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Prometheus

“Then I invented arithmetic for them,
the most ingenious acquired skill,
and joining letters to write down words,
so they could store all things in Memory,
the working mother of the Muses’ arts.”

Aeschylus, Prometheus Bound

Quoted from the translation by Ian Johnston, Richer Resources Publications,
2012
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Preface

Scope of the Book

Since the book by Box and Jenkins (1970), autoregressive moving average
(ARMA) models integrated of order d are a standard tool for time series
analysis, where typically d ∈ {0, 1, 2}. The integrated ARMA (ARIMA) model
of order d means that a time series has to be differenced d times in order
to obtain a stationary and invertible ARMA representation. The papers by
Granger and Joyeux (1980) and Hosking (1981) extended the ARIMA model
with integer d to the so-called fractionally integrated model, where d takes
on noninteger values, often restricted to |d| < 1∕2. In particular, the case of
0 < d < 1∕2 corresponds to a stationary model with long memory, where
the latter means that the autocorrelations die out so slowly that they are
not absolutely summable. For 1∕2 ≤ d < 1, the fractionally integrated model
bridges the gap from stationarity to the so-called unit root behavior (d = 1),
where past shocks have a permanent effect on the present and values of d > 1
allow for even more extreme persistence.

This book grew out of lecture notes from which I taught PhD courses on time
series analysis and in particular on time series with long memory. Long memory
and fractional integration have become key concepts in time series analysis over
the last decades. For instance, the updated edition of Box and Jenkins (1970), i.e.
Box et al. (2015), contains a section on long memory and fractional integration,
and so do Kirchgässner et al. (2013), Pesaran (2015), or Palma (2016). Also, pre-
vious textbooks like Brockwell and Davis (1991, Section 13.2) and Fuller (1996,
Section 2.11) include short sections on this topic. Contrary to these books on
general times series analysis containing only short digressions into the realm
of long memory, there are nowadays specialized monographs dedicated to this
topic exclusively, most recently by Giraitis et al. (2012) and Beran et al. (2013);
see also the earlier books by Beran (1994) and Palma (2007). The approach of
the present book differs from both routes, from the general interest track and
from the specialized long memory track. I rather attempt to introduce into
the theory of univariate time series analysis, and the foundations thereof, in



xiv Preface

such a way that long memory and fractional integration arise as a special case,
naturally embedded into the general theory. This is reflected by the title: Time
Series Analysis with Long Memory in View. This view is largely directed by the
author’s research agenda in this field over the last 25 years.
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1

Introduction

1.1 Empirical Examples

Figure 1.1 displays 663 annual observations of minimal water levels of the Nile
river. This historical data is from Beran (1994, Sect. 12.2) and ranges from the
year 622 until 1284. The second panel contains the sample autocorrelations 𝜌̂(h)
at lag h ∈ {1, 2,… , 30}. The maximum value, 𝜌̂(1) = 0.57, is not particularly
large, but the autocorrelogram dies out only very slowly with 𝜌̂(30) = 0.15 still
being significantly positive. Such a slowly declining autocorrelogram is charac-
teristic of what we will define as long memory or strong persistence. It reflects
that the series exhibits a very persistent behavior in that we observe very long
cyclical movements or (reversing) trends. Note, e.g. that from the year 737 until
805, there are only three data points above the sample average (=11.48), i.e.
there are seven decades of data below the average. Then the series moves above
the average for a couple of years, only to swing down below the sample mean for
another 20 years from the year 826 on. Similarly, there is a long upward trend
from 1060 on until about 1125, followed again by a long-lasting decline. Such
irregular cycles or trends due to long-range dependence, or persistence, have
first been discovered and discussed by Hurst, a British engineer who worked
as hydrologist on the Nile river; see in particular Hurst (1951). Mandelbrot and
Wallis (1968) coined the term Joseph effect for such a feature; see also Mandel-
brot (1969). This alludes to the biblical seven years of great abundance followed
by seven years of famine, only that cycles in Figure 1.1 do not have a period of
seven years, not even a constant period.

Long memory in the sense of strong temporal dependence as it is obvious
in Figure 1.1 has been reported in many fields of science. Hipel and McLeod
(1994, Section 11.5) detected long memory in hydrological or meteorological
series like annual average rainfall, temperature, and again river flow data; see
also Montanari (2003) for a survey. A further technical area beyond geophysics
with long memory time series is the field of data network traffic in computing;
see Willinger et al. (2003).

Time Series Analysis with Long Memory in View, First Edition. Uwe Hassler.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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Figure 1.1 Annual minimal water levels of the Nile river.

