




PHP, MySQL® & 
JavaScript® 

A L L - I N - O N E

by Richard Blum



PHP, MySQL® & JavaScript® All-in-One For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any 
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests 
to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related 
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written 
permission. MySQL is a registered trademark of MySQL AB. JavaScript is a registered trademark of Oracle America, 
Inc. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with 
any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO 
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS 
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES 
OF FITNESS FOR A PARTICULAR PURPOSE.  NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR 
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR 
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED 
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES.  IF PROFESSIONAL ASSISTANCE 
IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE 
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN 
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF 
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION 
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS 
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED 
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within 
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit 
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with 
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to 
media such as a CD or DVD that is not included in the version you purchased, you may download this material at 
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2018933793

ISBN 978-1-119-46838-7 (pbk); ISBN 978-1-119-46833-2 (ebk); ISBN 978-1-119-46837-0 (ebk)

Manufactured in the United States of America

10   9   8   7   6   5   4   3   2   1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com


Contents at a Glance
Introduction. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

Book 1: Getting Started with Web Programming. .  .  .  .  .  .  .  .  .  .  .  . 5
CHAPTER 1:	 Examining the Pieces of Web Programming. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7
CHAPTER 2:	 Using a Web Server . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27
CHAPTER 3:	 Building a Development Environment. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51

Book 2: HTML5 and CSS3 . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 71
CHAPTER 1:	 The Basics of HTML5. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73
CHAPTER 2:	 The Basics of CSS3. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  103
CHAPTER 3:	 HTML5 Forms . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  135
CHAPTER 4:	 Advanced CSS3. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  157
CHAPTER 5:	 HTML5 and Multimedia. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  177

Book 3: JavaScript. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  195
CHAPTER 1:	 Introducing JavaScript. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  197
CHAPTER 2:	 Advanced JavaScript Coding. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  223
CHAPTER 3:	 Using jQuery . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  243
CHAPTER 4:	 Reacting to Events with JavaScript and jQuery . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  263
CHAPTER 5:	 Troubleshooting JavaScript Programs . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  283

Book 4: PHP. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  301
CHAPTER 1:	 Understanding PHP Basics. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  303
CHAPTER 2:	 PHP Flow Control. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  325
CHAPTER 3:	 PHP Libraries. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  349
CHAPTER 4:	 Considering PHP Security. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  375
CHAPTER 5:	 Object-Oriented PHP Programming. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  395
CHAPTER 6:	 Sessions and Carts. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  419

Book 5: MySQL . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  443
CHAPTER 1:	 Introducing MySQL. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  445
CHAPTER 2:	 Administering MySQL . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  465
CHAPTER 3:	 Designing and Building a Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
CHAPTER 4:	 Using the Database . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  513
CHAPTER 5:	 Communicating with the Database from PHP Scripts. .  .  .  .  .  .  .  .  .  .  .  .  .  541



Book 6: Creating Object-Oriented Programs . .  .  .  .  .  .  .  .  .  .  .  .  .  .  561
CHAPTER 1:	 Designing an Object-Oriented Application. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  563
CHAPTER 2:	 Implementing an Object-Oriented Application. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  593
CHAPTER 3:	 Using AJAX. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  619
CHAPTER 4:	 Extending WordPress . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  651

Book 7: Using PHP Frameworks. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  681
CHAPTER 1:	 The MVC Method. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  683
CHAPTER 2:	 Selecting a Framework . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  695
CHAPTER 3:	 Creating an Application Using Frameworks. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  715

Index. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  735



Table of Contents
INTRODUCTION . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

About This Book. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1
Foolish Assumptions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2
Icons Used in This Book. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3
Beyond the Book. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3
Where to Go from Here . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3

BOOK 1: GETTING STARTED WITH  
WEB PROGRAMMING. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5

CHAPTER 1:	 Examining the Pieces of Web Programming. .  .  .  .  .  .  .  .  . 7
Creating a Simple Web Page . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  7

Kicking things off with the World Wide Web. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  8
Making sense of markup languages. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  9
Retrieving HTML documents. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  10
Styling . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  14

Creating a Dynamic Web Page . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  17
Client-side programming. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  19
Server-side programming . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  21
Combining client-side and server-side programming. .  .  .  .  .  .  .  .  .  .  24

Storing Content. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  25

CHAPTER 2:	 Using a Web Server. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27
Recognizing What’s Required. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

The web server. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  28
The PHP server. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  29
The database server. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  30

Considering Your Server Options. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  31
Using a web-hosting company . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  32
Building your own server environment. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  33
Using premade servers. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  37

Tweaking the Servers . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  41
Customizing the Apache Server . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  41
Customizing the MySQL server. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  44
Customizing the PHP server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

CHAPTER 3:	 Building a Development Environment. .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51
Knowing Which Tools to Avoid . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  51

Graphical desktop tools. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  52
Web-hosting sites . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  52
Word processors. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  53

Table of Contents      v



vi      PHP, MySQL & JavaScript All-in-One For Dummies

Working with the Right Tools. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  53
Text editors. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  53
Program editors. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  61
Integrated development environments. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  64
Browser debuggers. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  67

BOOK 2: HTML5 AND CSS3 . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 71

CHAPTER 1:	 The Basics of HTML5 . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73
Diving into Document Structure. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  73

Elements, tags, and attributes. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  73
Document type . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  75
Page definition. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  76
Page sections. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  78

Looking at the Basic HTML5 Elements. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  81
Headings. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  81
Text groupings. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  82
Breaks. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  84

Marking Your Text. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  85
Formatting text . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  85
Using hypertext. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  86

Working with Characters . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  90
Character sets . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  90
Special characters. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  91

Making a List (And Checking It Twice). .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  92
Unordered lists . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  92
Ordered lists. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  93
Description lists. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  95

Building Tables. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  96
Defining a table. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  96
Defining the table’s rows and columns . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  97
Defining the table headings. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  99

CHAPTER 2:	 The Basics of CSS3 . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  103
Understanding Styles . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  103

Defining the rules of CSS3 . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  104
Applying style rules. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  110
Cascading style rules. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  111

Styling Text. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  112
Setting the font . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  112
Playing with color . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  116

Working with the Box Model. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  119
Styling Tables. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  121

Table borders. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  122
Table data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  123



Positioning Elements . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  125
Putting elements in a specific place. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  128
Floating elements . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  130

CHAPTER 3:	 HTML5 Forms. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  135
Understanding HTML5 Forms. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  135

Defining a form . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  136
Working with form fields . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  137

Using Input Fields . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  138
Text boxes . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  138
Password entry . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  140
Check boxes. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  141
Radio buttons. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  142
Hidden fields . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  143
File upload . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  144
Buttons. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  145

Adding a Text Area . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  146
Using Drop-Down Lists. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  147
Enhancing HTML5 Forms. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  149

Data lists. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  149
Additional input fields. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  150

Using HTML5 Data Validation . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  154
Holding your place . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  154
Making certain data required . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  155
Validating data types. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  155

CHAPTER 4:	 Advanced CSS3. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  157
Rounding Your Corners . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  157
Using Border Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159
Looking at the CSS3 Colors . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  162
Playing with Color Gradients. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  164

Linear gradients. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  164
Radial gradients. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  165

Adding Shadows . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  166
Text shadows. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  166
Box shadows . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  167

Creating Fonts . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  168
Focusing on font files . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  169
Working with web fonts. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  169

Handling Media Queries. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  171
Using the @media command . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  171
Dealing with CSS3 media queries. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  172
Applying multiple style sheets. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  175

Table of Contents      vii



viii      PHP, MySQL & JavaScript All-in-One For Dummies

CHAPTER 5:	 HTML5 and Multimedia. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  177
Working with Images . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  177

Placing images. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  178
Styling images . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  179
Linking images. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  181
Working with image maps. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  182
Using HTML5 image additions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  183

Playing Audio. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  185
Embedded audio. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  185
Digital audio formats . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  186
Audio the HTML5 way. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  188

Watching Videos . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  190
Paying attention to video quality. . . . . . . . . . . . . . . . . . . . . . . . . . . .190
Looking at digital video formats . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  191
Putting videos in your web page. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  192

Getting Help from Streamers . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  194

BOOK 3: JAVASCRIPT. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  195

CHAPTER 1:	 Introducing JavaScript. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  197
Knowing Why You Should Use JavaScript . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  197

Changing web page content . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  198
Changing web page styles . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  198

Seeing Where to Put Your JavaScript Code . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  199
Embedding JavaScript. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  199
Using external JavaScript files. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  203

The Basics of JavaScript . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  203
Working with data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  204
Data types. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  205
Arrays of data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  206
Operators. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  207

Controlling Program Flow . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  209
Conditional statements . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  209
Loops. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  216

Working with Functions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  220
Creating a function . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  221
Using a function. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  222

CHAPTER 2:	 Advanced JavaScript Coding. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  223
Understanding the Document Object Model . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  223

The Document Object Model tree. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  224
JavaScript and the Document Object Model. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  226



Finding Your Elements . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  233
Getting to the point. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  233
Walking the tree. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  235

Working with Document Object Model Form Data . .  .  .  .  .  .  .  .  .  .  .  .  .  .  238
Text boxes . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  238
Text areas. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  239
Check boxes. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  240
Radio buttons. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  241

CHAPTER 3:	 Using jQuery. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  243
Loading the jQuery Library . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  244

Option 1: Downloading the library file to your server. .  .  .  .  .  .  .  .  .  245
Option 2: Using a content delivery network . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  246

Using jQuery Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246
Finding Elements. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  247
Replacing Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  250

Working with text . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  250
Working with HTML. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  252
Working with attributes . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  253
Working with form values . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  253

Changing Styles. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  254
Playing with properties. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  254
Using CSS objects . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  256
Using CSS classes. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  257

Changing the Document Object Model . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  259
Adding a node. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  259
Removing a node. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  260

Playing with Animation. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  261

CHAPTER 4:	 Reacting to Events with JavaScript and jQuery . .  .  263
Understanding Events . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  263

Event-driven programming . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  264
Watching the mouse. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  264
Listening for keystrokes. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  265
Paying attention to the page itself . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  266

Focusing on JavaScript and Events. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  267
Saying hello and goodbye . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  267
Listening for mouse events. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  269
Listening for keystrokes. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  273
Event listeners. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  275

Looking at jQuery and Events . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  276
jQuery event functions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  276
The jQuery event handler. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  280

Table of Contents      ix



x      PHP, MySQL & JavaScript All-in-One For Dummies

CHAPTER 5:	 Troubleshooting JavaScript Programs. .  .  .  .  .  .  .  .  .  .  .  .  .  283
Identifying Errors. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  283
Working with Browser Developer Tools. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  285

The DOM Explorer. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  286
The Console. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  287
The Debugger. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  290

Working Around Errors. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  295

BOOK 4: PHP . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  301

CHAPTER 1:	 Understanding PHP Basics. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  303
Seeing the Benefits of PHP. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  303

A centralized programming language . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  304
Centralized data management . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  304

Understanding How to Use PHP. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  305
Embedding PHP code. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  305
Identifying PHP pages. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  306
Displaying output . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  307
Handling new-line characters . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  309

Working with PHP Variables. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  310
Declaring variables . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  311
Seeing which data types PHP supports . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  312
Grouping data values with array variables . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  315

Using PHP Operators . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  317
Arithmetic operators. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  317
Arithmetic shortcuts. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  318
Boolean operators. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  319
String operators. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  320

Including Files . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  320
The include() function. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  320
The require() function. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  323

CHAPTER 2:	 PHP Flow Control . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  325
Using Logic Control. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  325

The if statement. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  326
The else statement. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  328
The elseif statement. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  328
The switch statement. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  330

Looping. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  331
The while family. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  331
The for statement. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  333
The foreach statement. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  334

Building Your Own Functions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  336
Working with Event-Driven PHP . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  339



Working with links. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  339
Processing form data . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  343

CHAPTER 3:	 PHP Libraries. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  349
How PHP Uses Libraries. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  349

Exploring PHP extensions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  350
Examining the PHP extensions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  351
Including extensions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  353
Adding additional extensions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  354

Text Functions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  354
Altering string values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354
Splitting strings . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  356
Testing string values. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  359
Searching strings. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  360

Math Functions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  361
Number theory . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  361
Calculating logs and exponents. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  362
Working the angles. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  363
Hyperbolic functions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  364
Tracking statistics . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  364

Date and Time Functions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  365
Generating dates. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  365
Using timestamps. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  367
Calculating dates. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  368

Image-Handling Functions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  369

CHAPTER 4:	 Considering PHP Security . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  375
Exploring PHP Vulnerabilities . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  375

Cross-site scripting . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  376
Data spoofing. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  379
Invalid data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  380
Unauthorized file access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382

PHP Vulnerability Solutions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  384
Sanitizing data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  384
Validating data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  389

CHAPTER 5:	 Object-Oriented PHP Programming. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  395
Understanding the Basics of Object-Oriented Programming. .  .  .  .  .  .  395

Defining a class . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  396
Creating an object instance. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  397

Using Magic Class Methods. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  401
Defining mutator magic methods. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  401
Defining accessor magic methods . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  403
The constructor. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  406

Table of Contents      xi



xii      PHP, MySQL & JavaScript All-in-One For Dummies

The destructor. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  407
Copying objects. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  408
Displaying objects. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  408

