must possess better value than yj in at least one Ok , 1 ≤ k ≤ m.

Since, there exists no solution in the Pareto-optimal set, which holds the top spot of all
objectives, some specific problem knowledge and decision-making capabilities to select
preferred solutions in MOO [54] have to be found. Over the last few years, a number of
techniques have been proposed in this literature that have coped with multi-objective
optimization problems in different facets [177].

1.3.3 Application of Optimization to Image Analysis

Image analysis appears to be a part of decision support systems in a variety of applica-
tions, such as medical, military, industrial and many others. Several techniques have
already been introduced in the literature so far to solve different image processing
activities. They usually necessitate few method-specific parameters tuning in an optimal
way to accomplish the best performance. The obligation to achieve the best results
changes the structure of the methods candidate into a corresponding optimization
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problem. Optimization is an important technique used to solve several problems in
image processing. Such a reality is evident as a significant number of researchers use
optimization techniques in their research work. Classical optimization techniques
habitually face excessive difficulties when dealing with images or systems comprising
distortions and noise. In these situations, a variety of evolutionary computation
techniques have been shown to be viable alternatives that can efficiently address the
challenge of different real-life image processing problems [51]. Image analysis is a
dynamic and fast-growing field of research. Apart from that, each novel technique
proposed by different researchers in any field is rapidly recognized and -simulated
for image processing tasks. Some state-of-the-art techniques that can handle the
challenges and image processing problems are available in the literature [191]. The rich
amount of information is already available in the literature makes it easy to find the
exact optimization technique for a certain image application.

1.4 Related Literature Survey

This section presents a write-up discussion about a brief review of various approaches
to handle different optimization problems. This section tries to provide a fundamental
overview of present trends to solve different optimization problems. These aforemen-
tioned approaches are broadly classified into three categories, namely, quantum-based
approaches, meta-heuristic-based approaches, and multi-objective-based approaches.
Most of the quantum-based approaches mainly use the basics of quantum computing
to serve the optimization purpose. The meta-heuristic-based approaches use the basic
anatomy of different meta-heuristics to develop a variety of techniques to handle dif-
ferent optimization problems. Lastly, the multi-objective-based approaches are used to
develop different Pareto-based techniques to handle a number of objectives simultane-
ously for optimization.

This section presents a brief literature survey of the aforesaid trends in single and
multi-objective optimization.

1.4.1 Quantum-based Approaches

The field of quantum computing became popular when the notion of a quantum
mechanical system was anticipated in the early 1980s [23]. The aforesaid quantum
mechanical machine is able to solve some particular computational problems effi-
ciently [117]. In [89], the author has recognized that the classical computer faces a
lack of ability while simulating quantum mechanical systems. The author presented a
structural framework to build Quantum Computer. Alfares and Esat [4] analyzed how
the notion of quantum algorithms can be applied to solve some typical engineering
optimization problems. According to them some problems may arise when the features
of QC have been applied. These problems can be avoided by using certain kind of
algorithms. Hogg [125] presented a framework for a structured quantum search where
Grover’s algorithm was applied to correlate the cost with the gates, behavior. In [126],
the authors extended the work and proposed a new quantum version of combinatorial
optimization. Rylander et al. [216] presented a quantum version of genetic algorithm
where the quantum principles like superposition and entanglement are employed on
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a modified genetic algorithm. In [181], Moore and Narayanan proposed a framework
for general quantum-inspired algorithms. Later, Han and Kim [121] developed a
quantum-inspired evolutionary algorithm which was applied to solve the knapsack
problem. Here, qubit is used for the probabilistic representation. A qubit individual
is represented by a string of qubits. The authors introduce the quantum gate as a
variation operator in order to drive the qubit individuals toward better solutions. A
new improved version of this algorithm has been presented in [122]. Here, the authors
proposed a termination criterion to accelerate the convergence of qubit individuals.
Another version of a quantum genetic algorithm has been proposed by Zhang et al.
where the strategies to update the quantum gate by utilizing the best solution and
also introducing population catastrophe have been shown. The improved version of
the work presented in [121] has been proposed by Zhang et al. where they applied
a different approach to get the best solution [287]. Narayan and Moore presented
a genetic algorithm where quantum mechanics was used for the modification of a
crossover scheme [189]. Moreover, Li and Zhuang developed a modified genetic
algorithm using quantum probability representation. They adjusted the crossover
and mutation processes to attain the quantum representation [157]. In [188], the
authors presented a quantum-inspired neural network algorithm where also the
basic quantum principles were employed to symbolize the problem variables. The
instinctive compilation of information science with the quantum mechanics constructs
the concept of quantum computing. The quantum evolutionary algorithm (QEA)
was admired as a probability-based optimization technique. It uses qubits encoded
strings for its quantum computation paradigm. The intrinsic principles of QEA help
to facilitate maintaining the equilibrium between exploitation and exploration. In
recent years, some researchers have presented some quantum evolutionary algorithms
to solve particular combinatorial optimization problems. A typical example of this
algorithm is filter design by Zhang et al. [285]. A group of heuristic search algorithms
have been designed for quantum computers by different researchers. They call these
algorithms heuristic search designed quantum algorithms (HDQs) [114, 115, 219, 239].
The capability of HDQs is checked by simulating a quantum computer, such that the
efficiency of a quantum algorithm can be judged on classical hardware. Some authors
have combined quantum computation with genetic algorithms and developed applica-
tions where fitness functions are varied between genetic steps based on the number
of outer time-dependent inputs. A few distinctive examples of this category are given
in [262, 272]. These papers include some schemes for quantum control processes. Here,
genetic algorithms are employed for optimally shaped fields to force a few preferred
physical processes [262, 272]. Aytekin et al. [12] developed a quantum-based automatic
object extraction technique where quantum mechanical principles were used as the
basic constituents of the proposed technique. With reference to Artificial Intelligence
(AI), some authors have developed quantum behaved applications on AI. A few of
them are presented in [124, 126, 137, 267]. Hogg [125] proposed a new framework for
a structured quantum search. In his proposed framework, the author used Grover’s
algorithm [117] to associate the cost with the activities of the quantum gate. Lukac and
Perkowski [164] applied a different approach where they considered each individual
in the population as quantum circuits and used the elements of population for the
objective quantum circuit. Two popular quantum algorithms developed so far are
Quantum Fourier Transform (QFT) [235], and the Grover Search Algorithm [117].