The second data set that we look into is from political science. Let pt denote
the poll data on partisanship, i.e. the voting intention measured by monthly
opinion polls in England. More precisely, pt is the portion of people support-
ing the Labor Party. The sample ranges from September 1960 until October
1996 and has been analyzed by Byers et al. (1997).1 Figure 1.2 contains the logit
transformation of this poll data,

yt = ln
( pt

1 − pt

)

,

such that yt = 0 for pt = 50%; here ln(x) stands for the natural logarithm of
x. We observe long-lasting upswings followed by downswings amounting
to a pseudocyclical pattern or reversing trends. This is well reflected and
quantified by the sample autocorrelations in the lower panel, decreasing from
𝜌̂(1) = 0.9 quite slowly to 𝜌̂(24) ≈ 0.2. Independently of Byers et al. (1997),
Box-Steffensmeier and Smith (1996) detected long memory in US opinion poll
data on partisanship. Long memory in political popularity has been confirmed

1 We downloaded the data from James Davidson’s homepage on May 5, 2016. The link is http://
people.exeter.ac.uk/jehd201/bdpdata.txt.

http://people.exeter.ac.uk/jehd201/bdpdata.txt
http://people.exeter.ac.uk/jehd201/bdpdata.txt
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Figure 1.2 Monthly opinion poll in England, 1960–1996.

in a sequence of papers; see Byers et al. (2000, 2007), and Dolado et al. (2003);
see also Byers et al. (2002) for theoretical underpinning of long memory in
political popularity. Further evidence on long memory in political science
has been presented by Box-Steffensmeier and Tomlinson (2000); see also the
special issue of Electoral Studies edited by Lebo and Clarke (2000).

Since Granger and Joyeux (1980), the fractionally integrated autoregressive
moving average (ARMA) model gained increasing popularity in economics.
The empirical example in Granger and Joyeux (1980) was the monthly US
index of consumer food prices. Granger (1980) had shown theoretically how
the aggregation of a large number of individual series may result in an index
that is fractionally integrated, which provided theoretical grounds for long
memory as modeled by fractional integration in price indices. A more system-
atic analysis by Geweke and Porter-Hudak (1983) revealed long memory in
different US price indices. These early papers triggered empirical research in
long memory in inflation rates in independent work by Delgado and Robinson
(1994) for Spain and by Hassler and Wolters (1995) and Baillie et al. (1996) for
international evidence. Since then, there has been offered abundant evidence
in favor of long memory in inflation rates; see, e.g. Franses and Ooms (1997),
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Figure 1.3 Monthly US inflation, 1966–2008.

Baum et al. (1999), Franses et al. (1999), Hsu (2005), Kumar and Okimoto
(2007), Martins and Rodrigues (2014), and Hassler and Meller (2014), where
the more recent research focused on breaks in persistence, i.e. in the order of
fractional integration. For an early survey article on further applications in
economics, see Baillie (1996).

Figure 1.3 gives a flavor of the memory in US inflation. The seasonally
adjusted and demeaned data from January 1966 until June 2008 has been ana-
lyzed by Hassler and Meller (2014). The autocorrelations fall from 𝜌̂(1) = 0.44
to a minimum of 0.12 = min{𝜌̂(h)}, h = 1, 2,… , 30. Again, this slowly declin-
ing autocorrelogram mirrors the reversing trends in inflation, although Hassler
and Meller (2014) suggested that the persistence may be superimposed by
additional features like time-varying variance.

The fourth empirical example is from the field of finance. Figure 1.4 displays
daily observations from January 4, 1993, until May 31, 2007. This sample of 3630
days consists of the logarithm of realized volatility of International Business
Machines Corporation (IBM) returns computed from underlying five-minutes
data; see Hassler et al. (2016) for details. Although the dynamics of the series
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Figure 1.4 Daily realized volatility, 1993–2007.

is partly masked by extreme observations, one clearly may distinguish peri-
ods of weeks where the data tends to increase, followed by long time spans
of decrease. The high degree of persistence becomes more obvious when look-
ing at the sample autocorrelogram. Starting off with 𝜌̂(1) = 0.62, the decline
is extremely slow with 𝜌̂(400) still being well above 0.2. Long memory in real-
ized volatility is sometimes considered to be a stylized fact since the papers by
Andersen et al. (2001, 2003). Such a view is supported by the special issue in
Econometric Reviews edited by Maasoumi and McAleer (2008).