Loading Classes. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  409
Extending Classes. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  414

CHAPTER 6:	 Sessions and Carts. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  419
Storing Persistent Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  419

The purpose of HTTP cookies . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  420
Types of cookies . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  421
The anatomy of a cookie . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  422
Cookie rules. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  424

PHP and Cookies. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  424
Setting cookies. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  424
Reading cookies. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  426
Modifying and deleting cookies. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  428

PHP and Sessions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  430
Starting a session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431
Storing and retrieving session data . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  431
Removing session data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  435

Shopping Carts. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  436
Creating a cart. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  436
Placing items in the cart. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  437
Retrieving items from a cart . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  437
Removing items from a cart. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  438
Putting it all together . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  438

BOOK 5: MYSQL. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  443

CHAPTER 1:	 Introducing MySQL. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  445
Seeing the Purpose of a Database. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  445

How databases work. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  446
Relational databases. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  449
Database data types. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  451
Data constraints. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  451
Structured Query Language. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  452

Presenting MySQL. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  454
MySQL features. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  454
Storage engines. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  456
Data permissions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  457

Advanced MySQL Features . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  458
Handling transactions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  458
Making sure your database is ACID compliant. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  459
Examining the views. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  461



Working with stored procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . .462
Pulling triggers. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  463
Working with blobs. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  463

CHAPTER 2:	 Administering MySQL. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  465
MySQL Administration Tools. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  465

Working from the command line . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  466
Using MySQL Workbench. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  470
Using the phpMyAdmin tool . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  475

Managing User Accounts. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  477
Creating a user account. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  477
Managing user privileges. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  481

CHAPTER 3:	 Designing and Building a Database . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  489
Managing Your Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  489

The first normal form. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  490
The second normal form . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  491
The third normal form . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  491

Creating Databases. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  492
Using the MySQL command line. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  492
Using MySQL Workbench. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  495
Using phpMyAdmin. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  497

Building Tables. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  500
Working with tables using the command-line interface . .  .  .  .  .  .  .  500
Working with tables using Workbench. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  505
Working with tables in phpMyAdmin. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  508

CHAPTER 4:	 Using the Database . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  513
Working with Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  513

The MySQL command-line interface . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  514
The MySQL Workbench tool . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  519
The phpMyAdmin tool . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  522

Searching for Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  524
The basic SELECT format . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  525
More advanced queries . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  527

Playing It Safe with Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  531
Performing data backups. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  532
Restoring your data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  538

CHAPTER 5:	 Communicating with the Database from PHP 
Scripts . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  541
Database Support in PHP. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  541
Using the mysqli Library. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  543

Connecting to the database. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  544
Closing the connection. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  545

Table of Contents      xiii



xiv      PHP, MySQL & JavaScript All-in-One For Dummies

Submitting queries . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  546
Retrieving data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  547
Being prepared . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  549
Checking for errors. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  551
Miscellaneous functions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  553

Putting It All Together. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  554

BOOK 6: CREATING OBJECT-ORIENTED PROGRAMS. .  .  .  .  .  561

CHAPTER 1:	 Designing an Object-Oriented Application. .  .  .  .  .  .  .  .  563
Determining Application Requirements. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  563
Creating the Application Database. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  565

Designing the database . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  565
Creating the database. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  568

Designing the Application Objects . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  571
Designing objects . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  571
Coding the objects in PHP . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  573

Designing the Application Layout. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  579
Designing web page layout . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  580
The AuctionHelper page layout. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  581

Coding the Website Layout . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  582
Creating the web page template. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  582
Creating the support files. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  587

CHAPTER 2:	 Implementing an Object-Oriented Application. .  .  593
Working with Events. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  593
Bidder Object Events. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  595

Listing bidders. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  595
Adding a new bidder. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  603
Searching for a bidder . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  605

Item Object Events . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  605
Listing items. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  606
Adding a new item. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  611
Searching for an item. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  614

Logging Out of a Web Application. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  614
Testing Web Applications. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  616

CHAPTER 3:	 Using AJAX . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  619
Getting to Know AJAX . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  619
Communicating Using JavaScript . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  621

Considering XMLHttpRequest class methods. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  622
Focusing on XMLHttpRequest class properties. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  623
Trying out AJAX. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  625



Using the jQuery AJAX Library. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  629
The jQuery $.ajax() function. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  629
The jQuery $.get() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .633

Transferring Data in AJAX. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  635
Looking at the XML standard. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  635
Using XML in PHP . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  636
Using XML in JavaScript. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  640

Modifying the AuctionHelper Application . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  643

CHAPTER 4:	 Extending WordPress. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  651
Getting Acquainted with WordPress. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  651

What WordPress can do for you. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  652
How to run WordPress. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  653
Parts of a WordPress website . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  654

Installing WordPress. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  655
Downloading the WordPress software. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  655
Creating the database objects. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  656
Configuring WordPress. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  658

Examining the Dashboard. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  662
Using WordPress. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  664
Exploring the World of Plugins . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  669

WordPress APIs. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  670
Working with plugins and widgets . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  671

Creating Your Own Widget. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  674
Coding the widget. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  674
Activating the widget plugin. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  676
Adding the widget. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  677

BOOK 7: USING PHP FRAMEWORKS. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  681

CHAPTER 1:	 The MVC Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
Getting Acquainted with MVC. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  683

Exploring the MVC method . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  684
Digging into the MVC components. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  686
Communicating in MVC . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  690

Comparing MVC to Other Web Models . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  691
The MVP method. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  692
The MVVM method. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  692

Seeing How MVC Fits into N-Tier Theory. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  693
Implementing MVC. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  694

Table of Contents      xv



xvi      PHP, MySQL & JavaScript All-in-One For Dummies

CHAPTER 2:	 Selecting a Framework. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  695
Getting to Know PHP Frameworks. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  695

Convention over configuration. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  696
Scaffolding . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  698
Routing. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  699
Helper methods. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  700
Form validation . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  700
Support for mobile devices . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  700
Templates. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  701
Unit testing. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  701

Knowing Why You Should Use a Framework . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  702
Focusing on Popular PHP Frameworks . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  704

CakePHP. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  704
CodeIgniter. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  705
Laravel. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  707
Symfony . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  708
Zend Framework. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  709

Looking At Micro Frameworks. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  710
Lumen. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  710
Slim . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  711
Yii. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  713

CHAPTER 3:	 Creating an Application Using Frameworks. .  .  .  .  .  .  715
Building the Template. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  715

Initializing the application . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  716
Exploring the files and folders. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  718
Defining the database environment. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  719

Creating an Application Scaffold. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  721
Installing the scaffolding. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  721
Exploring the scaffolding code . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  724

Modifying the Application Scaffold. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  725
Adding a new feature link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .726
Creating the controller code . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  728
Modifying the model code. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  730
Painting a view. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  731

INDEX. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  735



Introduction      1

Introduction

The Internet has become an amazing place to shop, do your banking, look up 
homework assignments, and even keep track of your bowling league scores. 
Behind all those great applications are a bunch of different web technolo-

gies that must all work together to create the web experience you come to expect.

You may think that creating web applications is best left for the professionals, but 
you’d be surprised by just how well you can do with just a little knowledge and 
experience! That’s the point of this book.

About This Book
Think of this book as a reference book. Like the dictionary or an encyclopedia 
(remember those?), you don’t have to read it from beginning to end. Instead, you 
can dip into the book to find the information you need and return to it again when 
you need more. That said, you won’t be disappointed if you work through the book 
from beginning to end, and you may find it easier to follow along with some of 
the examples.

In this book, I walk you through all the different technologies involved with creat-
ing dynamic web applications that can track data and present it in an orderly and 
pleasing manner. I cover several key topics that you’ll need to know to create a 
full-featured, dynamic web application:

»» Creating the basic layout of a web page: In this book, you see the program 
code behind placing content on a web page and reacting to your website 
visitors’ mouse clicks.

»» Styling the web page: Just placing data on a web page is boring. In this book, 
you learn how to use CSS to help use color, images, and placement to help 
liven up your web applications.

»» Adding dynamic features: These days, having a static web page that just sits 
there doesn’t get you many followers. This book shows you how to incorpo-
rate JavaScript to animate your web pages and provide dynamic features.



»» Leveraging the power of the server: The PHP programming language allows 
you to harness the power behind the web server to dynamically generate web 
pages “on the fly” as your website visitors make choices.

»» Storing data for the future: Just about every dynamic web application needs 
to store data, and in this book you learn exactly how to do that using the 
MySQL server, which is commonly available in just about every web platform.

»» Creating full applications: Many books throw a bunch of technology at you 
and expect you to put the pieces together yourself. This book not only shows 
you the technology, but also demonstrates how all the parts fit together to 
create a dynamic web application.

»» Using helper programs: No one is an island; everyone needs some help 
putting together those fancy web applications. There are plenty of tools to 
help you get the job done, and with this book you find out which tools will 
help you with which features of your application.

Throughout this book you see sidebars (text in gray boxes) and material marked 
with the Technical Stuff icon. All of these things are skippable. If you have time 
and are interested, by all means read them, but if you don’t or aren’t, don’t.

Finally, within this book, you may note that some web addresses break across two 
lines of text. If you’re reading this book in print and want to visit one of these web 
pages, simply key in the web address exactly as it’s noted in the text, pretending 
as though the line break doesn’t exist. If you’re reading this as an e-book, you’ve 
got it easy — just click the web address to be taken directly to the web page.

Foolish Assumptions
You don’t need any level of programming experience to enjoy this book and start 
creating your own web applications. Each chapter walks through all the basics you 
need to know and doesn’t assume you’ve ever coded before. As long as you’re rea-
sonably comfortable navigating your way around a standard desktop computer, 
you have all the experience you need!

That said, if you’ve already tried your hand at web programming and you just 
want to fill in a few holes, this book will work well for you, too!

This book doesn’t expect you to run out and buy any expensive software packages 
to start your web development career. All the tools that are used in the book are 
freely available open-source software. I walk you through how to set up a com-
plete development environment, whether you’re working in Microsoft Windows, 
Apple macOS, or Linux.

2      PHP, MySQL & JavaScript All-in-One For Dummies



Icons Used in This Book
I use some icons throughout the book to help you identify useful information. 
Here’s what the icons are and what I use them for:

Anything marked with the Tip icon provides some additional information about a 
topic to help you better understand what’s going on behind the scenes or how to 
better use the feature discussed in the text.

You don’t have to commit this book to memory — there won’t be a test. But every 
once in a while I tell you something so important that you should remember it. 
When I do, I mark it with the Remember icon.

The Warning icon is there to point out potential pitfalls that can cause problems. 
If you want to save yourself a lot of time or trouble, heed these warnings.

When you see the Technical Stuff icon, be prepared to put your geek hat on. When 
I get into the weeds, I use the Technical Stuff icon. If you’re not interested in these 
details, feel free to skip these sections — you won’t miss anything essential about 
the topic at hand.

Beyond the Book
In addition to the material in the print or e-book you’re reading right now, you 
also get access to a free online Cheat Sheet filled with more tips and tricks on 
building a web application, including accessing any database from your PHP pro-
grams, filtering data your program receives from web forms to block unwanted 
or potentially dangerous data, quickly finding data in a MySQL database, and 
triggering JavaScript events at predetermined times in a browser. To access this 
resource go to www.dummies.com and enter PHP, MySQL & JavaScript All-in-One 
For Dummies Cheat Sheet in the search box.

Where to Go from Here
This book doesn’t have to be read from beginning to end, so you can dive in wher-
ever you want! Use the Table of Contents and Index to find subjects that inter-
est you. If you already know PHP and JavaScript and you’re just interested in 
learning how to create a dynamic web application from scratch, start out with  

Introduction      3

http://www.dummies.com


Book 6, Chapter 1. If you’re interested in learning how to use one of the framework 
packages available for PHP, check out Book 7, Chapter 1. Or, if you’re interested in 
everything, start with Book 1, Chapter 1, and read until the very end.

With the information in this book, you’ll be ready to start creating your own 
dynamic web applications. Web programming is one of those skills that takes time 
and practice to get good at, so the more coding you can do, the better you’ll get 
at it. To get some practice, you may want to offer your services for free at first, to 
build up a reputation. Find a needy nonprofit organization that you’re interested 
in supporting and offer to work on its website. They’ll get a great website, and 
you’ll get a project to add to your résumé!

Don’t stop learning! There are always new things coming out in the web world, 
even if you just stick to using the same software packages to develop your web 
applications. Stay plugged in to the PHP world by visiting the official PHP website 
at www.php.net or by visiting (and even participating in) one or more of the many 
PHP forums. Just do some Googling to find them.

Enjoy your newfound skills in developing dynamic web applications!

4      PHP, MySQL & JavaScript All-in-One For Dummies

http://www.php.net


1Getting Started 
with Web 
Programming



Contents at a Glance
CHAPTER 1:	 Examining the Pieces of Web Programming. .  .  .  .  .  . 7

Creating a Simple Web Page. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7
Creating a Dynamic Web Page . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17
Storing Content. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 25

CHAPTER 2:	 Using a Web Server. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27
Recognizing What’s Required. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Considering Your Server Options. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31
Tweaking the Servers. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41

CHAPTER 3:	 Building a Development Environment . .  .  .  .  .  .  .  .  .  .  . 51
Knowing Which Tools to Avoid . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51
Working with the Right Tools. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 53



CHAPTER 1  Examining the Pieces of Web Programming      7

Examining the Pieces 
of Web Programming

At first, diving into web programming can be somewhat overwhelming. You 
need to know all kinds of things in order to build a web application that 
not only looks enticing but also works correctly. The trick to learning web 

programming is to pull the individual pieces apart and tackle them one at a time.

This chapter gets you started on your web design journey by examining the dif-
ferent pieces involved in creating a simple web page. Then it kicks things up a 
notch and walks you through dynamic web pages. And finally, the chapter ends by 
explaining how to store your content for use on the web.

Creating a Simple Web Page
Before you can run a marathon, you need to learn how to walk. Likewise, before you 
can create a fancy website, you need to know the basics of how web pages work.

Nowadays, sharing documents on the Internet is easy, but it wasn’t always that 
way. Back in the early days of the Internet, documents were often created using 
proprietary word-processing packages and had to be downloaded using the cum-
bersome File Transfer Protocol (FTP). To retrieve a document, you had to know 

Chapter 1

IN THIS CHAPTER

»» Understanding how simple web 
pages work

»» Incorporating programming into your 
web page

»» Storing content in a database



8      BOOK 1  Getting Started with Web Programming

exactly what server contained the document, you had to know where it was stored 
on the server, and you had to be able to log into the server. After all that, you still 
needed to have the correct word-processing software on your computer to view 
the document. As you can imagine, it wasn’t long before a new way of sharing 
content was required.

To get to where we are today, several different technologies had to be developed:

»» A method for linking related documents together

»» A way for the document reader to display formatted text the same way in any 
type of device

»» An Internet standard allowing clients to easily retrieve documents from any 
server

»» A standard method of styling and positioning content in documents

This section describes the technology that made viewing documents on the Inter-
net work the way it does today.

Kicking things off with the World Wide Web
In 1989, Tim Berners-Lee developed a method of interconnecting documents to 
make sharing research information on the Internet easier. His creation, the World 
Wide Web, defined a method for linking documents together in a web structure, 
so that a researcher could follow the path between related documents, no mat-
ter where they were located in the world. Clicking text in one document took you 
to another document automatically, without your having to manually find and 
download the related document.

The method Berners-Lee developed for linking documents is called hypertext. Hyper-
text embeds links that are hidden from view in the document, and directs the soft-
ware being used to view the document (known as the web browser) to retrieve the 
referenced document. With hypertext, you just click the link, and the software (the 
web browser) does all the work of finding and retrieving the related document for you.

Because the document-viewing software does all the hard work, a new type of 
software had to be developed that was more than just a document viewer. That’s 
where web browsers came into existence. Web browsers display a document on 
a computer screen and respond to the reader clicking hypertext links to retrieve 
other specified documents.

To implement hypertext in documents, Berners-Lee had to utilize a text-based 
document-formatting system. Fortunately for him, a lot of work had already been 
done on that.



Ex
am

in
in

g 
th

e 
Pi

ec
es

 o
f 

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1  Examining the Pieces of Web Programming      9

Making sense of markup languages
Markup languages were developed to replace proprietary word-processing pack-
ages with a standard way of formatting documents so that they could be read by 
any type of document viewer on any type of device. This goal is accomplished by 
embedding tags in the text. Each tag indicates a formatting feature, such as head-
ings, bold or italic text, or special margins. What made markup languages differ-
ent from word-processing packages is that these tags were common text codes 
instead of proprietary codes, making it generic enough that any device could read 
and process them.

The first popular markup language was the Generalized Markup Language (GML), 
developed by IBM in the 1960s. The International Organization for Standardization 
(ISO) took up the challenge of creating markup languages and produced the Stan-
dard Generalized Markup Language (SGML), mainly based on GML, in the 1980s. 
However, because SGML was developed to cover all types of document formatting 
on all types of devices, it’s extremely complex and it wasn’t readily adapted.

Berners-Lee used the ideas developed in SGML to create a simplified markup lan-
guage that could support his hypertext idea. He called it Hypertext Markup Language 
(HTML). HTML uses the same concept of tags that SGML uses, but it defines fewer 
of them, making it easier to implement in software.

An example of an HTML tag is <h1>. You use this tag to define text that’s used as a 
page heading. Just surround the text with an opening <h1> tag, and a correspond-
ing closing </h1> tag, like this:

<h1>This is my heading</h1>

When the browser gets to the <h1> tag, it knows to format the text embedded in 
the opening and closing tags using a different style of formatting, such as a larger 
font or a bold typeface.

To define a hypertext link to another document, you use the <a> tag:

<a href="anotherdoc.html">Click here for more info</a>

When the reader clicks the Click here for more info text, the browser automatically 
tries to retrieve the document specified in the <a> tag. That document can be on 
the same server or on another server anywhere on the Internet.

HTML development has seen quite a few changes since Berners-Lee created it and 
turned it over to the World Wide Web Consortium (W3C) to maintain. Table 1-1 
shows the path the language has taken.



10      BOOK 1  Getting Started with Web Programming

The HTML version 4.01 standard was the backbone of websites for many years, 
and it’s still used by many websites today. However, HTML version 5.0 (called 
HTML5 for short) is the future of web development. It provides additional features 
for embedding multimedia content in web pages without the need for proprietary 
software plug-ins (such as Adobe Flash Player). Because multimedia is taking 
over the world (just ask YouTube), HTML5 has grown in popularity. This book 
focuses on HTML5; all the code included in this book use that standard.

Retrieving HTML documents
Besides a document-formatting standard, Berners-Lee also developed a method 
of easily retrieving the HTML documents in a client–server environment. A web 
server software package runs in the background on a server, listening for con-
nection requests from web clients (the browser). The browser sends requests to 
retrieve HTML documents from the server. The request can be sent anonymously 
(without using a login username), or the browser can send a username and pass-
word or certificate to identify the requestor.

These requests and responses are defined in the Hypertext Transfer Protocol (HTTP) 
standard. HTTP defines a set of requests the client can send to the server and a set 
of responses the server uses to reply back to the client.

This section walks you through the basics of how web servers and web clients use 
HTTP to interact with each other to move web pages across the Internet.

Web clients
The web client sends requests to the web server on a standard network commu-
nication channel (known as TCP port 80), which is defined as the standard for 

TABLE 1-1	 HTML Versions
Version Description

HTML 1.0 Formally released in 1989 as the first public version of HTML

HTML 2.0 Released in 1995 to add interactive elements

HTML 3.0 Released in 1996 but never widely adopted

HTML 3.2 Released in 1997, adding support for tables

HTML 4.01 Released in 1999, widely adopted, and remains an often-used standard

XHTML 1.0 Released in 2001, standardizing HTML around the XML document format

XHTML 1.1 Released in 2002, making updates and corrections to XHTML 1.1

HTML 5.0 Released in 2014, adding multimedia features



Ex
am

in
in

g 
th

e 
Pi

ec
es

 o
f 

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1  Examining the Pieces of Web Programming      11

HTTP communication. HTTP uses standard text requests sent to the server, either 
requesting information from the server or sending information to the server. 
Table 1-2 shows the basic HTTP client requests available.

As shown in Table 1-2, when you ask to view a web page from your client browser, 
the browser sends the HTTP GET request to the server, specifying the filename 
of the web page. The server then responds with a response code along with the 
requested data. If the client doesn’t specify a filename in the GET request, most 
servers have a default file with which to respond.

Web servers
With HTTP, the web server must respond to each client request received. If the 
client sends a request that the server can’t process, the server must send some 
type of error code back to the client indicating that something went wrong.

The first part of the server response is a status code and text that the client uses to 
determine whether the submitted request was successful. The format of the HTTP 
response uses a three-digit status code, followed by an optional text message that 
the browser can display. The three-digit codes are broken down into five categories:

»» 1xx: Informational messages

»» 2xx: Success

»» 3xx: Redirection

TABLE 1-2	 HTTP Client Requests
Request Description

CONNECT Converts the connection into a secure tunnel for sending data

DELETE Deletes the specified resource

GET Requests the specified resource

HEAD Requests the title of the specified resource

OPTIONS Retrieves the HTTP requests that the server supports

PATCH Applies a modification to a resource

POST Sends specified data to the server for processing

PUT Stores specified data at a specified location

TRACE Sends the received request back to the client



12      BOOK 1  Getting Started with Web Programming

»» 4xx: Client error

»» 5xx: Server error

The three-digit status code is crucial to knowing what happened with the response. 
Many status codes are defined in the HTTP standards, providing some basic infor-
mation on the status of client requests. Table 1-3 shows just a few of the standard 
HTTP response codes that you may run into.

TABLE 1-3	 Common HTTP Server Response Status Codes
Status Code Text Message Description

100 Continue The client should send additional information.

101 Switching Protocols The server is using a different protocol for the request.

102 Processing The server is working on the response.

200 OK The server accepted the request and has returned 
the response.

201 Created The server created a new resource in response to 
the request.

202 Accepted The data sent by the client has been accepted by the server 
but has not completed processing the data.

206 Partial Content The response returned by the server is only part of the full 
data; more will come in another response.

300 Multiple Choices The request matched multiple possible responses from 
the server.

301 Moved Permanently The requested file was moved and is no longer at the 
requested location.

302 Found The requested resource was found at a different location.

303 See Other The requested resource is available at a different location.

304 Not Modified The requested resource was not modified since the last time 
the client accessed it.

307 Temporary Redirect The requested resource was temporarily moved to a 
different location.

308 Permanent Redirect The requested resource was permanently moved to a 
different location.

400 Bad Request The server cannot process the request.

401 Unauthorized The resource requires authentication that the client did 
not provide.



Ex
am

in
in

g 
th

e 
Pi

ec
es

 o
f 

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1  Examining the Pieces of Web Programming      13

As you can see from Table 1-3, a web server can return many possible responses. 
It’s the client’s job to parse the response and determine the next action to take.

If the response indicates the request was successful, the server will follow the 
response code with the data related to the request, such as the contents of an 
HTML file. The client must then read the returned data and decide what to do with 
it. For HTML files, the browser will display the requested file, applying the HTML 
formatting tags to the data.

Don’t worry about trying to memorize all the HTTP status codes. Most of them 
you’ll never run into in your web-programming career. Before long, you’ll start 
to remember a few of the more common ones, and you can always look up any 
others you run into.

Status Code Text Message Description

402 Payment Required The requested resource is not freely available.

403 Forbidden The resource requires authentication, and the client does not 
have the proper permission.

404 Not Found The requested resource was not located on the server.

414 URI Too Long The Uniform Resource Identifier (URI) describing the location 
of the resource was longer than the server is able to handle.

415 Unsupported Media Type The server does not know how to process the requested 
resource file.

429 Too Many Requests The client has sent too many requests within a specific 
amount of time.

500 Internal Server Error An unexpected condition occurred on the server while trying 
to retrieve the requested resource.

501 Not Implemented The server doesn’t recognize the request.

502 Bad Gateway The server was acting as a proxy to another server but 
received an invalid response from the other server.

503 Service Unavailable The server is currently unavailable, often due to 
maintenance.

505 HTTP Version 
Not Supported

The server doesn’t support the HTTP standard used by the 
client in the request.

507 Insufficient Storage The server is unable to store the resource due to lack of 
storage space.

511 Network 
Authentication Required

The client is required to authenticate with a network 
resource to receive the response.



14      BOOK 1  Getting Started with Web Programming

Styling
The HTML standard defines how browsers perform basic formatting of text, but 
it doesn’t really provide a way to tell a browser how to display the text. The <h1> 
tag indicates that the text should be a heading, but nothing tells the browser just 
how to display the heading to make it different from any other text on the page.

This is where styling comes into play. Styling allows you to tell the browser just 
what fonts, sizes, and colors to use for text, as well as how to position the text in 
the display. This section explains how styling affects how your web pages appear 
to your visitors.

Style sheets
There are several ways to define styling for an HTML document. The most basic 
method is what the browser uses by default. When the browser sees an HTML 
formatting tag, such as the <h1> tag, it has a predefined font, size, and color that 
the developer of the browser felt was useful.

That’s fine, but what if you want to make some headings black and others red? 
This is possible with inline styling. Inline styling allows you to define special styles 
that apply to only one specific tag in the document. For example, to make one 
heading red, you’d use the following HTML:

<h1 style="color: red">Warning, this is bad</h1>

The style term is called an attribute of the <h1> tag. There are a few different 
attributes you can apply directly to tags within HTML; each one modifies how the 
browser should handle the tag. The style attribute allows you to apply any type 
of styling to this specific <h1> tag in the document. In this example, I chose to 
change the color of the text.

Now, you’re probably thinking that I’ve just opened another can of worms. What 
if you want to apply the red color to all the <h1> tags in your document? That’s a 
lot of extra code to write! Don’t worry, there’s a solution for that.

Instead of inserting styles inline, you can create a style definition that applies to 
the entire document. This method is known as internal styling. It defines a set of 
styles at the top of the HTML document that are applied to the entire document. 
Internal styling looks like this:

<style>

h1 {color: red;}

</style>



Ex
am

in
in

g 
th

e 
Pi

ec
es

 o
f 

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1  Examining the Pieces of Web Programming      15

Now the browser will display all the <h1> tags in the document using a red color. 
But wait, there’s more!