Finally, with the last example we return to economics. Figure 1.5 shows 435
monthly observations from 1972 until 2008. The series is the logarithm of
seasonally adjusted US unemployment rates (number of unemployed persons
as a percentage of the civilian labor force); see Hassler and Wolters (2009)
for details. The sample average of log-unemployment is 1.7926; compare the
straight line in the upper panel of Figure 1.5. Here, the trending behavior is
so strong that the sample average is crossed only eight times over the period
of 35 years. The deviations from the average are very pronounced and very
long relative to the sample size. In that sense the series from Figure 1.5 seems
to be most persistent of all the five examples considered in this introduction.
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Figure 1.5 Monthly unemployment rate, 1972–2008.

This is also expressed by the sample autocorrelogram virtually beginning at
one (𝜌̂(1) = 0.992) and 𝜌̂(h) > 0.2 for h ∈ {1, 2,… , 36}. What is more, the
autocorrelations decline almost linearly in h, which is indicative of an I(1)
process or an I(d) process with even d > 1; see Hassler (1997, Corollary 3) and
Section 7.5. Hence, the log-unemployment data seems to be most persistent,
or most strongly trending, among our empirical examples.

1.2 Overview

There are two natural approaches to long memory modeling by fractional
integration. The first one takes the nonstationary I(1) model as starting point,
i.e. processes integrated of order 1. Such processes are often labeled as unit
root processes in econometrics, where they play a major role within the
cointegration framework; see, for instance, Johansen (1995), Lütkepohl (2005),
or Pesaran (2015). The extension from the I(1) model to the more general I(d)
model might be considered as a nearby approach from an econometric point
of view. The second approach starts off with the classical stationary time series
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model, where the moving average coefficients from the Wold decomposition
are assumed to be absolutely summable and to sum to a value different from
0. For this model, which may be called integrated of order 0, I(0) (see Chapter
6), it holds true that the scaled sample average converges with the square root
of the sample size to a nondegenerate normal distribution. This I(0) model
underlying the major body of time series books from Anderson (1971) over
Brockwell and Davis (1991) and Hamilton (1994) to Fuller (1996) may be
generalized to the stationary I(d) process for d < 1∕2. The latter can be further
extended to the region of nonstationarity (d ≥ 1∕2). Here, we follow this
second route starting with the I(0) case. More precisely, the outline of the book
is as follows.

A definition of stationarity of stochastic processes is given in the next chapter.
Moreover, Chapter 2 contains a discussion of ergodicity that corrects exposi-
tions found in some books (see Example 2.2). Next, we show that a familiar
sufficient condition for ergodicity in the mean (defined in Definition 2.3) is
also necessary; see Proposition 2.2. Then we distinguish between (short and
long) memory (Definition 2.4) and different degrees of persistence on statis-
tical grounds: Short memory is separated from long memory to characterize
under what circumstances the variance of the sample average is of order 1∕T ,
where T denotes the sample size; see Proposition 2.3. Persistence is defined
(Definition 2.5) to characterize the absence or presence and strength of a trend
component in a process; see also Eq. (4.22).

Chapter 3 focuses on moving average processes of infinite order, sometimes
called linear processes. This is motivated by Wold’s theorem in Section 3.2. We
thus have a unified framework to embed the classical process of moderate per-
sistence as well as processes with antipersistence or strong persistence, which
may or may not display long memory at the same time. The discussion of mem-
ory vs. persistence is picked up again in Section 3.3. The discussion of Examples
3.2 through 3.5 shows that the series from Figures 1.1 to 1.5 display both long
memory and strong persistence, which motivates the model of fractional inte-
gration in Chapter 6. Before leaving Chapter 3, we provide some interesting
results on the summability of the classical ARMA process (Proposition 3.5)
established with a sequence of technical lemmata.

Chapter 4 introduces to the frequency domain where much of the long mem-
ory analysis is settled. The frequency domain is not only useful for data analysis,
but it also allows for a deeper theoretical study. For instance, the classical con-
cept of invertibility can be recast following Bloomfield (1985) and Bondon and
Palma (2007) in a way (Proposition 4.6) that extends the region of invertibility
of fractionally integrated processes; see Proposition 6.2. Next, we introduce the
so-called exponential model formulated in the frequency domain. This expo-
nential model is typically not treated in time series books, although it is par-
ticularly convenient in the context of long memory as modeled by fractional
integration. Similarly, time series books typically do not deal with so-called



8 1 Introduction

Whittle estimation, which is a frequency domain approximation to maximum
likelihood that we present in Section 4.6, thus laying the foundation for memory
estimation in Chapters 8 and 9.