Style listings can be somewhat lengthy for large web pages, and placing them at 
the top of a document can become cumbersome. Also, if you want to apply the 
same styles to all the web pages in a website, having to retype or copy all that text 
can be tiring. To solve that problem, you use an external style sheet.

An external style sheet allows you to define styles just as the internal method does, 
but in a separate file, called a style sheet. Any web page can reference the same 
style sheet, and you can apply multiple style sheets to a single web page. You ref-
erence the external style sheet using the <link> tag, like this:

<link rel="stylesheet" href="mystyles.css">

When the browser sees this tag, it downloads the external style sheet, and applies 
the styles you defined in it to the document.

This all sounds great, but things just got a lot more complicated! Now there are 
three different locations from which you can define styles for your HTML doc-
ument, on top of what the browser itself does. How are you supposed to know 
which ones take precedence over the others?

The Cascading Style Sheet (CSS) standard defines a set of rules that determine just 
how browsers should apply styles to an HTML document. As the name implies, 
styles cascade down from a high level to a low level. Styles defined in a higher-
level rule override styles defined in a lower-level rule.

The CSS standard defines nine separate levels, which I cover in greater detail in 
Book 2, Chapter 2, but for now, here are the four most common style levels, in 
order from highest priority to lowest:

»» Styles defined within the element tags

»» Styles defined in an internal style sheet

»» Styles defined in an external style sheet

»» Styles defined by the client’s browser defaults

So, any style attributes you set in an element tag override any styles that you set in 
an internal style sheet, which overrides any styles you set in an external style sheet, 
which overrides any styles the client browser uses by default. This allows you to set 
an overall style for your web pages using an external style sheet, and then override 
those settings for individual situations using the standard element tags.



16      BOOK 1  Getting Started with Web Programming

You may be wondering how assistive technology tools work to change the web 
page display for individuals who are sight impaired. Part of the nine rules that I 
cover in Book 2, Chapter 2, incorporate any rules defined in the browser for sight-
impaired viewing.

CSS standards
The CSS standard defines a core set of styles for basic rendering of an HTML 
document. The first version of CSS (called CSS1) was released in 1996, and it only 
defined some very rudimentary styles:

»» Font type, size, and color

»» Text alignment (such as margins)

»» Background colors or images

»» Borders

The second version of CSS, called — you guessed it! — CSS2, was released in 1998. 
It added only a few more styling features:

»» More-exact positioning of text

»» Styles for different output types (such as printers or screens)

»» The appearance of browser features such as the cursor and scrollbar

That’s still not all that impressive of a list of styles. Needless to say, more was 
needed to help liven up web pages. To compensate for that, many browser devel-
opers started creating their own style definitions, apart from the CSS standards. 
These style definitions are called extensions. The browser extensions covered lots 
of different fancy styling features, such as applying rounded edges to borders and 
images, making a smoother layout in the web page.

As you might guess, having different extensions to apply different style features 
in different browsers just made things more complicated. Instead of coding a 
single style for an element in an HTML document, you needed to code the same 
feature several different ways so the web page would look the same in different 
browsers. This quickly became a nightmare.

When work was started on the CSS3 standard in 1999, one of the topics was to 
rein in the myriad browser extensions. However, things quickly became compli-
cated because all the different browser developers wanted their own extensions 
included in the new standard.



Ex
am

in
in

g 
th

e 
Pi

ec
es

 o
f 

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1  Examining the Pieces of Web Programming      17

To simplify the process, the CSS design committee split the CSS standards into 
separate modules. Each CSS module covers a specific area of styling, such as col-
ors, media support, and backgrounds. Each module could be voted on and released 
under a different timeline. The downside to this approach is that now each mod-
ule has been released as a recommended standard at a different time, making the 
CSS3 standard somewhat difficult to track and implement.

Quite possibly one of the most anticipated features of CSS3 is the ability to define 
fonts. Fonts have long been the bane of web programmers. When you define a 
specific font, that font must be installed on your website visitor’s computer in 
order for the browser to use it. If the font isn’t available, the browser picks a 
default font to use, which often becomes an ugly mess.

Web fonts allow you to define a font on your server so that every client browser 
can download the font and render text using it. This is a huge accomplishment! 
No longer are you reliant on your website visitors having specific fonts installed 
in their web browsers.

Yet another popular feature of CSS3 is the use of shadows and semitransparent 
colors in text and other web page elements, such as form objects. These features 
by themselves can transform an ugly HTML form into a masterpiece.

The combination of HTML5 and CSS3 has greatly revolutionized the web world, 
allowing developers to create some pretty amazing websites. However, one thing 
was still missing: the ability to easily change content on the web page.

Creating a Dynamic Web Page
Static web pages contain information that doesn’t change until the web designer 
or programmer manually changes it. In the early days of the Internet, simply 
jumping on the Internet bandwagon was important for corporations. It wasn’t 
so important what companies posted on the web, as long as they had an Internet 
presence where customers could get basic information about the company and 
its products. Static web pages, consisting solely of HTML and CSS, easily accom-
plished this function.

But one of the big limitations of static web pages is how much effort it takes to 
update them. Changing a single element on a static web page requires rebuild-
ing and reloading the entire page, or sometimes even a group of web pages. This 
process is way too cumbersome for an organization that frequently needs to post 
real-time information, such as events, awards, or closings. Also, during this pro-
cess, a developer can accidentally change other items on the page, seriously mess-
ing up the information on the web page, or even the entire web page layout!



18      BOOK 1  Getting Started with Web Programming

Dynamic web pages allow you to easily change your content in real time without 
even touching the coding of the page. That’s right: Without manually making any 
changes to the page itself, the information on the page can change. This means 
you can keep the content on the page fresh so that what a visitor sees there now 
may be updated or replaced in a day, an hour, or a minute. The core layout of the 
web page can remain the same, but the data presented constantly changes.

To successfully create a dynamic web page, you have to know a method for auto-
matically inserting real-time data into the HTML code that gets sent to the client 
browser. This is where web scripting languages come in.

A web scripting language allows you to insert program code inside your web page 
that dynamically generates HTML that the client browser reads. A processor reads 
the program code and dynamically generates HTML to display content on the web 
page, as shown in Figure 1-1.

Now, because programming code is embedded in the web page, something some-
where must run the code to produce the dynamic HTML for the new content. As it 
turns out, there are two places where the embedded program code can run:

»» On the client’s computer, after the web browser downloads the web page. 
This is known as client-side programming.

»» On the web server before the web page is sent. This is known as server-side 
programming.

This section takes a look at how each of these types of programming differ in cre-
ating dynamic content for your website.

FIGURE 1-1:  
Program code 

embedded in a 
web page.



Ex
am

in
in

g 
th

e 
Pi

ec
es

 o
f 

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1  Examining the Pieces of Web Programming      19

Client-side programming
In client-side programming, you embed program code inside the HTML code that 
the server sends to the client browser with the HTML code. The browser must be 
able to detect the embedded program code and run it, either inside the browser or 
as a separate program outside the browser. Figure 1-2 demonstrates this process.

JavaScript
These days, the most popular client-side programming language is JavaScript. 
JavaScript is a scripting language that you embed inside the normal HTML code 
in your web page. It runs within the client browser and can utilize features of the 
browser that are not normally accessible from standard HTML code. JavaScript code 
is commonly used to produce pop-up messages and dialog boxes that people inter-
act with as they view the page. These are elements that HTML code can’t generate.

FIGURE 1-2:  
Using client-side 

code in a  
web page.



20      BOOK 1  Getting Started with Web Programming

As shown in Figure 1-2, the entire web page with the embedded JavaScript code is 
downloaded to the client browser. The client browser detects the embedded JavaS-
cript code and runs it accordingly. It does this while also processing the HTML 
tags within the document and applying any CSS styles defined. That’s a lot for the 
browser to keep up with!

The downside of JavaScript is that, because it runs in the client browser, you’re 
at the mercy of how the individual web browser interprets the code. Although 
the HTML language started out as a standard, JavaScript was a little different. In 
the early days of JavaScript, different browsers would implement different fea-
tures of JavaScript using different methods. It was not uncommon to run across 
a web page that worked just fine for one type of browser, but didn’t work at all in 
another type of browser — all because of JavaScript processing inconsistencies.

Eventually, work was done to standardize JavaScript. The JavaScript language 
was taken up by the Ecma International standards organization, which created 
the ECMAScript standard, which is what JavaScript is now based off of. As the 
ECMAScript standard evolved, more and more browser developers started seeing 
the benefits of using a standard client-side programming language and incorpo-
rated them in their JavaScript implementations. At the time of this writing, the 
eighth version of the standard, called ECMAScript 2017, has been finalized and 
implemented in most browsers.

The name JavaScript was chosen to capitalize on the popularity of the Java pro-
gramming language for use in web applications. However, it doesn’t have any 
resemblance or relation to the Java programming language.

jQuery
JavaScript is popular, but one of its downsides is that it can be somewhat com-
plicated to program. With so many different features incorporated by so many 
different developers, today a JavaScript program can quickly turn into a large 
endeavor to code.

To help solve this issue, a group of developers banded together to create a set of 
libraries to make client-side programming with JavaScript easier. Thus was born 
jQuery.

The jQuery software isn’t a separate programming language; instead, it’s a set of 
libraries of JavaScript code. The libraries are self-contained JavaScript functions 
that you can reference in your own JavaScript programming to perform common 
functions, such as finding a location in a web page to display text or retrieve a 
value entered into an HTML form field.

Instead of having to write lines and lines of JavaScript code, you can just reference 
one or two jQuery functions to do the work for you. That’s a huge time-saver, as 



Ex
am

in
in

g 
th

e 
Pi

ec
es

 o
f 

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1  Examining the Pieces of Web Programming      21

well as a great resource for implementing advanced features that you would never 
have been able to code yourself using just JavaScript.

Server-side programming
The other side of web programming is server-side programming. Server-side 
programming languages solve the problem of different client code interpreters 
by running the code on the server. In server-side programming, the web server 
interprets the embedded programming code before sending the web page to the 
client’s browser. The server then takes any HTML that the programming code 
generates and inserts it directly into the web page before sending it out to the 
client. The server does all the work running the scripting code, so you’re guar-
anteed that every web page will run properly. Figure 1-3 illustrates this process.

FIGURE 1-3:  
Using server-side 

programming 
to create a web 

page.



22      BOOK 1  Getting Started with Web Programming

Unlike client-side programming, there are many popular server-side programming 
languages that are in use these days, each with its own set of pros and cons. This 
section takes a look at a few of the more popular programming languages.

CGI scripting
One of the first attempts at server-side programming support was the Apache web 
server’s Common Gateway Interface (CGI). The CGI provided an interface between 
the web server and the underlying server operating system (OS), which was often 
Unix-based.

This allowed programmers to embed scripting code commonly used in the Unix 
platform to dynamically generate HTML. Two of the most common scripting lan-
guages used in the Unix world and, thus, commonly used in CGI programming are 
Perl and Python.

Although CGI programming became popular in the early days of the web, it 
wasn’t long before it was exploited. It was all too easy for a novice administrator 
to apply the wrong permissions to CGI scripts, allowing a resourceful attacker 
to gain privileged access to the server. Other methods of processing server-side 
programming code had to be developed.

Java
One of the earlier attempts at a controlled server-side programming language was 
Java. Although the Java programming language became popular as a language for 
creating stand-alone applications that could run on any computer platform, it can 
also run as a server-side programming language in web applications. When used 
this way, it’s called Java Server Pages (JSP).

The JSP language requires that you have a Java compiler embedded with your web 
server. The web server detects the Java code in the HTML code and then sends 
the code to the Java compiler for processing. Any output from the Java program is 
sent to the client browser as part of the HTML document. The most common JSP 
platform is the open-source Apache Tomcat server.

The Microsoft ASP.NET family
Microsoft’s first entry into the server-side programming world — Active Server 
Pages (ASP) — had a similar look and feel to JSP. ASP programs embedded ASP 
scripting code inside standard HTML code and required an ASP server to be incor-
porated with the standard Microsoft Internet Information Services (IIS) web 
server to process the code.

However, Microsoft developers determined that it wasn’t necessary to maintain 
a separate programming language for server-side web programming, so they 



Ex
am

in
in

g 
th

e 
Pi

ec
es

 o
f 

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1  Examining the Pieces of Web Programming      23

combined the server-side programming and Windows desktop programming 
environments into one technology. With the advent of the .NET family of pro-
gramming languages, Microsoft released ASP.NET for the web environment, as an 
update to the old ASP environment.

With ASP.NET, you can embed any type of Microsoft .NET programming code 
inside your HTML documents to produce dynamic content. The .NET family of 
programming languages includes Visual Basic .NET, C#, J#, and even Delphi.
NET. This allows you to leverage the same code you use to create Windows desktop 
applications as you do to create dynamic web pages. You can often use the same 
Windows features, such as buttons, slide bars, and scrollbars, inside your web 
applications that you see in Windows applications.

JavaScript
Yes, you read that right. The same JavaScript language that’s popular in the  
client-side programming world is now starting to make headway as a server- 
side programming language. The Node.js library allows you to interface JavaScript 
code inside HTML web pages for processing on the server.

The benefit to using Node.js is that you only need to learn one language for both 
client-side and server-side programming. Although it’s still relatively new to the 
game, the Node.js language is becoming more popular.

PHP
What started out as a simple exercise in tweaking CGI scripts turned into a new 
server-side programming language that took the world by storm. Rasmus Lerdorf 
wrote the Personal Home Page (PHP) programming language as a way to improve 
how his CGI scripts worked. After some encouragement and help, PHP morphed 
into its own programming language, and a new name, PHP: Hypertext Preproces-
sor (yes, it uses the acronym inside its name, which is called a recursive acronym).

The PHP language developers freely admit that they borrowed many features from 
other popular languages, such as Perl, Python, C, and even Unix shell scripting. 
However, PHP was developed specifically for server-side programming, and it has 
many features built in that aren’t available in other scripting languages. You don’t 
need to wrestle with strange setups or features to get PHP to work in a web envi-
ronment. It has matured into a complete catalog of advanced features that cover 
everything from database access to drawing graphics on your web page.

Because of the dedication of the PHP developers to create a first-rate server-
side programming language, and because it’s free open-source software, PHP 
quickly became the darling of the Internet world. Many web-hosting companies 
include PHP as part of their basic hosting packages. If you already have space on a  
web-hosting server, it’s possible that you already have access to PHP!



24      BOOK 1  Getting Started with Web Programming

Combining client-side and server-side 
programming
Client-side and server-side programming both have pros and cons. Instead of 
trying to choose one method of creating dynamic web pages, you can instead use 
both at the same time!

You can easily embed both client-side and server-side programming code into the 
same web page to run on the server, as shown in Figure 1-4.

FIGURE 1-4:  
Combining 

client-side and 
server-side 

programming.



Ex
am

in
in

g 
th

e 
Pi

ec
es

 o
f 

W
eb

 P
ro

gr
am

m
in

g

CHAPTER 1  Examining the Pieces of Web Programming      25

One common use for JavaScript and PHP coding is data validation. When you pro-
vide an HTML form for your website visitors to fill out, you have to be careful that 
they actually fill in the correct type of data for each field. With server-side pro-
gramming, you can’t validate the data until the site visitor completes and submits 
the form to the server. If a website visitor accidentally skips filling out a single 
field and the entire form needs to be filled out all over again, that can be a frus-
trating experience.

To solve that problem, you can embed JavaScript code into the form to check as 
the site visitor enters data into the form. If any form fields are empty when the 
Submit button is clicked, the JavaScript code can block the form submission and 
point out the empty field. Then, when all the data is completed and the form is 
successfully submitted, the PHP code on the server can process the data to ensure 
it’s the correct data type and format.

Storing Content
The last piece of the dynamic web application puzzle is the actual content. With 
static web pages, content is already built into the web page code. To change infor-
mation on a static web page, you have to recode the page. Unfortunately, more 
often than not, when a web page is updated, the old version is lost.

With dynamic web applications, the content comes from somewhere outside of 
the web page. But where? The most common place is a database.

Databases are an easy way to store and retrieve data. They’re quicker than storing 
data using standard files, and they provide a level of security to protect your data. 
By storing content in a database, you can also easily archive and reference old 
content and replace it with new content as needed.

Much like the server-side programming world, the database world has lots of dif-
ferent database software options. Here are some of the more popular ones:

»» Oracle: Oracle has set the gold standard for databases. It’s found in many 
high-profile commercial environments. Although Oracle is very fast and 
supports lots of features, it can also be somewhat expensive.

»» Microsoft SQL Server: Microsoft’s entry into the database server world, SQL 
Server is geared toward high-end database environments. It’s often found in 
environments that utilize Microsoft Windows Servers.



26      BOOK 1  Getting Started with Web Programming

»» PostgreSQL: The PostgreSQL database server is an open-source project that 
attempts to implement many of the advanced features found in commercial 
databases. In its early days, PostgreSQL had a reputation for being somewhat 
slow, but it has made vast improvements. Unfortunately, old reputations are 
hard to shake, and PostgreSQL still struggles with overcoming them.

»» MySQL: The MySQL database server is yet another open-source project. 
Unlike PostgreSQL, it doesn’t attempt to match all the features of commercial 
packages. Instead, it focuses on speed. MySQL has a reputation for being very 
fast at simple data inserts and queries — perfect for the fast-paced web 
application world.

Mainly because of its speed, the MySQL database server has become a 
popular tool for storing data in dynamic web applications. It also helps that, 
because it’s an open-source project, web-hosting companies can install it for 
free, which makes it a perfect combination with the PHP server-side program-
ming language for dynamic web applications.



CHAPTER 2  Using a Web Server      27

Using a Web Server

Before you can start developing dynamic web applications, you’ll need a web 
server environment to work in. You have lots of different choices available 
to create your own development environment, but sometimes having more 

options just makes things more confusing. This chapter walks through the differ-
ent options you have for creating your development environment.

Recognizing What’s Required
Just like that famous furniture that needs assembly, you’ll need to assemble some 
separate components to get your web application development environment up 
and running. There are three main parts that you need to assemble for your web 
development environment:

»» A web server to process requests from browsers to interact with your application

»» A PHP server to run the PHP server-side programming code in your application

»» A database server to store the data required for your dynamic application

On the surface, this may seem fairly simple, but to make things more complicated, 
each of these parts has different options and versions available. That can lead to 
literally hundreds of different combinations to wade through!

Chapter 2

IN THIS CHAPTER

»» Exploring your development options

»» Picking a development environment

»» Configuring the servers



28      BOOK 1  Getting Started with Web Programming

This section helps you maintain your sanity by taking a closer look at each of these 
three requirements.

The web server
The web server is what interacts with your website visitors. It passes their requests 
to your web application and passes your application responses back to them. The 
web server acts as a file server — it accepts requests for PHP and HTML files from 
client browsers and then retrieves those files and sends them back to the client 
browser. As I explain in the preceding chapter, the web server uses the HTTP 
standard to allow anonymous requests for access to the files on the server and 
respond to those requests.

There are quite a few different web server options around these days. Here are a 
few of the more popular ones that you’ll run into:

»» Apache: The granddad of web servers, Apache was derived from the original 
web server developed at the University of Illinois. It’s an open-source software 
project that has been and is currently the most commonly used web server on 
the Internet. It is very versatile and supports lots of different features, but with 
versatility comes complexity. Trying to wade through the configuration file for 
an Apache web server can be confusing. But for most web environments you 
just need to change a few of the default configuration settings.

»» nginx: The newer kid on the block, nginx is intended to ease some of the 
complexity of the Apache web server and provide improved performance. It’s 
currently gaining in popularity, but it still has a long way to go to catch up with 
Apache.

»» lighthttpd: As its name suggests, lighthttpd is a lightweight web server that’s 
significantly less versatile and complex than the Apache web server. It works 
great for small development environments and is becoming popular in 
embedded systems that need a web server with a small footprint. However, it 
doesn’t hold up well in large-scale production Web server environments and 
probably isn’t a good choice for a web development environment.

»» IIS: IIS is the official Microsoft Web server. It’s popular in Microsoft Windows 
server environments, but there aren’t versions for other operating systems. IIS 
focuses on supporting the Microsoft .NET family of server-side programming 
languages, such as C# .NET and Visual Basic .NET, but it can be interfaced with 
the PHP server. This configuration is not common, though, and you don’t see 
very many PHP servers that utilize the IIS web server.

As you can tell from these descriptions, just about every web server is compared 
to the Apache web server. Apache has become the gold standard in Internet web 



U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2  Using a Web Server      29

servers. Unless you have a specific reason for not using the Apache web server, 
you should use it for your development environment, especially if you know that 
your production web server environment will use it.

The PHP server
The PHP programming language began in 1995 as a personal project by Rasmus 
Lerdorf to help his web pages access data stored in a database. He released the 
first official version 1.0 to the open-source community on June 8, 1995.

Since then, the PHP language has taken on a life of its own, gaining in both fea-
tures and popularity. The development of the PHP language is currently supported 
by Zend, which produces many PHP tools.

One of the most confusing aspects of the PHP server is that there are currently two 
different actively supported branches of the PHP language:

»» The version 5.x branch

»» The version 7.x branch

The first question that often comes to mind is: “What happened to version 6?” 
The short-lived version 6 of PHP had some unresolvable issues and was officially 
abandoned by the PHP developers, with the new features rolled back into version 5.

Now for the second question: “Why two active versions?” The version 5.x branch 
is still maintained mainly because of the great wealth of applications that con-
tinue to use features supported in version 5.x, but not in version 7.x. It will take 
some time before all the old 5.x applications will be migrated to version 7.x code. 
Unfortunately, version 7 of PHP breaks quite a few things that were popular in the 
5.x version. However, the PHP developers are no longer performing bug fixes in 
the 5.x branch, only security patches. At the time of this writing, the current ver-
sion in the 5.x branch is 5.4 and will be maintained until the end of 2018.

At the time of this writing, many popular web server packages support both the 
5.x and 7.x version branches and will give you the choice of which one to use for 
your installation. If you’re developing new dynamic web applications, it’s best to 
use the 7.x version branch; at the time of this writing, the latest version is 7.2.

The PHP server contains its own built-in web server, but that’s only intended for 
development and not for use as a live production web server. For large-scale use, 
you must interface the PHP server with a web server. As the web server receives 
requests for .php files, it must pass them to the PHP server for processing. You 
must set up this feature as part of the web server configuration file. This is dis-
cussed later in this chapter in the “Customizing the Apache Web Server” section.



30      BOOK 1  Getting Started with Web Programming

You may still run into some web-hosting companies that use PHP version 4. This 
was a very popular and long-running version, but it’s no longer supported by PHP 
with security patches. It’s best to stay away from any web host that only supports 
PHP version 4.

The database server
As I describe in Chapter 1 of this minibook, there are many different types of data-
base servers to handle data for your web applications. By far the most popular 
used in open-source web applications is the MySQL server.

Many websites and web packages use the term MySQL Server, but there are actually 
a few different versions of it. Because Oracle acquired the MySQL project in 2010, 
it has split the project into four versions:

»» MySQL Standard Edition: A commercial product that provides the minimal 
MySQL database features.

»» MySQL Enterprise Edition: A commercial product that provides extra 
support, monitoring, and maintenance features.

»» MySQL Cluster Carrier Grade Edition: A commercial product that in addition 
to the Enterprise Edition features, supports multi-server clustering.

»» MySQL Community Edition: The freely downloadable version of MySQL that 
supports the same features as the Standard Edition, but with no formal support.

As you can see from the list, the MySQL server has both commercial and open-
source versions. The commercial versions support some advanced features that 
aren’t available in the Open Source version, such as hot backups, database activity 
monitoring, and being able to implement a read/write database cluster on multiple 
servers. These advanced features can come in handy in large-scale database envi-
ronments, but for most small to medium-size database applications, the MySQL 
Community Edition is just fine. That’s what’s usually included in most web server 
packages.

Just as with PHP, the MySQL project maintains multiple versions of the MySQL 
server software. At the time of this writing, the currently supported versions of 
MySQL are

»» Version 5.5

»» Version 5.6

»» Version 5.7



U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2  Using a Web Server      31

Each version has some minor updates to the MySQL database engine, but for most 
dynamic web applications, the differences won’t play a significant role in your 
application performance or functions, so it won’t matter much which of these 
three versions your system uses.

Several cloud providers (including Oracle itself) provide the MySQL server as a 
cloud service. Instead of installing and running your own MySQL server you can 
rent space on their MySQL cloud server. The benefit of running MySQL in the 
cloud is that you’re guaranteed perfect up-time for the database, because it’s dis-
tributed among multiple servers in the cloud. The downside, though, is that this 
can get expensive and is only recommended for commercial web applications that 
require the extra server power provided by the cloud.

Considering Your Server Options
Now that you know you’ll need a web server, a PHP server, and a MySQL server for 
your development work, the next step is trying to find an environment that supports 
all three (and it would help if they were all integrated). You basically have three 
options for setting up a complete web programming development environment:

»» Purchase space on a commercial server from a web-hosting company.

»» Install the separate servers on your own workstation or server.

»» Install an all-in-one package that bundles all three servers for you.

MySQL AND MariaDB
The MySQL server project has had quite an interesting life. It was originally developed in 
1994 as an open-source project by a Swedish company, MySQL AB. It gained in popular-
ity and features, until MySQL AB was purchased by Sun Microsystems in 2008. However, 
Oracle purchased Sun Microsystems in 2010 and took control over the MySQL project.

When Oracle purchased the rights to MySQL from Sun Microsystems, the main MySQL 
developer and his team left to start their own separate open-source branch of MySQL, 
called MariaDB. With the terms of the open-source license, this move was completely 
legal, and the project has gained some respect and following in the open-source com-
munity. MariaDB is nearly 100 percent compatible with MySQL and is often used as a 
direct replacement for the MySQL Community Edition in some environments. Any PHP 
code that you write to interact with the MySQL server will also work with the MariaDB 
server. Don’t be alarmed if the development environment you use switches to MariaDB!



32      BOOK 1  Getting Started with Web Programming

The following sections walk you through each of these scenarios and the pros and 
cons of each.

Using a web-hosting company
By far, the easiest method of setting up a PHP programming environment is to 
rent space on an existing server that has all the necessary components already 
installed. Plenty of companies offer PHP web development packages. Some of the 
more popular ones are

»» GoDaddy (www.godaddy.com)

»» HostGator (www.hostgator.com)

»» 1&1 (www.1and1.com)

»» 000webhost (www.000webhost.com)

These large web-hosting companies offer multiple levels of support for their ser-
vices. Often, they’ll offer several tiers of service based on the number of databases 
you can create, the amount of data that you can store, and the amount of network 
bandwidth your web applications are allowed to consume per month. That way, 
you can start out with a basic package for minimal cost and then upgrade to one 
of the more expensive packages as your Internet application takes off! It pays to 
shop around to check different pricing structures and support levels at the differ-
ent web-hosting companies.