Chapter 5 opens the route to fractional integration. It is a short chapter on
the fractional difference and integration operator, respectively. We provide
four technical lemmata that will be used repeatedly in subsequent chapters.
Chapter 6 defines the stationary fractionally integrated process (of type I),
building on a precise definition of I(0) processes; see Assumption 6.2. Condi-
tions for (different degrees of ) persistence follow under minimal restrictions
from Lemma 5.4, while Proposition 6.1 translates this into the frequency
domain. Corollary 6.1 and Proposition 6.3 reflect the persistence as (short or
long) memory in the time domain. After a discussion of parametric fractionally
integrated models in Section 6.2, two different types of nonstationarity are
discussed in Section 6.3: First, type II fractionally integrated processes are
only asymptotically stationary if d < 1∕2. Second, the case d ≥ 1∕2 covers
nonstationarity for both type I and type II processes. Proposition 6.6 shows
that classical parametric models imply frequency domain assumptions often
entertained in the literature. For the rest of the book, we assume the fractionally
integrated models as introduced in Chapter 6.

Chapter 7 sets off with what seems to be the most general central limit
theorem currently available for moving average processes. It is applied to the
sample average of fractionally integrated processes, closing in particular the
gap at d = −1∕2 in the literature; see Corollary 7.1. Section 7.3 extends the
central limit theorem to a functional central limit theory, where fractional
Brownian motions show up in the limit. Two seemingly different represen-
tations of type II fractional Brownian motion are shown to be identical in
Lemma 7.2. Finally, this chapter contains in Section 7.5 an exposition on the
behavior of the sample autocorrelations under fractional integration.

The eighth chapter is dedicated to the estimation of all other parameters
except for the mean, assuming a fully parametric model of fractional integra-
tion. Theorem 8.1 gives the general structure of the limiting covariance matrix
of the asymptotic normal distribution for (different approximations to) max-
imum likelihood, while Corollary 8.1 focuses in particular on the integration
parameter d. Approximations to maximum likelihood may be settled in the
time domain (Proposition 8.2) or in the frequency domain (Whittle estima-
tion, Proposition 8.3). In particular, we find that the nonstationarity-extended
Whittle estimator (Proposition 8.4) overcomes all pitfalls of exact maximum
likelihood, except for being parametric of course. Section 8.5 paves the way to
semiparametric estimation in that it studies the log-periodogram regression
in the presence of a so-called exponential model for the short memory
component. While consistency is established in Proposition 8.5, we learn that
the estimator is less efficient than corresponding estimators rooted in the
maximum likelihood principle.
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Chapter 9 begins with the already familiar log-periodogram regression,
however, now in the presence of short memory, which is not parametrically
modeled. The whole chapter is dedicated to procedures that are semipara-
metric in the sense that they are robust with respect to short memory. This
comes at the price of reduced efficiency. Indeed, we obtain a slower rate
of convergence compared with parametric estimators. Within the class of
semiparametric estimators, there exist differences in efficiency, too, and the
local Whittle estimator (Proposition 9.4 or 9.5), respectively its versions
allowing for nonstationarity (Proposition 9.6 or 9.7), turn out to be superior.

Since semiparametric estimators are burdened with large variances, it is
interesting to have powerful tests that allow to discriminate statistically,
e.g. between short memory and long memory or between stationarity and
nonstationarity. This issue is addressed in Chapter 10. The first test builds on
a classical rescaled range analysis that can be traced back to Hurst (1951). It
has been improved by the rescaled variance test that is designed to provide
a better balance of power and size in finite samples. A different approach
is adopted in Section 10.4 dedicated to Lagrange multiplier (LM) tests. In
Section 10.6, the original LM test is recast in a convenient lag-augmented
regression framework (Proposition 10.8), and it has the nice property of
robustness against conditional and even unconditional heteroskedasticity
(Proposition 10.9). At the same time it is asymptotically most powerful against
local alternatives.

Long memory is a still rapidly growing field of applied and theoretical
research. Therefore, we close the book with a collection of further topics in the
final chapter.

All chapters contain a final section called “Technical Appendix: Proofs”
(except for the last chapter “Further Topics”). There, we give the mathematical
proofs of results provided and discussed in the main text. Some proofs just
accomplish or spell out simple steps to adapt proofs from the literature to
our context. Other proofs are truly original in that they establish new results
that cannot be drawn from the literature. By separating the proofs from the
propositions in the main text, we hope to improve the readability of the book.
Finally, it should be stressed that the book is not fully self-contained. While
in some propositions we spell out all required assumptions, there are many
cases where we refer to the literature. For brevity and convenience one finds in
the latter case formulations like “…satisfying Assumption 6.3 […] and some
further restrictions by Robinson (1995b);” such that the reader is expected to
read up details from the provided reference, namely, Robinson (1995b), for
this example from Proposition 9.4.