Besides these main competitors, you’ll find many, many smaller web host-
ing companies willing to offer MySQL/PHP packages to host your applications. 
There’s a good chance if you already have a web-hosting company you use to host 
your static web pages, it’ll have some type of MySQL/PHP support. If you already 
have space on a web server for your website, check with them to see if they offer 
an upgrade to a MySQL/PHP package.

With the popularity of the new “cloud” environment where everything runs on 
shared server space, there are now a few more participants in the PHP server 
hosting game. The Wikipedia web page for cloud service providers lists more than 
200 different providers! You’ll probably recognize the more popular ones:

»» Amazon Web Services (AWS)

»» Google Cloud Platform

»» Oracle Cloud Platform

»» Microsoft Azure

http://www.godaddy.com
http://www.hostgator.com
http://www.1and1.com
http://www.000webhost.com


U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2  Using a Web Server      33

Each of these cloud services provides some level of support for PHP program 
development. One of the main benefits of utilizing a cloud service is that your 
application is hosted on multiple servers that share the traffic load and are redun-
dant for backup purposes. If a server in the cloud crashes, your application will 
still work on other servers. Of course, be prepared to pay a premium price for 
those features!

Be careful with some of the smaller web-hosting companies. These days, just 
about anyone can install the PHP and MySQL server software onto a server and 
sell space, so many “mom-and-pop” web-hosting companies now provide this 
service. However, installing the server programs is different from maintaining the 
server programs. Often, you’ll find these smaller web-hosting sites use outdated 
server versions that haven’t been upgraded or patched with security updates, 
making them vulnerable to attacks.

Building your own server environment
I wouldn’t recommend it for a live production website, but for development work 
you can build your own web server environment. You don’t even need to have 
a large server for a personal web development environment — you can build it 
using your existing Windows or Apple workstation or laptop.

The following sections walk you through the basics you need to know to get this 
working in either the Linux or Windows/Mac environments.

Web servers in Linux
Linux desktops and servers are becoming more popular these days, especially for 
web development. You can download the Apache, MySQL, and PHP server source 
code packages and compile them on your Linux system, but unless you need the 
absolute latest version of things, that’s not the recommended way to do it.

These days, most Linux distributions include packages for easily installing all 
the  components you need for a complete web development environment. For 
Debian-based Linux distributions (such as Ubuntu and Linux Mint), you use the 
apt-get command-line tool to install software packages. For Red Hat–based 
Linux distributions (such as Red Hat, CentOS, and Fedora) you use the dnf 
command-line tool.



34      BOOK 1  Getting Started with Web Programming

For Debian-based systems, such as Ubuntu, follow these steps to do that:

1.	 From a command prompt, install the Apache web server using the 
following command:

sudo apt-get install apache2

2.	 Install the MySQL server package using the following command:

sudo apt-get install mysql-server

During the MySQL server installation, you’ll be prompted for a password  
to use for the root user account. The root user account in MySQL has full 
privileges to all tables and objects. Make sure you remember what password 
you enter here!

3.	 Install the PHP packages to install the PHP server and required 
extensions, the Apache modifications to run PHP, and the graphical 
phpMyAdmin tool:

sudo apt-get install php libapache2-mod-php
sudo apt-get install php-mcrypt php-mysql

sudo apt-get install phpmyadmin

The first line installs the main PHP server, along with the Apache module to 
interface with the PHP server. The second line installs two PHP extensions that 
are required to interface with the MySQL server. The third line installs the 
web-based phpMyAdmin PHP program, which provides a web interface to the 
MySQL server.

4.	 Open a browser and test things out by going to the following URL:

http://localhost/phpmyadmin

You should be greeted by the phpMyAdmin administration window.

5.	 Log in using the MySQL root user account and the password you supplied 
when you installed MySQL (you remember it, right?).

Figure 2-1 shows the main phpMyAdmin web page, which shows what versions 
of the Apache, PHP, and MySQL servers are running.



U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2  Using a Web Server      35

For Red Hat–based systems, such as Fedora and CentOS, follow these steps to load 
LAMP:

1.	 From a command prompt, install the Apache web server using the 
following commands:

sudo dnf install httpd
sudo systemctl enable httpd

sudo systemsctl start httpd

The httpd package includes the Apache2 web server. The executable file for 
Apache is named httpd (thus, the name of the package). The package doesn’t 
start the Apache web server by default, so the second two lines use the 
systemctl utility to enable the service so it starts automatically at boot time 
and then starts it.

2.	 Install the MySQL server package using the following commands:

sudo dnf install mariadb-server
sudo systemctl enable mariadb

sudo systemctl start mariadb

FIGURE 2-1:  
The main  

phpMyAdmin 
web page 

showing  
everything that is 

running.



36      BOOK 1  Getting Started with Web Programming

Notice that the Red Hat distribution (and thus CentOS and Fedora) has gone 
with the MariaDB replacement package for MySQL. When you install MariaDB, 
the package sets the root user account password to an empty string. This is 
not recommended if your server is on any type of a network. Fortunately, 
there’s a quick utility that you can run to change the root user account’s 
password:

mysql_secure_installation

When you run this script, it’ll prompt you to answer a few questions, such as 
the new password for the root user account, whether to restrict the root user 
account to only logging in from the local host, whether to remove the anony-
mous users feature, and whether to remove the test database.

3.	 Install the PHP packages using the following commands:

sudo dnf install php php-mbstring php-mysql
sudo dnf install phpmyadmin

sudo systemctl restart httpd

The PHP server doesn’t run as its own service — the Apache web server 
spawns it when needed. Because of that, you do need to use the systemctl 
utility to restart the Apache web server so it rereads the configuration file with 
the new PHP settings.

4.	 Open a browser and test things out by going to the following URL:

http://localhost/phpmyadmin

You should see the phpMyAdmin login page.

5.	 Log in using the root user account in MySQL along with the password you 
defined when you installed MySQL.

Figure 2-2 shows phpMyAdmin running on a CentOS 7 system.

By using the distribution software packages for each server, you’re guaranteed 
that the server will run correctly in your Linux environment. An additional benefit 
is that the distribution software updates will include any security patches or bug 
fixes released for the servers automatically.

Web servers in Windows and Mac
Installing and running the Apache, MySQL, and PHP servers in a Windows or Mac 
environment is very tricky, because there are lots of factors involved in how to 
install and configure them. For starters, both Windows and macOS come with a 
web server built in, so if you install the Apache web server you’ll need to configure 
it to use an alternative TCP port.



U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2  Using a Web Server      37

Likewise, macOS includes an older version of PHP by default, so if you install an 
updated version of PHP, things get tricky trying to make sure which version is 
active.

Because of these complexities, it’s not recommended for beginners to install the 
Apache, MySQL, and PHP packages separately in the Windows and Mac environ-
ments. There’s a much simpler way of getting that to work, which I’ll describe in 
the next section.

Using premade servers
Trying to get a working Apache, MySQL, and PHP server in Windows (called 
WAMP) or in the Mac environment (called MAMP) can be a complicated process. 
There’s a lot of work downloading each of the individual server packages, config-
uring them, and getting things to work together.

Fortunately, some resourceful programmers have done that work for us! There are 
quite a few open-source packages that bundle the Apache web server, MySQL (or 
MariaDB) server, and PHP server together to install as a single package. This is by 
far the best way to go if you plan on using your Windows or Mac workstation or 
laptop as your web development environment.

FIGURE 2-2:  
Viewing the 

phpMyAdmin 
main web page 

on Fedora 27.



38      BOOK 1  Getting Started with Web Programming

There are quite a few pre-loaded packages available, but these are the most com-
mon ones:

»» XAMPP: An all-in-one package that supports PHP and Perl server-side 
programming and also includes an email and FTP server, along with a 
self-signed certificate to use the Apache web server in HTTPS mode. It has 
installation packages available for Windows, Mac, and Linux.

»» Wampserver: A Windows-based all-in-one package that allows you to install 
multiple versions of the Apache, MySQL, and PHP servers at the same time. 
You can then mix-and-match which versions of which server you have active 
at any time, allowing you to duplicate almost any web-hosting environment.

»» MAMP: A Mac-based all-in-one package that is easy to install and use. It also 
has a commercial package called MAMP Pro that provides additional features 
for managing your web environment for professional developers.

Of these, the XAMPP package is by far the most popular. It was created by the 
Apache Friends organization to help promote the use of the Apache web server in 
web development environments. Follow these steps to install XAMPP in a Win-
dows or macOS environment:

1.	 Open your browser and go to www.apachefriends.org.

2.	 Look for the Download section of the web page and click the link for the 
OS you’re using.

3.	 After the download finishes, run the downloaded file in your OS 
environment.

This starts the XAMPP installation wizard.

4.	 Click the Next button to go to the Select Components window, shown in 
Figure 2-3.

The Select Components window allows you to select which components in 
XAMPP you want installed. You won’t use everything contained in XAMPP for 
this book, but feel free to install the entire package and explore on your own!

5.	 Click the Next button to continue the installation.

6.	 Select the installation folder for XAMPP.

The default location for Windows is c:\xampp; for macOS, it’s /Applications/
XAMPP. Those will work just fine for both environments.

7.	 Click the Next button to continue the installation.

The Apache Friends organization has teamed up with Bitnami, which has 
prepackaged many popular web applications specifically for use in XAMPP.

https://www.apachefriends.org


U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2  Using a Web Server      39

8.	You can learn more about Bitnami by leaving the Learn More about 
Bitnami for XAMPP check box checked, or if you’d like to skip this step, 
remove the check mark from the check box, and then click the Next 
button to continue.

9.	Click the Next button to begin the software installation.

10.	You can keep the check mark in the check box to start XAMPP, and then 
click the Finish button to end the wizard.

The XAMPP Control Panel provides easy access to start, stop, and configure each 
of the servers contained in the XAMPP package. Figure 2-4 shows the main Con-
trol Panel window.

FIGURE 2-3:  
The XAMPP Select 

Components 
window in the 

installation 
wizard.

FIGURE 2-4:  
The main XAMPP 

Control Panel 
window.



40      BOOK 1  Getting Started with Web Programming

By default, XAMPP configures the Apache web server to use TCP port 80 for HTTP 
connections. Unfortunately, this port is often in use by web servers built into Win-
dows and Mac workstations and servers. This will produce an error message when 
you first start the XAMPP Control Panel, as shown in Figure 2-4.

You can move the Apache web server to an alternative TCP port. Just follow these 
steps:

1.	 From the XAMPP Control Panel main window, click the Config button for 
the Apache web server.

2.	 Select the menu option to edit the httpd.conf configuration file.

This opens the Apache web server configuration file in a text editor.

3.	 Look for the line:

Listen 80

4.	 Change the 80 in the line to 8080, a common alternative TCP port to use 
for HTTP communications.

5.	 Save the updated configuration file in the editor, and then exit the editor 
window.

6.	 Click the Start button for the Apache web server.

The Apache Web server should indicate that it has started and is using both 
TCP Ports 443 (for HTTPS) and 8080 (for HTTP).

7.	 Click the Start button for the MySQL database server.

The MariaDB database server should indicate that it has started and is using 
TCP Port 3306 (the default TCP port for MySQL).

After the Apache and MySQL servers start, you can exit the XAMPP Control Panel. 
If you need to stop the servers, reopen the XAMPP Control Panel and click the Stop 
buttons for both servers.

Although you’ve moved the Apache web server in the configuration file, XAMPP 
will still check to see if TCP Port 80 is available when you start the XAMPP Control 
Panel and complain that it’s not available. To stop that, click the Config button in 
the Control Panel and then remove the check mark for the Check Default Ports on 
Startup check box.



U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2  Using a Web Server      41

Tweaking the Servers
When you get the Apache, MySQL, and PHP servers installed in your development 
environment, you may need to do a little bit of tweaking to get them working just 
the way you want. Each of the servers uses a text configuration file to define just 
how the server behaves. The following sections walk you through how to find the 
configuration files and some of the settings that you may need to tweak for your 
development environment.

Customizing the Apache Server
By default, the Apache Web server uses the httpd.conf configuration file to store 
its settings. For Linux and Mac systems, the file is usually stored in the /etc 
folder structure, often under either /etc/httpd or /etc/apache2.

The XAMPP package installs the Apache configuration file in the c:\xampp\
apache\conf folder in Windows or /Applications/XAMPP/apache/conf in macOS.

The httpd.conf configuration file contains individual lines called directives. Each 
directive defines one configuration option, along with the value that you set.

The Apache web server is very versatile, with lots of different options and fea-
tures. The downside to that is it can make the configuration seem complex at first, 
but the configuration file is organized such that you should be able to find what 
you’re looking for relatively easily. In the following sections, I cover a few things 
that you’ll want to pay attention to.

Many systems break the Apache web server configurations into multiple files to 
help make the features more modular. Look for the Include directive lines in the 
main httpd.conf configuration file to see what other files contain Apache web 
server configuration settings.

Defining the web folder location
The main job of the Apache web server is to serve files to remote clients. However, 
you don’t want just anyone retrieving just any file on your system! To limit what 
files the Apache server serves, you must restrict it to a specific folder area in the 
system.

You set the folder where the Apache web server serves files using the Document-
Root directive:

DocumentRoot c:/xampp/htdocs



42      BOOK 1  Getting Started with Web Programming

The htdocs folder is the normal default used for the Apache web server in  
Windows and macOS environments (for macOS, it’s located in /Applciations/
XAMPP/htdocs). For Linux environments, it has become somewhat common to use 
/var/www/html as the DocumentRoot folder.

If you choose to move the DocumentRoot folder to another folder location on the 
server, make sure the user account that runs the Apache web server has access to 
at least read files from the folder.

Setting the default TCP port
The Apache web server listens for incoming connections from client browsers 
using two different default TCP network ports:

»» TCP port 80 for HTTP requests

»» TCP port 443 for HTTPS requests

HTTPS requests use encryption to secure the communication between the browser 
and the server. This method is quickly becoming a standard for all web servers on 
the Internet.

You set the ports the Apache web server accepts incoming requests on using the 
Listen directive:

Listen 80

Listen 443

You can use multiple Listen directives in the configuration file to listen on more 
than one TCP port.

USING ENCRYPTION
To establish a secure HTTPS connection, your Apache web server must have a valid 
encryption certificate signed by a certificate authority. The certificate authority recognizes 
your website as valid and vouches for your authenticity. This enables your website visitors 
to trust that you are who you say you are and that your web server is what it says it is.

Unfortunately, signed certificates must be purchased and can be somewhat expensive. 
For development work, you can use a self-signed certificate. The self-signed certificate is 
what it says: You sign your own certificate. This doesn’t instill any trust in your website 
visitors, so don’t use a self-signed certificate on a production website — only use it for 
development. The XAMPP web server installs a self-signed certificate just for this purpose!



U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2  Using a Web Server      43

Interacting with the PHP server
The Apache web server must know how to pass files that contain PHP code to the 
PHP server for processing. This is a two-step process.

First, you have to tell the Apache web server to load the PHP server module so that 
it can establish the link between the Apache and PHP servers. You do that using 
the LoadModule directive:

LoadModule php7_module "c:/xampp/php/apache2_4.dll"

After Apache loads the PHP module, you have to tell it what type of files to send to 
the PHP server. You do this using the AddHandler directive:

AddHandler application/x-httpd-php .php

This directive tells the Apache web server to forward all files with the .php file 
extension to the PHP module, which then forwards the files to the PHP server for 
processing.

It may be tempting to just forward all .html files to the PHP server, because the 
PHP server will pass any HTML code directly to the client browser. However, this 
will add extra processing time to load your static web pages, causing a perfor-
mance issue with your HTML pages.

Tracking errors
When working in a development environment, it’s always helpful to be able to 
track any errors that occur in your applications. The Apache web server supports 
eight different levels of error messages, shown in Table 2-1.

TABLE 2-1	 Apache Web Server Error Levels
Error Level Description

emerg A fatal error will halt the Apache web server.

alert A severe error will have an adverse impact on your application and should be resolved 
immediately.

crit A critical condition caused the operation to fail, such as a failure to access the network.

error An error occurred in the session, such as an invalid HTTP header.

warn A minor issue occurred in the session but didn’t prevent it from continuing.

notice Something out of the normal occurred.

debug A low-level detailed message occurs for each step the server takes in processing a request.



44      BOOK 1  Getting Started with Web Programming

You define the level of error tracking using the LogLevel directive and the location 
of the error log using the ErrorLog directive:

LogLevel warn

ErrorLog logs/error.log

The debug log level can be useful for troubleshooting issues but is not recom-
mended for normal activity, because it generates lots of output!

You can customize the appearance of the log messages using the LogFormat direc-
tive. Apache allows you to determine just what information appears in the log 
file, which can be handy when trying to troubleshoot specific problems. Consult 
the Apache server documentation for the different options you have available for 
customizing the logs.

Customizing the MySQL server
The MySQL server uses two different filenames for its configuration settings:

»» my.cnf for Linux and Mac systems

»» my.ini for Windows systems

One of the more confusing features about the MySQL server is that there are three 
ways to specify configuration settings:

»» They can be compiled into the executable server program when built from 
source code.

»» They can be specified as command-line options when the server starts.

»» They can be set in the MySQL configuration file.

You can compile all the settings you need into the MySQL executable server pro-
gram and run with no configuration file at all (that’s the approach the MAMP  
all-in-one package takes). The downside to that is it’s hard to determine just 
which settings are set to which values.

Most MySQL server installations use a combination of compiling some basic set-
tings into the executable server program and creating a basic configuration file for 
the rest. The setting values set in the configuration file override anything com-
piled into the executable server program or set on the command line.



U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2  Using a Web Server      45

As with the Apache web server, the MySQL database server has lots of options 
you can change in the configuration file to fine-tune how things work. That said, 
there are only a few items that you’d ever really need to tweak in a normal setup. 
The following sections walk you through some of the settings you should become 
familiar with.

The core server settings
The core server settings define the basics of how the MySQL server operates. 
These settings in the XAMPP for Windows setup look like this:

[mysqld]

port = 3306

socket = "C:/xampp/mysql/mysql.sock"

basedir = "C:/xampp/mysql"

tmpdir = "C:/xampp/mysql/tmp"

datadir = "C:/xampp/mysql/data"

log_error = "mysql_error.log"

The port setting defines the TCP port the MySQL server listens for incoming 
requests on. The socket setting defines the location of a socket file that local cli-
ents can use to communicate with the MySQL server without using the network.

The basedir, tmpdir, and datadir settings define the locations on the server that 
MySQL will use for storing its working files. The datadir setting defines where 
MySQL stores the actual database files.

Working with the InnoDB storage engine
The InnoDB storage engine provides advanced database features for the MySQL 
server. It has its own set of configuration settings that control exactly how it oper-
ates and how it handles the data contained in tables that use that storage engine.

There are two main configuration settings that you may need to tweak for your 
specific MySQL server installation:

innodb_data_home_dir = "C:/xampp/mysql/data"

innodb_data_file_path = ibdata1:10M:autoextend

The innodb_data_home_dir setting defines the location where MySQL places files 
required to support the InnoDB storage engine. This allows you to separate those 
files from the normal MySQL database files if needed.



46      BOOK 1  Getting Started with Web Programming

The innodb_data_file_path setting defines three pieces of information for the 
storage engine:

»» The filename MySQL uses for the main InnoDB storage file

»» The initial size of the storage file

»» What happens when the storage file fills up

To help speed up the data storage process, the InnoDB storage engine pre- 
allocates space on the system hard drive for the database storage file. That way, for 
each data record that’s inserted into a table, the storage engine doesn’t need to ask 
the operating system for more disk space to add to the database file — it’s already 
there! This greatly speeds up the database performance. The second parameter 
defines the initial amount of disk space that the InnoDB storage engine allocates.

The third parameter is where things get interesting. It defines what the InnoDB 
storage engine does when the space allocated for the storage file becomes full. By 
default, the InnoDB storage engine will block new data inserts to the tables when 
it runs out of allocated storage space. You would have to manually extend the 
storage file size.

When you specify the autoextend setting, that allows the InnoDB storage engine 
to automatically allocate more space for the file. That’s convenient, but it can 
also be dangerous in some environments. The InnoDB storage engine will keep 
allocating more storage space as needed until the server runs out of disk space!

When you use the InnoDB storage engine for your MySQL applications, it’s always 
a good idea to keep an eye on the storage space folder to make sure it’s not taking 
up all the server disk space.

Customizing the PHP server
The PHP server configuration file is named php.ini, but it can be located in 
several different areas. The locations that the PHP server checks are (in order):

»» The path set in the PHPIniDir directive in the Apache web server 
configuration file

»» The path set in a system environment variable named PHPRC

»» For Windows systems, the path set in the registry key named IniFilePath 
under the HKEY_LOCAL_MACHINE/Software/PHP registry hive

»» The folder where the PHP server executable file is stored



U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2  Using a Web Server      47

»» The default web server’s folder

»» The OS system folder, which for Windows is the c:\winnt folder, and for 
Linux and Mac the /usr/local/lib folder

The XAMPP install process places the php.ini file in the c:\xampp\apache\bin 
folder.

If you’re ever in doubt as to which php.ini configuration file the PHP server is 
using, run the phpinfo() function in a small PHP program. For your convenience, 
all the popular all-in-one packages provide a link to run the phpinfo() function 
from their main web pages. Figure  2-5 shows the output from the phpinfo() 
function in XAMPP running on a Windows system.

The phpinfo() function displays the system values for each of the configuration 
file settings and if any were overridden by a local setting. Look for the Loaded 
Configuration File entry that shows the path to the active php.ini file to see 
where that file is located for your PHP server.

FIGURE 2-5:  
The phpinfo() 

function output.



48      BOOK 1  Getting Started with Web Programming

As you can imagine, there are lots of settings available in the php.ini configu-
ration file. Here are some of the php.ini settings (and the default values set in 
XAMPP) that you may need to tweak on your PHP server:

»» date.timezone = Europe/Berlin: Defines the time zone of the PHP server. 
This must use a time zone value defined at http://php.net/manual/en/
timezones.php.

»» display_errors = On: Defines whether PHP error messages appear on the 
web page. This feature is extremely handy for development work but should 
be disabled for production servers.

»» error_reporting = E_ALL & ~E_DEPRECATED: Sets the level of error 
reporting from the PHP server. PHP uses a complicated bit pattern to set 
which errors to display or not display. It uses labels to indicate the error level 
and Boolean bitwise operators to combine the levels — the tilde (~) indicates 
the NOT operator. The error levels are:

•	 E_ERROR: Fatal run-time errors

•	 E_WARNING: Run-time warnings that won’t halt the script

•	 E_PARSE: Parsing syntax errors

•	 E_NOTICE: Script encountered something that could be an error and effect 
the results

•	 E_CORE_ERROR: Fatal error that prevents PHP from starting

•	 E_CORE_WARNING: Non-fatal errors during startup

•	 E_COMPILE_ERROR: Fatal error while compiling the PHP code

•	 E_COMPILE_WARNING: Non-fatal errors during compile time

•	 E_USER_ERROR: Fatal error message generated manually by your PHP code

•	 E_USER_WARNING: Non-fatal error message generated manually by your 
PHP code

•	 E_USER_NOTICE: Notice message generated manually by your PHP code

•	 E_STRICT: PHP detected code that doesn’t follow the PHP strict rules

•	 E_RECOVERABLE_ERROR: A fatal error that you can catch with a try-catch 
block

•	 E_DEPRECATED: The PHP parser detected code that will no longer be 
supported

•	 E_USER_DEPRECATED: A deprecation error generated manually by your 
PHP code

•	 E_ALL: All errors and warnings except E_STRICT

http://php.net/manual/en/timezones.php
http://php.net/manual/en/timezones.php


U
si

ng
 a

 W
eb

 S
er

ve
r

CHAPTER 2  Using a Web Server      49

»» variables_order = "GPCS": The order in which PHP populates the data 
from the HTTP session (G = GET, P = POST, C = Cookies, and S = System 
variables)

»» short_open_tag = Off: Determines if you can use the <? tag to identify PHP 
code in your HTML documents

»» max_execution_time = 30: Sets a time limit (in seconds) for a PHP program 
to run before the PHP server kills it (This is useful for stopping programs stuck 
in a loop!)

»» memory_limit = 128M: Sets a limit on how much memory on the physical 
server the PHP server can allocate (This also helps prevent runaway programs 
from taking down the entire web server!)





CHAPTER 3  Building a Development Environment      51

Building a Development 
Environment

When you’re ready to start coding your web application, you’ll need some 
tools to help you out. Just as a carpenter needs a set of tools to do her job, 
web developers need tools as well. And just as the carpenter has a wide 

selection of tools to choose from, so do web developers. A carpenter can build an 
entire house using a hammer and hand saw (and possibly a tape measure), but most 
likely, she has a few more advanced tools to make her job easier. Likewise, you can 
build an entire web application using a standard text editor, but there are plenty of 
other tools around to make your job easier. The trick to becoming comfortable with 
web programming is to find the right tool, or combination of tools, for the task at 
hand. This chapter walks you through some of the tools that you can use to help 
make your programming job easier. But first, I start by telling you what not to use.

Knowing Which Tools to Avoid
Before I get too far into the tool discussion, I need to tell you what tools not to use 
for serious web-programming jobs. These days, plenty of tools are available to help 
novice web designers create their own web pages without doing any coding at all. 
However, trying to develop dynamic web applications with these tools can create 
more problems than they’re worth. Here are some of the tools you should avoid.

Chapter 3

IN THIS CHAPTER

»» Identifying which tools to avoid

»» Finding the right tools for the job



52      BOOK 1  Getting Started with Web Programming

Graphical desktop tools
Graphical desktop tools allow you to create a web page using a purely graphical 
interface, without having to do any coding. The most popular of these tools are the 
Microsoft Expression Web package and Adobe Dreamweaver.

Both of these tools use the what you see is what you get (WYSIWYG) method of 
creating web pages. Instead of an editor for writing code, the tool presents you 
with a graphical canvas that represents your web page. To add features to the web 
page, you drag and drop elements like text, menus, images, or multimedia clips 
onto the canvas. When you’ve created the web page layout, you click a button and 
the tool automatically generates all the HTML and CSS code required to build the 
web page. Click another button and the tool automatically uploads the files to your 
web-hosting server and you have a complete web page.

At first, tools like these may sound like a great idea, but they have some drawbacks:

»» You have little control over the HTML and CSS code the tools automati-
cally generate. Because the tools need to generate code for all sorts of 
environments and applications, the code they generate is somewhat generic 
and can be bloated and unnecessarily complicated.

»» Because of the code bloat, it’s extremely difficult to add or modify any of 
the code that the tools generate.

»» When you use a graphical desktop tool to create your website, you’re 
stuck using that tool forever. Just like other desktop software packages, 
graphical desktop tools often change features as new versions come out. Old 
features are dropped and new features are added, sometimes forcing you to 
change the way you design your website. You’re stuck in an endless loop of 
purchasing upgrades and learning new features just to maintain your website.

»» The WYSIWYG principle isn’t always accurate. The layout you create in the 
canvas may not always represent what appears in web pages for all browsers 
and devices that people use to view your website.

Web-hosting sites
Besides the graphical desktop tools, there are also web-hosting sites that mimic 
that type of web page design. Web-hosting sites such as Squarespace and Weebly 
are oriented toward novice non-programmers who want to build their own web-
sites. These sites allow people with no experience to get a simple static website 
up and running in practically no time, and as you can imagine, they’re becoming 
very popular.



Bu
ild

in
g 

a 
D

ev
el

op
m

en
t 

En
vi

ro
nm

en
t

CHAPTER 3  Building a Development Environment      53

These sites have all the same drawbacks as the desktop graphical tools. Plus, 
many of them don’t even let you see the HTML and CSS code that they generate. 
With these template-based sites, you’re completely at their mercy. You can never 
migrate your web application to a different host (which is exactly what they want).

Word processors
Some word-processing software packages, such as Microsoft Word and Apple 
Pages, offer the ability to convert documents into web pages. This feature has the 
same drawbacks as the fancier WYSIWYG tools: You can’t control the code they 
generate, and the code they do generate is often bloated. Stay away from creating 
web pages using word processors.

Also stay away from the temptation to write your web application code using a 
word processor. Most word processors embed binary characters into the text, even 
if you save the document in a text mode. This causes all sorts of problems when 
you try to view the web page in a browser.

Working with the Right Tools
Now that you know which tools to avoid, you’re ready to look at the tools you can 
use to get the job done right. In this section, I fill you in on text editors, program 
editors, integrated development environments, and browser debuggers.

Text editors
The hammer-and-saw equivalent for creating web applications is the standard 
text editor. You can build all the program code used in this book using the text 
editor that’s already installed on your computer. You don’t have to buy any fancy 
software packages or maintain any upgrades. This section explains how to use the 
standard text editors that are found on most computers, based on the operating 
system you’re running.

If you’re running Microsoft Windows
If you’re running Microsoft Windows, you have the trusty Notepad application for 
creating and viewing standard text files. Notepad provides a bare-bones interface 
for typing text and saving it. Figure 3-1 shows an example of writing HTML code 
in a Notepad window. Notepad is nothing fancy — just your code in black and 
white.



54      BOOK 1  Getting Started with Web Programming

Notepad works fine as a programming tool, but you’ll want to tweak a few of the 
settings before you start coding in Notepad, just to make things easier.

DISABLING WORD WRAP

In Notepad, you can define the width of the document you want to create, and 
then Notepad automatically starts a new line when you’ve reached that limit. This 
feature is handy for typing memos, but it causes issues when coding.

Wrapping a line of code from one line to the next is generally not allowed in pro-
gramming languages. All the code for a statement should be on the same line, 
unless you do some trickery to tell it otherwise.

Another issue with word wrap is that the GoTo option in the Edit menu becomes 
disabled when word wrap is turned on. Because Notepad doesn’t show line num-
bers, the GoTo feature is all you have to hunt for specific line numbers that error 
messages point out. GoTo is a crucial tool to have in the Notepad editor.

To disable word wrap in Notepad, click the Format entry in the menu bar; then 
click the Word Wrap entry to ensure there is no check mark next to it.

AVOIDING DEFAULT FILE EXTENSIONS

By default, Notepad assumes you’re saving a text document and automatically 
appends a .txt file extension to the file. That doesn’t work with programming 
code, because most programs use a specific file extension to identify themselves 
(such as .html for HTML files or .php for PHP files).

When you use the File ➪ Save As menu option in Notepad, you’ll need to be careful 
when saving your program file that the .txt file extension doesn’t get appended 

FIGURE 3-1:  
Using Microsoft 

Notepad to write 
HTML code.



Bu
ild

in
g 

a 
D

ev
el

op
m

en
t 

En
vi

ro
nm

en
t

CHAPTER 3  Building a Development Environment      55

to the end of the filename. To save a program file using Notepad, follow these 
steps:

1.	 Choose File ➪ Save As from the menu bar at the top of the editor.

The Save As dialog box, shown in Figure 3-2, appears.

2.	 In the drop-down list at the top of the Save As dialog box, navigate to the 
folder where you want to save the program file.

3.	 From the Save As Type text box near the bottom of the Save As dialog 
box, select All Files (*.*).

This prevents Notepad from appending the .txt file extension to your 
filename.

4.	 In the File Name field, enter the filename for your program file, including 
the file extension you want to use.

5.	 Click Save to save the program file.

Your program file is properly saved in the correct format, with the correct 
filename, in the correct location.

SEEING FILE EXTENSIONS

In Microsoft Windows you use File Explorer to navigate the storage devices on 
your system to open files. Unfortunately, the default setup in File Explorer is to 
hide the file extension part of the filename (the part after the period) so that it 
doesn’t confuse novice computer users.

FIGURE 3-2:  
The Microsoft 

Notepad Save As 
dialog box.



56      BOOK 1  Getting Started with Web Programming

That can have the opposite effect for programmers, adding confusion when you’re 
trying to look for a specific file. You may use the same filename for multiple files 
with different extensions. Fortunately, you can easily change this default setting 
in Windows. Just follow these steps:

1.	 In Windows 8 or 10, open Settings. In Windows 7, open the Control Panel.

2.	 In Windows 8 or 10, type File Explorer Options in the search bar and  
press Enter.

3.	 Click the icon for the File Explorer Options tool that appears in the search 
results.

4.	 In Windows 7, click the File Explorer Options icon in the Control Panel.

You may have to go to the Advanced view to see it.

After you open File Explorer Options, the dialog box should look like Figure 3-3.

5.	 Click the View tab.

6.	 Remove the check mark from the Hide Extensions for Known File Types 
check box, as shown in Figure 3-4.

7.	 Click OK.

Now you’ll be able to see the full filename, including the extension, when you 
look for your programs using File Explorer.

FIGURE 3-3:  
The File Explorer 

Options dialog 
box in Windows.



Bu
ild

in
g 

a 
D

ev
el

op
m

en
t 

En
vi

ro
nm

en
t

CHAPTER 3  Building a Development Environment      57

SETTING THE DEFAULT APPLICATION

Now that you can see the full filename of your program files in File Explorer, 
there’s just one more hurdle to cross. If you want to open your program files using 
Notepad by default, you’ll need to tell File Explorer to do that. Follow these steps:

1.	 Navigate to the program file, and right-click the filename.

2.	 In the menu that appears, select Open.

The Open dialog box appears.

3.	 Select Notepad from the list of programs, and then select the check box 
to always open files of this type using the program.

Now you’ll be able to double-click your program files in File Explorer to 
automatically open them in Notepad.

If you’re running macOS
If you’re running macOS (or one of the earlier Mac OS X versions), the text editor 
that comes standard is called TextEdit. The TextEdit application actually provides 
quite a lot of features for a standard text editor — it recognizes and allows you to 
edit a few different types of text files, including rich text files (.rtf) and HTML files.

The drawback to TextEdit is that sometimes it can be too smart. Trying to save 
and edit an HTML file in TextEdit can be more complicated than it should be. By 
default, TextEdit will try to display the HTML tags as their graphical equivalents 
in the editor window, as shown in Figure 3-5.

FIGURE 3-4:  
Removing the 

Hide Extensions 
for Known File 

Types check 
mark.



58      BOOK 1  Getting Started with Web Programming

As you can see in Figure 3-5, TextEdit actually shows the text as the HTML tags 
format it instead of the actual HTML code. This won’t work for editing an HTML 
file, because you need to see the code text instead of what the code generates. 
There’s an easy way to fix that — just follow these steps:

1.	 Choose TextEdit ➪ Preferences.

The Preferences dialog box, shown in Figure 3-6, appears.

FIGURE 3-5:  
Using the default 
TextEdit settings 

to edit an  
HTML file.

FIGURE 3-6:  
The Preferences 

dialog box in 
TextEdit.



Bu
ild

in
g 

a 
D

ev
el

op
m

en
t 

En
vi

ro
nm

en
t

CHAPTER 3  Building a Development Environment      59

2.	 On the New Document tab, in the Format section, select the Plain Text 
radio button.

3.	 In the Options section, remove the check mark from the following  
check boxes:

•	 Correct Spelling Automatically

•	 Smart Quotes

•	 Smart Dashes

•	 Smart Links

4.	 Click the Open and Save tab (see Figure 3-7).

5.	 In the When Opening a File section, check the Display HTML Files as HTML 
Code Instead of Formatted Text check box.

6.	 In the When Saving a File section, remove the check mark from the Add 
“.txt” File Extension to Plain Text Files check box.

7.	 Close the Preferences dialog box to save the settings.

Now you’re all set to start editing your program code using TextEdit!

FIGURE 3-7:  
The Open and 

Save tab of the 
Preferences 
dialog box.



60      BOOK 1  Getting Started with Web Programming

If you’re running Linux
The Linux environment was made by programmers, for programmers. Because of 
that, even the simple text editors installed by default in Linux distributions pro-
vide some basic features that come in handy when coding.

Which text editor comes with your Linux distribution usually depends on the desk-
top environment. Linux supports many different graphical desktop environments, 
but the two most common are GNOME and KDE. This section walks through the 
default text editors found in each.

THE GNOME EDITOR

If you’re working in a GNOME desktop environment, the default text editor is 
gedit, shown in Figure 3-8.

The gedit editor automatically saves program files as plain text format and doesn’t 
try to add a .txt file extension to filenames. There’s nothing special you need to 
do to dive into coding your programs using gedit. Plus, it has some advanced 
features specifically for programming that you would find in program editors (see 
the “Program editors” section later in this chapter).

THE KDE EDITOR

The default text editor used in the KDE graphical desktop environment is Kate, 
shown in Figure 3-9.

FIGURE 3-8:  
The gedit  

editor used in 
Linux GNOME 

desktops.



Bu
ild

in
g 

a 
D

ev
el

op
m

en
t 

En
vi

ro
nm

en
t

CHAPTER 3  Building a Development Environment      61

Just like gedit, the Kate editor contains lots of programmer-friendly features right 
out of the box. Again, no special configuration is required before you can start 
editing your program code in Kate.

Program editors
The next step up from standard text editors is a family of tools called program 
editors. A program editor works just like a text editor, but it has a few additional 
built-in features that come in handy for programming. Here are some of the fea-
tures that you’ll find in program editors:

»» Line numbering: Providing the line numbers off to the side of the window is 
a lifesaver when coding. When an error message tells you there’s a problem 
on line 1935, not having to count every line to get there helps!

»» Syntax highlighting: With syntax highlighting, the editor uses different colors 
for different parts of the program. Program keywords are displayed using 
different colors to help make them stand out from data in the code file.

»» Syntax error marking: Text that appears to be used as a keyword but that 
isn’t found in the code statement dictionary is marked as an error. This 
feature can be a time-saver by helping you catch simple typos in your 
program code.

There are lots of commercial program editors, but some of the best program edi-
tors are actually free. This section discusses some of the better free ones available 
for HTML, CSS, JavaScript, and PHP coding.

FIGURE 3-9:  
The Kate editor 

used in Linux KDE 
desktops.



62      BOOK 1  Getting Started with Web Programming

Notepad++
If you’re running Microsoft Windows, the Notepad++ tool is a great place to start. 
As its name suggests, it’s like Notepad, but better. You can download Note-
pad++ from www.notepad-plus-plus.org. The main editing window is shown in 
Figure 3-10.

The main interface for Notepad++ looks similar to Notepad, so there’s nothing 
different to get used to. By default, it shows line numbers along the left margin, as 
well as the type of file and the column location of the cursor at the bottom.

Notepad++ recognizes the syntax for many different types of programming lan-
guages, including HTML, CSS, JavaScript, and PHP. It highlights the keywords and 
will even match up opening and closing block statements. If you miss a closing 
block, Notepad++ will point that out.

Scintilla and SciTE
The Scintilla library (www.scintilla.org) is an open-source project to provide a 
programming text editor engine for use in any type of environment. Developers 
can embed the Scintilla editor into any type of application free of charge.

The SciTE package is a desktop text editor tool that implements the Scintilla 
library. The SciTE package is available for Windows, macOS, and Linux plat-
forms. You can download it from the Scintilla website for the Windows and Linux 

FIGURE 3-10:  
Notepad++.

http://www.notepad-plus-plus.org
http://www.scintilla.org

